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Hybrid conjugate gradient-BFGS methods based
on Wolfe line search
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Abstract. In this paper, we present some hybrid methods for solving uncon-
strained optimization problems. These methods are defined using proper com-
binations of the search directions and included parameters in conjugate gradient
and quasi-Newton method of Broyden–Fletcher–Goldfarb–Shanno (CG-BFGS).
Their global convergence under the Wolfe line search is analyzed for general ob-
jective functions. Numerical experiments show the superiority of the modified
hybrid (CG-BFGS) method with respect to some existing methods.

Mathematics Subject Classification (2010): 65K05, 90C26, 90C30.

Keywords: Unconstrained optimization, global convergence, conjugate gradient
methods, quasi-Newton methods, Wolfe line search.

1. Introduction

Conjugate gradient methods are very important ones for solving unconstrained
optimization problems, especially for large scale problems. It is well known that
Fletcher-Reeves (FR) [7], Conjugate Descent (CD) [6] and Dai-Yuan (DY) [4] conju-
gate gradient methods have strong convergence properties, but they may not perform
well in practice. On the other hand, Hestnes-Stiefel (HS) [9], Polak-Ribiere-Polyak
(PRP) [13, 14] and Liu-Storey (LS) [12] conjugate gradient methods may not con-
verge in general, but they often perform better than FR, CD and DY. To combine the
best numerical performances of the LS method and the global convergence properties
of the CD method, Yang et al. [17] proposed a hybrid LS-CD method. Dai and Liao
[3] proposed an efficient conjugate gradient method (Dai-Liao type method). Later,
some more efficient Dai-Liao type conjugate gradient method, known as DHSDL and
DLSDL were proposed in [21].

The rest of this paper is organized as follows. In Section 2, we give various
possibilities to determine the step size and the search direction. A hybridization of

Received 23 December 2019; Accepted 08 February 2020.



856 Khelladi Samia and Benterki Djamel

the conjugate gradient method (CG) and the BFGS method will also be presented.
In Section 3, we consider the modification of LSCD method, termed as MLSCD and
the modification of (DHSDL and DLSDL) termed as MMDL [15] and we prove the
global convergence using the Wolfe line search instead of backtracking line search
used by the authors in [15]. In Section 4, we consider the hybrid method BFGS-CG
termed as H-BFGS-CG1 in [15] and we prove the global convergence with the Wolfe
line search termed WH-BFGS-CG. In section 5, we report some numerical results and
compare the performance of the different considered methods. Finally, we give some
conclusions to end this paper.

2. Preliminaries

Consider the following unconstrained optimization problem

min f(x), x ∈ Rn, (2.1)

where f : Rn −→ R is a continuously differentiable function. Let gk be the gradient of
f(x) at the current iterative point xk, then the classical conjugate gradient method
for (2.1) is given by

xk+1 = xk + αkdk, (2.2)

in which αk > 0 is the step size found by one of the line search methods, and dk is
the search direction defined by

dk =

{
−g0, k = 0,
−gk + βkdk−1, k ≥ 1,

(2.3)

where βk is an appropriately defined real scalar, known as the conjugate gradient
parameter.

Since Fletcher and Reeves introduced the nonlinear conjugate gradient method in
1964, many formulae have been proposed using various modifications of the conjugate
gradient direction dk and the parameter βk. The most popular parameters βk are:

βFR
k =

‖ gk ‖2

‖ gk−1 ‖2
, βCD

k = − ‖ gk ‖
2

gTk−1dk−1
, βDY

k =
‖ gk ‖2

yTk−1dk−1
,

βHS
k =

gTk yk−1
yTk−1dk−1

, βPRP
k =

gTk yk−1
‖ gk−1 ‖2

, βLS
k = − gTk yk−1

gTk−1dk−1
,

βDHSDL
k =

‖ gk ‖2 − ‖gk‖
‖gk−1‖ | g

T
k gk−1 |

µ | gTk dk−1 | +dTk−1yk−1
− t g

T
k sk−1

dTk−1yk−1
, µ > 1, t > 0,

βDLSDL
k =

‖ gk ‖2 − ‖gk‖
‖gk−1‖ | g

T
k gk−1 |

µ | gTk dk−1 | −dTk−1gk−1
− t g

T
k sk−1

dTk−1yk−1
, µ > 1, t > 0,

where

yk−1 = gk − gk−1, sk−1 = xk − xk−1
and ‖ · ‖ denotes the Euclidean vector norm.
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In this paper, the step size αk is determined using the following Wolfe line search
conditions

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk,

gTk+1dk ≥ σgTk dk, 0 < ρ < σ < 1.
(2.4)

To combine the best numerical performances of the PRP method and the global
convergence properties of the FR method, Touati-Ahmed and Storey [16] proposed
a hybrid PRP-FR method which is called the H1 method in [19], with the gradient
parameter is defined as

βH1
k = max{0,min{βPRP

k , βFR
k }}. (2.5)

Gilbert and Nocedal in [8] modified (2.5) to

βk = max{−βFR
k ,min{βPRP

k , βFR
k }}.

A hybrid HS-DY conjugate gradient method was proposed by Dai and Yuan in [5],
termed as the H2 method in [19] where the gradient parameter is defined as

βH2
k = max{0,min{βHS

k , βDY
k }}. (2.6)

We consider hybrid CG methods where the search direction dk, k ≥ 1, from (2.3) is
modified using one of the following tow rules [15]

dk = D(βk, gk, dk−1) = −

(
1 + βk

gTk dk−1

‖gk‖2

)
gk + βkdk−1 (2.7)

dk = D1(βk, gk, dk−1) = −Bkgk +D(βk, gk, dk−1) (2.8)

and the conjugate gradient parameter βk is defined using some proper combinations of
the parameters βk given above and already defined hybridizations of these parameters.

Zhang et al. in [20, 18] proposed a modification to the FR method, termed as
the MFR method, using the search direction

dk = D(βFR
k , gk, dk−1) (2.9)

Zhang in [18] also proposed a modified DY method, which is known as the MDY
method, using the search direction

dk = D(βDY
k , gk, dk−1) (2.10)

The MFR and MDY methods posses very useful property

gTk dk = −‖gk‖2 (2.11)

If the exact line search is used, then MFR and the MDY methods reduce to the FR
and the DY methods, respectively.

The MFR method has proven to be globally convergent for non convex functions
with the Wolfe line search or the Armijo line search, and it is very efficient in real
computations [20].

However, it is not known whether the MDY method converges globally. So, in
[19], the authors replaced βFR

k in (2.9) and βDY
k in (2.10) by βH1

k and βH2
k , respec-

tively. Then, they defined new hybrid PRP-FR and HS-DY methods, which they call
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the NH1 method and the NH2 method, respectively. These methods are based on the
search directions

NH1 : dk = D(βH1
k , gk, dk−1) (2.12)

NH2 : dk = D(βH2
k , gk, dk−1). (2.13)

It is clear that NH1 and NH2 are descent methods, they satisfy (2.11).

On the other hand, the search direction dk in quasi-Newton methods is obtained as
a solution of the linear algebraic system

Bkdk = −gk, (2.14)

where Bk is an approximation of the Hessian. The initial approximation is the iden-
tity matrix (B0 = I) and the subsequent updates Bk are defined by an appropriate
formula.

Here, we are interested in the BFGS update formula, defined by

Bk+1 = Bk +
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBksk
, (2.15)

where sk = xk+1 − xk, yk = gk+1 − gk. The next secant equation must hold

Bk+1sk = yk, (2.16)

which is possible only if the curvature condition

yTk sk > 0 (2.17)

is satisfied.

The three-term hybrid BFGS conjugate gradient method was proposed in [10].
That method uses best properties of both BFGS and CG methods and defines a hybrid
BFGS-CG method for solving some selected unconstrained optimization problems,
resulting in improvement in the total number of iterations and the CPU time.

3. Modification of LSCD, DHSDL and DLSDL methods

3.1. A modified LSCD conjugate gradient method

We consider the modification of LSCD method, defined in [17] by

βLSCD
k = max

{
0,min

{
βLS
k , βCD

k

}}
, (3.1)

dk =

{
−g0 k = 0
dk = −gk + βLSCD

k dk−1 k ≥ 1,

and define the MLSCD method [15] with the search direction

dk = D(βLSCD
k , gk, dk−1). (3.2)

Now, we give the algorithm of this method using the Wolfe line search.
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3.1.1. Algorithm WMLSCD.

• Step0: Given a starting point x0 and a parameter 0 < ε < 1.
• Step1: Set k = 0 and compute d0 = −g0.
• Step2: If ‖gk‖ ≤ ε, STOP; else go to Step3.
• Step3: Find the step size αk ∈]0, 1] using the Wolfe line search.
• Step4: Compute xk+1 = xk + αkdk.
• Step5: Compute yk = gk+1 − gk and go to Step6.
• Step6: Compute

βLS
k+1 = −y

T
k gk+1

gTk dk
, βCD

k+1 = −‖gk+1‖ 2

gTk dk
,

βLSCD
k+1 = max

{
0,min

{
βLS
k+1, β

CD
k+1

}}
.

• Step7: Compute the search direction dk+1 = D(βLSCD
k+1 , gk+1, dk).

• Step8: Let k := k + 1 and go to Step2.

3.1.2. Convergence of the WMLSCD conjugate gradient method. It is easy to prove
the next theorem.

Theorem 3.1. Let βk be any CG parameter. Then, the search direction

dk = D(βk, gk, dk−1)

satisfies

gTk dk = −‖gk‖2 . (3.3)

To prove the global convergence of the WMLSCD method, we need the following
assumptions.
Assumption 3.1 The level set L = {x ∈ Rn/f(x) ≤ f(x0)} is bounded.
Assumption 3.2 The function f is continuously differentiable in some neighbourhood
N of L and its gradient is Lipschitz continuous. Namely, there exists a constant L > 0
such that

‖g(x)− g(y)‖ ≤ L ‖x− y‖ , for all x, y ∈ N . (3.4)

It is well known that if Assumption 3.2 holds, then there exists a positive constant γ,
such that

‖gk‖ ≤ γ,∀k (3.5)

The next lemma, often called the Zoutendijk condition [22], is used to prove the global
convergence of nonlinear CG method.

Lemma 3.2. [15] Let the Assumption 3.1 and Assumption 3.2 be satisfied. Let the
sequence {xk} be generated by the MLSCD method with the Wolfe line search. Then
it holds that

∞∑
k=1

‖gk‖4

‖dk‖2
< +∞ (3.6)

Theorem 3.3. Let the Assumption 3.1 and Assumption 3.2 hold. Then, the sequence
{xk} generated by the WMLSCD method with the Wolfe line search satisfies

lim inf
k→∞

‖gk‖ = 0 (3.7)
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Proof. In order to gain the contradiction, let us suppose that (3.7) does not hold.
Then, there exists a constant c > 0 such that

‖gk‖ ≥ c, for all k (3.8)

Clearly, (3.2) can be rewritten into the form

dk = −lkgk + βLSCD
k dk−1, lk = 1 + βLSCD

k

gTk dk−1

‖gk‖2
. (3.9)

Now from (3.9), it follows that

dk + lkgk = βLSCD
k dk−1

which further implies

(dk + lkgk)
2

=
(
βLSCD
k dk−1

)2
⇐⇒ ‖dk‖2 + 2lkd

T
k gk + l2k ‖gk‖

2
=
(
βLSCD
k

)2 ‖dk−1‖2 ,
and subsequently

‖dk‖2 =
(
βLSCD
k

)2 ‖dk−1‖2 − 2lkd
T
k gk − l2k ‖gk‖

2
. (3.10)

Notice that

βLSCD
k = max

{
0,min

{
βLS
k , βCD

k

}}
≤
∣∣βCD

k

∣∣ (3.11)

Dividing both sides of (3.10) by (gTk dk)2, we get from (3.11), (3.3), (3.8) and the
definition of βCD

k that

‖dk‖2

‖gk‖4
=

‖dk‖2

(gTk dk)2
=
(
βLSCD
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lkd
T
k gk

(gTk dk)2
− l2k

‖gk‖2

(gTk dk)2

≤
(
βCD
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

=

(
‖ gk ‖2

−gTk−1dk−1

)2
‖dk−1‖2

(gTk dk)2
− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

Finally

‖dk‖2

‖gk‖4
≤

(
‖ gk ‖2

−gTk−1dk−1

)2
‖dk−1‖2

(gTk dk)2
− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2
(3.12)
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Now, applying (3.3), (3.12) becomes

‖dk‖2

‖gk‖4
≤ ‖ gk ‖4

‖ gk−1 ‖4
2 ‖dk−1‖2

‖ gk ‖4
− 2lk
‖ gk ‖2

− l2k
‖gk‖2

‖ gk ‖4

=
‖dk−1‖2

‖ gk−1 ‖4
+

2lk
‖ gk ‖2

− l2k
1

‖ gk ‖2

=
‖dk−1‖2

‖ gk−1 ‖4
− (lk − 1)

2

‖ gk ‖2
+

1

‖ gk ‖2

≤ ‖dk−1‖2

‖ gk−1 ‖4
+

1

‖ gk ‖2

≤
k∑

j=0

1

‖gj‖2

≤ k + 1

c2
.

The last inequalities imply ∑
k≥1

‖gk‖4

‖dk‖2
≥ c2

∑
k≥1

1

k + 1
=∞

which contradicts to (3.6). This completes the proof. �

3.2. A modified DHSDL and DLSDL conjugate gradient method

In this part, we have the hybrid MMDL method, proposed in [15], which is
defined by the search direction dk as follows

βMMDL
k = max

{
0,min

{
βDHSDL
k , βDLSDL

k

}}
dk = D(βMMDL

k , gk, dk−1).

We give the algorithm of this method where we have changed the backtracking line
search by the Wolfe line search.

3.2.1. Algorithm WMMDL.

• Step0: Given a starting point x0, a parameter 0 < ε < 1 and µ > 1.
• Step1: Set k = 0 and compute d0 = −g0.
• Step2: If ‖gk‖ ≤ ε, STOP; else go to Step3.
• Step3: Find the step size αk ∈]0, 1] using the Wolfe line search.
• Step4: Compute xk+1 = xk + αkdk.
• Step5: Compute yk = gk+1 − gk, sk = xk+1 − xk and go to Step6.
• Step6: Compute

βDHSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | +dTk yk
− αk

gTk+1sk

dTk yk

βDLSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | −dTk gk
− αk

gTk+1sk

dTk yk
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βMMDL
k+1 = max

{
0,min

{
βDHSDL
k+1 , βDLSDL

k+1

}}
.

• Step7: Compute the search direction dk+1 = D(βMMDL
k+1 , gk+1, dk).

• Step8: Let k := k + 1 and go to Step2.

3.2.2. Convergence of the WMMDL conjugate gradient method. The following the-
orem prove the global convergence of the WMMDL method.

Theorem 3.4. Let the Assumption 3.1 and Assumption 3.2 be satisfied. Then the
sequence {xk} generated by the WMMDL method with the Wolfe line search satisfies

lim inf
k→∞

‖gk‖ = 0 (3.13)

Proof. Assume, on the contrary, that (3.13) does not hold. Then, there exists a con-
stant c > 0 such that

‖gk‖ ≥ c, for all k (3.14)

Denote

lk = 1 + βMMDL
k

gTk dk−1

‖gk‖2

Then we can write

dk + lkgk = βMMDL
k dk−1

and further

(dk + lkgk)
2

=
(
βMMDL
k dk−1

)2
⇐⇒ ‖dk‖2 + 2lkd

T
k gk + l2k ‖gk‖

2
=
(
βMMDL
k

)2 ‖dk−1‖2 .
Thus,

‖dk‖2 =
(
βMMDL
k

)2 ‖dk−1‖2 − 2lkd
T
k gk − l2k ‖gk‖

2
. (3.15)

Having in view, µ > 1 as well as dTk gk < 0 and applying the extended conjugacy
condition dTk yk−1 = −αgTk sk−1, α > 0, which was exploited in [3, 21], we get

βDHSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | +dTk yk
− αk

gTk+1sk

dTk yk

≤
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | +dTk yk

=
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | +dTk (gk+1 − gk)

=
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | +dTk gk+1 − dTk gk

≤ ‖ gk+1 ‖2

µ | gTk+1dk | +dTk gk+1 − dTk gk

≤ ‖ gk+1 ‖2

−dTk gk
.
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Further

βDLSDL
k+1 =

‖ gk+1 ‖2 −‖gk+1‖
‖gk‖ | g

T
k+1gk |

µ | gTk+1dk | −dTk gk
− αk

gTk+1sk

dTk yk

≤
‖ gk+1 ‖2 −‖gk+1‖

‖gk‖ | g
T
k+1gk |

µ | gTk+1dk | −dTk gk

≤ ‖ gk+1 ‖2

µ | gTk+1dk | −dTk gk

≤ ‖ gk+1 ‖2

−dTk gk
.

Now, we conclude

βMMDL
k = max

{
0,min

{
βDHSDL
k , βDLSDL

k

}}
≤ ‖ gk ‖2

−dTk−1gk−1
(3.16)

Next, dividing both sides of (3.15) by (gTk dk)2, we get from (3.3), (3.16) and (3.14)
that

‖dk‖2

‖gk‖4
=

‖dk‖2

(gTk dk)2
=
(
βMMDL
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lkd
T
k gk

(gTk dk)2
− l2k

‖gk‖2

(gTk dk)2

=
(
βMMDL
k

)2 ‖dk−1‖2
(gTk dk)2

− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

≤

(
‖ gk ‖2

−gTk−1dk−1

)2
‖dk−1‖2

(gTk dk)2
− 2lk
gTk dk

− l2k
‖gk‖2

(gTk dk)2

=
‖ gk ‖4

‖ gk−1 ‖4
2 ‖dk−1‖2

‖ gk ‖4
− 2lk
‖ gk ‖2

− l2k
‖gk‖2

‖ gk ‖4

=
‖dk−1‖2

‖ gk−1 ‖4
+

2lk
‖ gk ‖2

− l2k
1

‖ gk ‖2

=
‖dk−1‖2

‖ gk−1 ‖4
− (lk − 1)

2

‖ gk ‖2
+

1

‖ gk ‖2

≤ ‖dk−1‖2

‖ gk−1 ‖4
+

1

‖ gk ‖2

≤
k∑

j=0

1

‖gj‖2

≤ k + 1

c2
.

These inequalities imply ∑
k≥1

‖gk‖4

‖dk‖2
≥ c2

∑
k≥1

1

k + 1
=∞
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Therefore, ‖gk‖ ≥ c causes a contradiction to (3.6). Consequently, (3.13) is verified.
This completes the proof. �

4. Hybrid BFGS-CG methods

It is known that conjugate gradient method are better compared to the quasi-
Newton method in terms of the CPU time. In addition, BFGS is more costly in terms
of the memory storage requirements than CG. On the other hand, the quasi-Newton
methods are better in terms of the number of iterations and the number of function
evaluations. For this purpose, various hybridizations of quasi-Newton methods and
CG methods have been proposed by various researchers.

In [10], the authors proposed a hybrid search direction that combines the quasi-
Newton and CG methods, where dk is defined by

dk =

{
−Bkgk k = 0
−Bkgk + η(−gk + βkdk−1) k ≥ 1,

where η > 0 and βk =
gTk gk−1
gTk dk−1

.

A hybrid direction search between BFGS update of the Hessian matrix and the
conjugate parameter βk was proposed in [1, 11].

4.1. WH-BFGS-CG method

P. S. Stanimirovic et al. proposed in [15] a three-term hybrid BFGS-CG method,
called H-BFGS-CG, defined by the search direction

dk =

{
−Bkgk, k = 0
D1(βLSCD

k+1 , gk, dk−1), k ≥ 1
(4.1)

The following algorithm correspond to this method, where we have changed the
backtracking line search by the Wolfe line search.

4.1.1. Algorithm WH-BFGS-CG.

• Step0: Given a starting point x0 and a parameter 0 < ε < 1.
• Step1: Set k = 0 and compute g0, B0 = I, d0 = −B0g0.
• Step2: If ‖gk‖ ≤ ε, STOP; else go to Step3.
• Step3: Find the step size αk ∈]0, 1] using the Wolfe line search.
• Step4: Compute xk+1 = xk + αkdk.
• Step5: Compute yk = gk+1 − gk, sk = xk+1 − xk and go to Step6.
• Step6: Compute

βLS
k+1 = −y

T
k gk+1

gTk dk
, βCD

k+1 = −‖gk+1‖ 2

gTk dk
,

βLSCD
k+1 = max

{
0,min

{
βLS
k+1, β

CD
k+1

}}
.

• Step7: Compute Bk+1 using (2.15).
• Step8: Compute the search direction dk+1 = D1(βLSCD

k+1 , gk+1, dk).
• Step9: Let k := k + 1 and go to Step2.
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4.2. Convergence analysis of WH-BFGS-CG method

Assumption 4.1:
H1: The objective function f is twice continuously differentiable.
H2: The level set L is convex. Moreover, there exist positive constants c1 and

c2 such that

c1 ‖z‖2 ≤ zTH(x)z ≤ c2 ‖z‖2 , for all z ∈ Rn and x ∈ L,
where H(x) is the Hessian of f .

H3: The gradient g is Lipschitz continuous at the point x∗, that is, there exists
a positive constant c3 satisfying

‖g(x)− g(x∗)‖ ≤ c3 ‖x− x∗‖ ,
for all x in a neighbourhood of x∗.

Theorem 4.1. [2] Let {Bk} be generated by the BFGS update formula (2.15), where
sk = xk+1 − xk, yk = gk+1 − gk. Assume that the matrix Bk is symmetric positive
definite and satisfies (2.16) and (2.17) for all k. Furthermore, assume that {sk} and
{yk} satisfy the inequality

‖yk −G∗sk‖
‖sk‖

≤ εk,

for some symmetric positive definite matrix G∗ and for some sequence {εk} possessing
the property

∞∑
k=1

εk <∞,

then

lim
k−→∞

‖(Bk −G∗) sk‖
‖sk‖

= 0,

and the sequences {‖Bk‖} ,
{∥∥B−1k

∥∥} are bounded.

Theorem 4.2. (Sufficient descent and global convergence) Consider Algorithm WH-
BFGS-CG. Assume that the conditions H1, H2 and H3 in Assumption 4.1 are satisfied
as well as conditions of Theorem 4.1. Then

lim
k→∞

‖gk‖2 = 0.

Proof. From (4.1), we have

gTk dk = −gTk Bkgk − gTk gk − βLSCD
k gTk dk−1 + βLSCD

k gTk dk−1

≤ −c1 ‖gk‖2 − ‖gk‖2 = −(c1 + 1) ‖gk‖2

≤ −‖gk‖2 , 0 < c1 + 1 ≤ 1,

then
gTk dk ≤ −‖gk‖

2
. (4.2)

We conclude that the sufficient descent holds.
Further, from Wolfe line search conditions and (4.2), it holds

f(xk)− f(xk + αkdk) ≥ −ραkg
T
k dk ≥ ραk ‖gk‖2 . (4.3)
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Since f(xk) is decreasing and the sequence f(xk) is bounded below and by the con-
dition H2, we have

lim
k→∞

f(xk)− f(xk + αkdk) = 0. (4.4)

Hence (4.3) and (4.4) imply

lim
k→∞

ραk ‖gk‖2 = 0.

Now, since ρ > 0 and αk > 0, we have

lim
k→∞

‖gk‖2 = 0.

This completes the proof. �

5. Numerical results

In this section, some numerical results are reported to illustrate the behaviours
of WMLSCD, WMMDL and WH-BFGS-CG methods. The step size αk is determined
using the Wolfe line search.

We use the Matlab Langage with a precision ε = 10−6.

We designate by:

• k: The number of iterations required to obtain the solution.
• Time: The execution time in second.

Example 5.1. We take the function

f(x) =

n∑
i=1

(exp(xi)− xi).

We take as starting point x0 = (1, 1, . . . , 1)T .

The minimum of this function is reached at the point

x∗ = (0, 0, . . . , 0)T and f(x∗) = n.

The results obtained are summarised in the following tables:

For n = 3, we have

Methods k Time ‖ gk ‖
WMLSCD 19 0.149532 8.0732e− 07
WMMDL 19 0.161138 8.0732e− 07
WH-BFGS-GC 5 0.073673 1.4372e− 08

For n = 100, we have

Methods k Time ‖ gk ‖
WMLSCD 22 3.883876 5.8263e− 07
WMMDL 22 3.803220 5.8263e− 07
WH-BFGS-GC 5 1.622640 8.2976e− 08
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For n = 500, we have

Methods k Time ‖ gk ‖
WMLSCD 24 74.325460 6.4631e− 07
WMMDL 24 70.101070 6.4631e− 07
WH-BFGS-GC 5 21.087659 1.8554e− 07

Example 5.2. We take the function

f(x) =

n∑
i=1

ln(exp(xi) + exp(−xi)).

We take as starting point x0 = (1.1, 1.1, . . . , 1.1)T

The minimum of this function is reached at the point

x∗ = (0, 0, . . . , 0)T and f(x∗) = n ln(2).

The results obtained are summarised in the following tables:

For n = 3, we have

Methods k Time ‖ gk ‖
WMLSCD 96 0.348543 9.6801e− 07
WMMDL 95 0.443647 9.5309e− 07
WH-BFGS-GC 47 0.375461 8.4400e− 08

For n = 100, we have

Methods k Time ‖ gk ‖
WMLSCD 104 40.083872 9.9132e− 07
WMMDL 104 83.918822 9.9369e− 07
WH-BFGS-GC 66 20.465962 8.4827e− 07

For n = 200, we have

Methods k Time ‖ gk ‖
WMLSCD 107 83.209667 9.1391e− 07
WMMDL 108 80.273199 9.2334e− 07
WH-BFGS-GC 69 52.410529 8.2027e− 07

For n = 300, we have

Methods k Time ‖ gk ‖
WMLSCD 109 171.535865 9.8675e− 07
WMMDL 111 205.430203 9.5399e− 07
WH-BFGS-GC 70 110.807414 7.9846e− 07

Commentaries: The numerical tests show clearly that the proposed hybrid algorithm
WH-BFGS-GC Wolfe based on line search is more efficient in terms of number of
iterations and computation time than WMLSCD and WMMDL methods.
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6. Conclusion

We have considered the hybrid conjugate gradient methods, MLSCD, MMDL
and H-BFGS-CG, for solving unconstrained optimization problems where we have
changed the backtracking line search given in [15] by the Wolfe line search. Firstly, we
have shown that the obtained WMLSCD, WMMDL and WH-BFGS-CG algorithms
are globally convergent for general functions.

Secondly, the numerical simulations confirm the effectiveness of the approach
WH-BFGS-CG. In fact, the WH-BFGS-CG method is the most efficient in terms of
number of iterations and computation time compared to WMLSCD and WMMDL
methods which was not the case with backtracking line search, where the computation
time of H-BFGS-GC was greater than MLSCD and MMDL [15].
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