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1. Introduction

Let f be a 2π-periodic function, f ∈ L[0, 2π], and

a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx), (1.1)

its Fourier series at the point x, where

ak =
1

π

∫ π

−π
f(x) cos kxdx, (k = 0, 1, . . . ); bk =

1

π

∫ π

−π
f(x) sin kxdx, (k = 1, 2, . . . ).

By

‖f‖ = sup
0≤x≤2π

|f(x)|

we denote the sup-norm of f over [0, 2π], and by C[0, 2π] the class of all 2π-periodic
continuous functions defined in [0, 2π].

In 1928, was G. Alexits [4] who studied the degree of approximation of function
a f ∈ Lipα by Cesàro means (C, δ) of its Fourier series. This study may be considered
as a starting point for other studies of this nature, and another type of similar studies
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can be found in [6]-[9]. Recent studies of other researchers can be found in [1], [5],
and [7].

For our purpose, we are going to recall a result proved in [6]. To do this we need
first to present the generalized Vallée Poussin mean given in [10].

Let
∑∞
n=1 wn be a given infinite series and let sn be its n-th partial sum. Let

λ := (λn) be a monotone non-decreasing sequence of integers such that λ1 = 1 and
λn+1 − λn ≤ 1.

The mean

Vn(λ) =
1

λn

n−1∑
m=n−λn

sm, (n ≥ 1), (1.2)

is called the n-th generalized de la Vallée Poussin mean of the sequence (sn) generated
by sequence (λn).

For n-th partial sum

sn(f ;x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

of the series (1.1), its n-th generalized de la Vallée Poussin mean is defined by

Vn(λ; f ;x) =
1

λn

n−1∑
m=n−λn

sm(f ;x), (n ≥ 1), (1.3)

and the modulus of continuity of f(x), for a given real number δ > 0, is defined as
follows

ω(f ; δ) := sup
|x−y|≤δ

|f(x)− f(y)|,

where x, y ∈ [0, 2π].
Throughout this paper we write u = O(v) if there exists a positive constant K,

such that u ≤ Kv. Now, we are ready to recall the result mentioned above.

Theorem 1.1 ([6]). Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
the following conditions as t→ +0:∫ π

2

t

u−2ω(f ;u)du = O(F (t)), (1.4)

where F (t) ≥ 0, and ∫ t

0

F (u)du = O(tF (t)). (1.5)

Then

‖f − Vn(λ; f)‖ = O
(

1

λn
F

(
π

2λn

))
. (1.6)

For our further investigation let a := (an) and b := (bn) be sequences of non-
negative integers with condition

1 ≤ bn − an + λn, (n = 1, 2, . . . ). (1.7)

Whence, we are in able to generalize the mean Vn(λ) defined in (1.2) as follows.
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The mean

Vn(λ, a, b) =
1

bn − an + λn

bn−1∑
m=an−λn

sm, (n ≥ 1), (1.8)

is called the n-th deferred generalized de la Vallée Poussin mean of the sequence (sn)
generated by sequences λ, a, and b.

It is the purpose of this paper to estimate the deviation f − Vn(λ, a, b) in the
sup-norm, which in fact generalize Theorem 1.1 (as well as we extend it in the two-
dimensional setting, see subsec. 3.2). To do this we need some helpful lemmas given
in next section.

2. Auxiliary lemma

Next lemma has been proved implicitly in [6].

Lemma 2.1. Let (1.4) hold. Then, ω(f ; t) = O(tF (t)).

Now, we prove next helpful lemma.

Lemma 2.2. Denote by

Ka,bn (t) :=

bn−1∑
m=an−λn

Dm(t) =

bn−1∑
m=an−λn

sin (2m+ 1) t

sin t

the deferred de la Vallée Poussin kernel, where Dm(t) := sin(2m+1)t
sin t .

Then,

(i) Ka,bn (t) =
sin(bn − an + λn)t sin(bn + an − λn)t

sin2 t
,

(ii) |Ka,bn (t)| = O
(
bn − an + λn

t

)
, 0 < t ≤ π

2(bn − an + λn)
,

(iii) |Ka,bn (t)| = O
(

1

t2

)
,

π

2(bn − an + λn)
< t ≤ π

2
.

Proof. (i) We have

Ka,bn (t) =

bn−1∑
m=an−λn

sin (2m+ 1) t

sin t

=

bn−1∑
m=0

2 sin (2m+ 1) t sin t

2 sin2 t
−
an−λn−1∑
m=0

2 sin (2m+ 1) t sin t

2 sin2 t

=
1− cos(2bnt)

2 sin2 t
− 1− cos(an − λn)t

2 sin2 t

=
sin2(bnt)− sin2(an − λn)t

sin2 t

=
sin(bn − an + λn)t sin(bn + an − λn)t

sin2 t
.
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(ii) Using the inequalities | sinβ| ≤ 1, | sinβ| ≤ β, and sinβ ≥ 2
πβ for 0 < β ≤ π

2 ,
we have:

|Ka,bn (t)| ≤ π2(bn − an + λn)t

4t2
= O

(
bn − an + λn

t

)
.

(iii) Similarly, using the inequalities | sinβ| ≤ 1 and sinβ ≥ 2
πβ for 0 < β ≤ π

2 ,
we also have:

|Ka,bn (t)| ≤ π2

4t2
= O

(
1

t2

)
.

The proof is completed. �

In the sequel we pass to the main result.

3. Main result

3.1. Approximation by deferred generalized de la Vallée Poussin mean of single
Fourier series

Here, we prove the following.

Theorem 3.1. Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
conditions (1.4) and (1.5) as t→ +0, where F (t) ≥ 0.

Then

‖f − Vn(λ, a, b; f)‖ = O
(

1

bn − an + λn
F

(
π

2(bn − an + λn)

))
. (3.1)

Proof. After some calculation we have:

sm(f ;x) =
1

π

∫ π
2

0

[f(x+ 2t) + f(x− 2t)]Dm(t)dt,

where Dm(t) = sin(2m+1)t
sin t .

Denoting by Vn(λ, a, b; f ;x) the deferred generalized de la Vallée Poussin mean of
sm(f ;x), i.e.,

Vn(λ, a, b; f ;x) :=
1

bn − an + λn

bn−1∑
m=an−λn

sm(f ;x),

we get:

Vn(λ, a, b; f ;x)− f(x) =
1

(bn − an + λn)π

∫ π
2

0

ψx(t)Ka,bn (t)dt,

where

ψx(t) := f(x+ 2t) + f(x− 2t)− f(x).
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Whence,

‖Vn(λ, a, b; f)− f‖ ≤ 1

(bn − an + λn)π

∫ π
2

0

|ψx(t)||Ka,bn (t)|dt

≤ 4

(bn − an + λn)π

(∫ π
2(bn−an+λn)

0

+

∫ π
2

π
2(bn−an+λn)

)
ω(f ; t)|Ka,bn (t)|dt

:= P1 + P2. (3.2)

Using Lemma 2.2, part (ii), we obtain:

|P1| = O (1)

∫ π
2(bn−an+λn)

0

t−1ω(f ; t)dt,

and applying Lemma 2.1, (1.4) and (1.5), we get:

|P1| = O (1)

∫ π
2(bn−an+λn)

0

∫ π
2

t

u−2ω(f ;u)dudt

= O (1)

∫ π
2(bn−an+λn)

0

F (t)dt

= O
(

1

bn − an + λn
F

(
π

2(bn − an + λn)

))
. (3.3)

To estimate P2, we use Lemma 2.2, part (iii). Namely, based on (1.4), we have

|P2| = O
(

1

(bn − an + λn)π

)∫ π
2

π
2(bn−an+λn)

t−2ω(f ; t)dt

= O
(

1

bn − an + λn
F

(
π

2(bn − an + λn)

))
. (3.4)

Finally, inserting (3.2) and (3.3) into (3.4), we immediately obtain (3.1) as required.

The proof is completed. �

Remark 3.2. Since, in general, λn ≤ bn− an +λn, then we observe that the degree of
approximation obtained in Theorem 3.1 is not worse than that appears in Theorem
1.1.

Remark 3.3. For bn = an = n, we immediately obtain the result given in [6].

Further, let the sequences a := (an) and b := (bn) be of non-negative integers
with conditions

an < bn, n = 1, 2, . . . , (3.5)

and

lim
n→∞

bn = +∞. (3.6)

If λn = 1 for all n ≥ 1, then the deferred de la Vallée Poussin mean

Vn(1, a+ 2, b+ 1; f ;x)
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reduces to

Db
a(f ;x) :=

1

bn − an

bn∑
m=an+1

sm(f ;x),

which is the deferred Cesàro mean of the sum sn(f ;x) introduced in [2]. In the same
paper, it was shown that (3.5) and (3.6) are conditions of regularity for Db

a. Conse-
quently, if conditions (3.5) and (3.6) are satisfied, then from Theorem 3.1 we deduce
the following.

Corollary 3.4. Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
conditions (1.4) and (1.5) as t→ +0, where F (t) ≥ 0.
Then

‖f −Db
a(f)‖ = O

(
1

bn − an
F

(
π

2(bn − an)

))
.

Also, if we take λn = n, an = n, bn = n+1, ∀n ≥ 1, then the deferred generalized
de la Vallée Poussin mean reduces to ordinary Cesàro mean of the sum sn(f ;x),

σn(f ;x) :=
1

n+ 1

n∑
m=0

sm(f ;x).

Therefore, Theorem 3.1 also implies:

Corollary 3.5. Let f ∈ C[0, 2π] and ω(f ; t) be its modulus of continuity satisfying
conditions (1.4) and (1.5) as t→ +0, where F (t) ≥ 0.
Then

‖f − σn(f)‖ = O
(

1

n+ 1
F

(
π

2(n+ 1)

))
.

Let us specify the function F (t) as follows:

F (t) =

{
tγ−1, 0 < γ < 1;

log
(
π
t

)
, γ = 1.

Using this function the following estimations from Theorem 3.1, Corollary 3.4,
and Corollary 3.5 can be deduced (of course all other conditions are maintaining):

(a) From Theorem 3.1:

‖f − Vn(λ, a, b; f)‖ =

{
Oγ
(

1
(bn−an+λn)γ

)
, 0 < γ < 1;

log(2(bn−an+λn))
bn−an+λn , γ = 1.

(b) From Corollary 3.4:

‖f −Db
a(f)‖ =

{
Oγ
(

1
(bn−an)γ

)
, 0 < γ < 1;

log(2(bn−an))
bn−an , γ = 1.

(c) From Corollary 3.5 (this is a particular case of a result given in [4]):

‖f − σn(f)‖ =

{
Oγ
(

1
(n+1)γ

)
, 0 < γ < 1;

log(2(n+1))
n+1 , γ = 1.
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3.2. Approximation by deferred generalized de la Vallée Poussin mean of double
Fourier series

Let C([−π, π]2) be the class of real-valued functions of two variables that are
continuous on [−π, π] × [−π, π] := [−π, π]2 and 2π periodic with respect to x and
y. We recall that the double Fourier series of the function f(x, y) ∈ C([−π, π]2) is
defined by

f(x, y) ∼
∞∑
m=1

∞∑
n=1

λmn

[
amn cosmx cosny + bmn sinmx cosny

+ cmn cosmx sinny + dmn sinmx sinny

]
,

where

λmn =


1/4, if m = n = 0,

1/2, if m > 0, n = 0 ∨m = 0, n > 0,

1, if m > 0, n > 0,

and

amn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) cosmu cosnvdudv,

bmn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) sinmu cosnvdudv,

cmn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) cosmu sinnvdudv,

dmn =
1

π2

∫ π

−π

∫ π

−π
f(u, v) sinmu sinnvdudv,

are the Fourier coefficients of the function f(x, y).
The sequence {sm,n(f ;x, y)} represents the sequence of partial sums of the dou-

ble Fourier series which can be rewritten in integral form by

sm,n(x, y) := sm,n(f ;x, y) :=
1

π2

∫ π

−π

∫ π

−π
f(x+ u, y + v)Dm(u)Dn(v)dudv.

To my best knowledge the double de la Vallée Poussin mean of sm,n(x, y) is
defined by (see [3])

V (p,q)
m,n (f ;x, y) :=

1

(p+ 1)(q + 1)

n+p∑
k=n

m+q∑
`=m

sk,`(x, y), p ≥ 0, q ≥ 0. (3.7)

The mean V
(p,q)
m,n (f ;x, y) is generalized in [11] as follows (for our purposes we

modify it ”a little bit”). Let λ := (λm) and µ := (µn) be two monotone non-decreasing
sequences of integers such that λ1 = µ1 = 1, λm+1 − λm ≤ 1, and µn+1 − µn ≤ 1.

The mean

V λ,µm,n(f ;x, y) =
1

λmµn

m−1∑
k=m−λm

n−1∑
k=n−µn

sk,`(x, y), (m,n ≥ 1), (3.8)
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is called the (mn)-th deferred generalized de la Vallée-Poussin mean of the sequence
(sk,`(x, y)) generated by sequences (λm) and (µn).

The (total) modulus of continuity of a continuous function f(x, y), 2π-periodic
in each variable, in symbols f ∈ C([−π, π]2), is defined by (see [12], page 283)

ω1(f, δ1, δ2) = sup
x,y

sup
|u|≤δ1,|v|≤δ2

|f(x+ u, y + v)− f(x, y)|, δ1, δ2 ≥ 0.

To estimate the deviation

max
(x,y)∈Q

∣∣V λ,µm,n(f ;x, y)− f(x, y)
∣∣ ,

which is the main result of this subsection, first we denote

φxy(s, t) := f(x+ s, y + t) + f(x− s, y + t)

+ f(x+ s, y − t) + f(x− s, y − t)− 4f(x, y).

Now, we are in able to prove the following.

Theorem 3.6. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s) and

ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4) and
(1.5) as s, t→ +0, and F1(s), F2(t) ≥ 0 two mediate functions. Then

max
(x,y)∈Q

∣∣V λ,µm,n(f ;x, y)− f(x, y)
∣∣ = O

(
1

λmλn
F1

(
π

2λm

)
F2

(
π

2λn

))
.

Proof. After some transforms we get:

V λ,µm,n(f ;x, y)− f(x, y) =
1

π2

∫ π
2

0

∫ π
2

0

φxy(2s, 2t)Kλ,µ
mn(s, t)dsdt, (3.9)

where

Kλ,µ
mn(s, t) :=

1

λmµn

m−1∑
k=m−λm

n−1∑
`=n−µn

sin (2k + 1) s

sin s

sin (2`+ 1) t

sin t
.

Without difficulty the quantity Kλ,µ
mn(s, t) can be written as

Kλ,µ
mn(s, t) =

sin(λms) sin[(2m− λm) s] sin(µnt) sin[(2n− µn) t]

λmµn sin2 s sin2 t
.

Therefore, we have:

|V λ,µm,n(f ;x, y)− f(x, y)| ≤
(

4

π

)2 ∫ π
2

0

∫ π
2

0

ω1(f, s, t)|Kλ,µ
mn(s, t)|dsdt

= O

(∫ π
2λm

0

∫ π
2µn

0

+

∫ π
2

π
2λm

∫ π
2µn

0

+

∫ π
2λm

0

∫ π
2

π
2µn

+

∫ π
2

π
2λm

∫ π
2

π
2µn

)
:= O (S1 + S2 + S3 + S4) . (3.10)
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Using Jordan’s inequality sin ν ≥ 2
πν for 0 < ν ≤ π

2 , given assumptions, and Lemma
2.1, we obtain:

S1 = O (1)

∫ π
2λm

0

∫ π
2µn

0

s−1t−1ω1(f, s, t)dsdt (3.11)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

Using the same arguments and Lemma 2.2, we also obtain:

S2 = O (1)

∫ π
2

π
2λm

∫ π
2µn

0

s−2t−1ω1(f, s, t)dsdt (3.12)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

With very similar reasoning, we get:

S3 = O (1)

∫ π
2λm

0

∫ π
2

π
2µn

s−1t−2ω1(f, s, t)dsdt (3.13)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

Finally, based on given assumptions, and Lemma 2.2 twice, we have:

S4 = O (1)

∫ π
2

π
2λm

∫ π
2

π
2µn

s−2t−2ω1(f, s, t)dsdt (3.14)

= O
(

1

λmµn
F1

(
π

2λm

)
F2

(
π

2µn

))
.

Subsequently, inserting (3.11), (3.12),(3.13), and (3.14) into (3.9), the requested esti-
mation follows.
The proof is completed. �

Specifying functions Fi(z), (i = 1, 2), by:

Fi(z) =

{
zγi−1, 0 < γi < 1;

log
(
π
z

)
, γi = 1

then Theorem 3.6 implies:

Corollary 3.7. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s) and

ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4) and
(1.5) as s, t→ +0. Then

max
(x,y)∈Q

∣∣V λ,µm,n(f ;x, y)− f(x, y)
∣∣ =



O
(

1
λ
γ1
m µ

γ2
n

)
, 0 < γ1, γ2 < 1;

O
(

log(2µn)

λ
γ1
m µn

)
, 0 < γ1 < 1, γ2 = 1;

O
(

log(2λm)

λmµ
γ2
n

)
, γ1 = 1, 0 < γ2 < 1;

O
(

log(2λm) log(2µn)
λmµn

)
, γ1 = γ2 = 1
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In particular case, it is clear that V m,nm+1,n+1(f ;x, y) ≡ σm,n(f ;x, y), which is the

double Fejèr mean of the sequence (sk,`(x, y)). Thus, Theorem 3.6 also implies:

Corollary 3.8. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s) and

ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4) and
(1.5) as s, t→ +0. Then

max
(x,y)∈Q

|σm,n(f ;x, y)− f(x, y)| =



O
(

1
(m+1)γ1 (n+1)γ2

)
, 0 < γ1, γ2 < 1;

O
(

log(2(n+1))
(m+1)γ1 (n+1)

)
, 0 < γ1 < 1, γ2 = 1;

O
(

log(2(m+1))
(m+1)(n+1)γ2

)
, γ1 = 1, 0 < γ2 < 1;

O
(

log(2(m+1)) log(2(n+1))
(m+1)(n+1)

)
, γ1 = γ2 = 1

Let a := (an), b := (bn), c := (cn), and d := (dn) be sequences of non-negative
integers with conditions

1 ≤ bm − am + λm, 1 ≤ dn − cn + µn, (m,n = 1, 2, . . . ). (3.15)

The mean V λ,µm,n(f ;x, y) can be generalized further by

V λ,µm,n(a, b, c, d; f ;x, y) =
1

λmµn

bm−1∑
k=am−λm

dn−1∑
k=cn−µn

sk,`(x, y), (m,n ≥ 1), (3.16)

is called the (mn)-th double deferred generalized de la Vallée Poussin mean of the
sequence (sk,`(x, y)) generated by sequences (λm) and (µn).

Remark 3.9. Note that for am = bm = m and cn = dn = n, for all m,n ≥ 1, we
obtain

V λ,µm,n(a, b, c, d; f ;x, y) ≡ V λ,µm,n(f ;x, y),

and

V m,nm+1,n+1(a, b, c, d; f ;x, y) ≡ σm,n(f ;x, y).

The mean V λ,µm,n(a, b, c, d; f ;x, y) given by (3.16) can be used to prove the follow-
ing general theorem.

Theorem 3.10. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s)

and ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4)
and (1.5) as s, t→ +0, and F1(s), F2(t) ≥ 0 two mediate functions. Then

max
(x,y)∈Q

∣∣V λ,µm,n(a, b, c, d; f ;x, y)− f(x, y)
∣∣

= O
(

1

(bm − am + λm)(dn − cn + µn)

×F1

(
π

2(bm − am + λm)

)
F2

(
π

2(dn − cn + µn)

))
.

Proof. Because of the similarity with the proof of Theorem 3.6 we omit the proof of
this theorem. �
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Remark 3.11. One should note that Theorem 3.6 is a particular case of Theorem 3.10
(when am = bm and cn = dn; ∀m,n ≥ 1). Moreover, it covers Corollary 3.7 and
Corollary 3.8 as well (when am = bm, cn = dn, λm = m, and µn = n; ∀m,n ≥ 1).

Further, let a := (am), b := (bm), c := (cn), and d := (dn) be sequences of
non-negative integers with conditions

am < bm, cn < dn, (m,n = 1, 2, . . . ), (3.17)

and

lim
m→∞

bm = +∞, lim
n→∞

dn = +∞. (3.18)

If λm = 1 and µn = 1 for all m,n ≥ 1, then the double deferred de la Vallée
Poussin mean V λ,µm,n(a+ 2, b+ 1, c+ 2, d+ 1; f ;x, y) reduces to

Db,d
a,c(f ;x, y) :=

1

(bm − am)(dn − cn)

bm∑
k=am+1

dn∑
`=cn+1

sk,`(f ;x, y),

which is the double deferred Cesàro mean of the sum sk,`(f ;x, y) introduced implicitly
in [13]. It was shown there, that (3.17) and (3.18) are conditions of regularity for Db,d

a,c.
Therefore, if conditions (3.17) and (3.18)) are satisfied, then Theorem 3.10 implies
the following.

Corollary 3.12. Let f ∈ C([−π, π]2), ω1(f, s, t) = O
(
ω(1)(s)ω(2)(t)

)
, where ω(1)(s)

and ω(2)(t) are two non-negative functions of modulus type satisfying conditions (1.4)
and (1.5) as s, t→ +0, and F1(s), F2(t) ≥ 0 two mediate functions. Then

max
(x,y)∈Q

∣∣Db,d
a,c(f ;x, y)− f(x, y)

∣∣
= O

(
1

(bm − am)(dn − cn)
F1

(
π

2(bm − am)

)
F2

(
π

2(dn − cn)

))
.
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[12] Móricz, F., Rhoades, B.E., Approximation by Nörlund means of double Fourier series
to continuous functions in two variables, Constr. Approx., 3(1987), no. 3, 281-296.
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Republic of Kosovo
e-mail: xhevat.krasniqi@uni-pr.edu


