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Finite time blow-up for quasilinear wave
equations with nonlinear dissipation

Mohamed Amine Kerker

Abstract. In this paper we consider a class of quasilinear wave equations

utt −∆αu− ω1∆ut − ω2∆βut + µ|ut|m−2ut = |u|p−2u,

associated with initial and Dirichlet boundary conditions. Under certain condi-
tions on α, β,m, p, we show that any solution with positive initial energy, blows
up in finite time. Furthermore, a lower bound for the blow-up time will be given.
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1. Introduction

In this paper, we would like to study the blow-up of solutions of the following
initial boundary value problem of a quasilinear wave equation utt −∆αu− ω1∆ut − ω2∆βut + µ|ut|m−2ut = |u|p−2u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.1)
Here, Ω is a bounded domain of Rn with a smooth boundary ∂Ω. Additionally, we
assume that

u0 ∈W 1,α
0 (Ω), u1 ∈ L2(Ω), (1.2)

and α, β, ω1, ω2, µ,m, p are positive constants, with{
2 < p ≤ α∗ = αn

n−α , for n > α,

2 < p <∞, for n = α.
(1.3)

The operator ∆α is the classical α-Laplacian given by:

∆αu = div
(
|∇u|α−2∇u

)
.
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Notice that ∆βut is a quasilinear strong damping term, and it is degenerate when
β > 2.

Nonlinear hyperbolic equations of the type (1.1) have been investigated in the
papers [2, 5, 7, 9, 15], and the references therein. Several examples of this type arise
in physics, for example, the problem (1.1) represents a longitudinal motion of a vis-
coelastic rod obeying the nonlinear Voight model.

Zhijiang [14] proved a blow up result for the problem (1.1) when the initial
energy is sufficiently negative. This result was extended by Messaoudi and Houari [8]
to a situation when the solution has negative initial energy. Liu and Wang [6] studied
a more general model including (1.1), and by improving the arguments in [14] and [8]
they established a blow-up result in the subcritical initial energy case, i.e. E(0) < d,
where E(0) is the initial energy and d is the depth of the potential well.

For α = β = m = 2, equation in (1.1) reduces to the linearly damped wave
equation

utt −∆u+ ω∆ut + µut = |u|p−2u. (1.4)

Gazzola and Squassina [3] studied (1.4) and gave a necessary and sufficient conditions
for blow-up if E(0) < d. Recently, Yang and Xu [13] gave a sufficient condition for
blow-up if E(0) > d. Sun et al. [12] obtained, for (1.4), an estimate of the lower bound

for the blow-up time when 2 < p ≤ 2(n−1)
n−2 . This work was extended by Guo and Liu

[4] to the case when the exponent p ∈
(

2(n−1)
n−2 , 2(n

2−2)
n−2

]
. Later, in the case of ω > 0,

Baghaei [1] improved the results in [12] and [4] by enlarging the upper bound for p
to 2∗.

In related work, Song and Xue [11] studied the following nonlinear wave equation
with strong damping

utt −∆u+

∫ t

0

g((t− τ)∆u(τ)dτ −∆ut = |u|p−2u. (1.5)

They introduced a new technique to obtain a finite time blow-up result with arbitrary
high initial energy in the case of linear strong damping. By applying the technique
similar to that in [11], Song [10] extended the result in [11] to the case of nonlinear
weak damping µ|ut|m−2ut in place of −∆ut in (1.5).

In this paper, by using the technique in [10], we give sufficient conditions for
finite time blow-up of solutions of (1.1), in the case E(0) ≥ d. Furthermore, by using
the techniques in [4], we obtain a lower bound for the blow-up time.

2. Preliminaries

We denote by ‖.‖p the Lp(Ω) norm (2 ≤ p < ∞), and by (., .) the L2 inner
product. We introduce the following functional space

H := L∞([0, T ),W 1,α
0 (Ω)) ∩W 1,∞([0, T ), L2(Ω))

∩W 1,β([0, T ),W 1,β(Ω)) ∩W 1,m([0, T ), Lm(Ω)),
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for T > 0, and the energy functional

E(t) :=
1

2
‖∇u‖αα +

1

2
‖ut‖22 −

1

p
‖u‖pp.

We define also the following constant

λ = B
− p
p−α
∗ ,

where B∗ is the best constant of the Sobolev embedding W 1,α
0 (Ω) ↪→ Lp(Ω). Finally,

we characterize the depth of the potential well d as follows:

d =

(
1

α
− 1

p

)
λ2.

Lemma 2.1. Let u be a global solution to problem (1.1). Then we have

E′(t) = −ω1‖∇ut‖22 − ω2‖∇ut‖ββ − µ‖ut‖
m
m, ∀t ≥ 0.

As a consequence, we have the following inequalities:

E(t) ≤ E(0), ∀t ≥ 0, (2.1)

and

−E′(t) ≥ ω1‖∇ut‖22, −E′(t) ≥ ω2‖∇ut‖ββ , −E′(t) ≥ µ‖ut‖mm. (2.2)

Subsequently, we state the following theorems (see [6]).

Theorem 2.2 (Local existence). Assume that conditions (1.2) and (1.3) hold. Then
problem (1.1) has a unique local solution u ∈ H.

Theorem 2.3 (Blow-up for E(0) < d). Assume (1.2) and (1.3) hold. Assume further
that α, β,m ≥ 2 and p > α > max {m,β}. Suppose E(0) < d and

‖∇u0‖α > λ. (2.3)

Then u blows up in finite time.

3. Finite time blow-up

In this section we extend the blow-up result in [8] to the case E(0) ≥ d. Here is
our main result:

Theorem 3.1 (Blow-up for E(0) ≥ d). Assume (1.2), (2.3) and (1.3) hold. Assume
further that α, β,m > 2, α > β and p > max {m,α}. Suppose E(0) ≥ d and

(ut(0), u(0)) > ME(0), (3.1)

where M > 0 is defined in (3.7), then the solution u ∈ H of (1.1) blows up in finite
time.
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Proof. Assume by contradiction that u(t) is a global solution of (1.1). Setting

F (t) :=
1

2
‖u(t)‖22,

it follows from (1.1) that

F ′′(t) = ‖ut‖22 + ‖u‖pp − ‖∇u‖αα
− ω1(∇ut,∇u)− ω2(|∇ut|β−2∇ut, u)− µ(|ut|m−2ut, u). (3.2)

By using Hölder’s inequality and Young’s inequality, we estimate the two last terms
in the right-hand side of the previous equation, as follows

(∇ut,∇u) ≤ η‖∇u‖22 + 1
4η‖∇ut‖

2
2, η > 0,

(|∇ut|β−2∇ut, u) ≤ 1
βσ

β‖∇u‖ββ + β−1
β σβ/(1−β)‖∇ut‖ββ , σ > 0,

(|ut|m−2ut, u) ≤ 1
mδ

m‖u‖mm + m−1
m δm/(1−m)‖ut‖mm, δ > 0.

So, thatnks to the convexity of the function yx/x for y ≥ 0 and x > 0, we have

δm

m
‖u‖mm ≤

s

2
δm‖u‖22 +

1− s
p

δm‖u‖pp, s =
p−m
p− 2

,

1

β
σβ‖∇u‖ββ ≤

θ

2
σβ‖∇u‖22 +

1− θ
α

σβ‖∇u‖αα, θ =
α− β
α− 2

.

Hence, (3.2) becomes

F ′′(t) ≥ ‖ut‖22 −
[
1 +

ω2(1− θ)
α

σβ
]
‖∇u‖αα −

µs

2
δm‖u‖22

−
(
ω1η +

ω2θ

2
σβ
)
‖∇u‖22 +

[
1− µ(1− s)

p
δm
]
‖u‖pp

− ω1

4η
‖∇ut‖22 − ω2

β − 1

β
σβ/(1−β)‖∇ut‖ββ − µ

m− 1

m
δ−

m
m−1 ‖ut‖mm. (3.3)

Next, since u(t) is global and E(0) ≥ d, then by Theorem 2.3, E(t) ≥ d, ∀t ≥ 0. Thus,
using the embedding Lα(Ω) ↪→ L2(Ω) and the inequality

zb ≤ (z + a)

(
z +

1

a

)
, z ≥ 0, 0 < b ≤ 1, a > 0,

we obtain

‖∇u‖22 ≤ c‖∇u‖2α
= c [‖∇u‖αα]

2/α

≤ c
(

1 +
1

d

)
[‖∇u‖αα + d]

≤ C [‖∇u‖αα + E(t)] , ∀t ≥ 0. (3.4)
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By using Lemma 2.1 and (2.2), we get

d

dt

{
F ′(t)−

[
1

4η
+
β − 1

β
σ

−β
β−1 +

m− 1

m
δ−

m
m−1

]
E(t)

}
≥ F ′′(t) +

ω1

4η
‖∇ut‖22 + ω2

β − 1

β
σ−

β
β−1 ‖∇ut‖ββ + µ

m− 1

m
δ−

m
m−1 ‖ut‖mm.

Adding and subtracting p(1− ε)E(t), for ε ∈ (0, 1), in the right-hand side of the last
inequality, and using (3.4) and the Poincaré inequality we obtain

d

dt

{
F ′(t)−

[
1

4η
+
β − 1

β
σ−

β
β−1 +

m− 1

m
δ−

m
m−1

]
E(t)

}
≥ ‖ut‖22 −

µs

2
δm‖u‖22 −

[
1 +

ω2(1− θ)
α

σβ
]
‖∇u‖αα

−
(
ω1η +

ω2θ

2
σβ
)
‖∇u‖22 +

[
1− µ(1− s)

p
δm
]
‖u‖pp

≥
[
1 +

p

2
(1− ε)

]
‖ut‖22 −

µs

2
δm‖u‖22 + k(ε)‖∇u‖αα

−
(
ω1η +

ω2θ

2
σβ
)
‖∇u‖22 +

[
ε− µ(1− s)

p
δm
]
‖u‖pp − p(1− ε)E(t)

≥
[
1 +

p

2
(1− ε)

]
‖ut‖22 −

µs

2
δm‖u‖22 + γ(ε)‖∇u‖22

+

[
ε− µ(1− s)

p
δm
]
‖u‖pp − [k(ε) + p(1− ε)]E(t)

≥
[
1 +

p

2
(1− ε)

]
‖ut‖22 +

{
γ(ε)B − µs

2
δm
}
‖u‖22

+

[
ε− µ(1− s)

p
δm
]
‖u‖pp − [k(ε) + p(1− ε)]E(t), (3.5)

where

k(ε) =
1

α

[
p(1− ε)− α− ω2(1− θ)σβ

]
,

γ(ε) =
k(ε)

C
− ω1η −

ω2θ

2
σβ ,

and B is the best constant of Poincaré inequality

‖∇u‖22 ≥ B‖u‖22.

Therefore, taking η = ε, σ = ε,

δ =

[
pε

µ(1− s)

]1/m
,

setting

γ1(ε) =
1

4ε
+
β − 1

β
ε−

β
β−1 +

m− 1

m

(
1− s
pε

)− 1
m−1

,
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and substituting in (3.5), we arrive at

d

dt
[F ′(t)− γ1(ε)E(t)] ≥

[
1 +

p

2
(1− ε)

]
‖ut‖22

+

[
γ(ε)B − ps

2(1− s)
ε

]
‖u‖22 − [k(ε) + p(1− ε)]E(t).

By using the Schwarz inequality, we have

2
[
1 + p

2 (1− ε)
]1/2 [

γ(ε)B − ps
2(1−s)ε

]1/2
(ut, u)

≤
[
1 + p

2 (1− ε)
]
‖ut‖22 +

[
γ(ε)B − ps

2(1−s)ε
]
‖u‖22.

Consequently, we obtain

d

dt
[F ′(t)− γ1(ε)E(t)] ≥ a(ε)(ut, u)− [k(ε) + p(1− ε)]E(t)

= a(ε) [F ′(t)− γ2(ε)E(t)] , (3.6)

where

a(ε) = 2
[
1 + p

2 (1− ε)
]1/2 [

γ(ε)B − ps
2(1−s)ε

]1/2
,

γ2(ε) = k(ε)+p(1−ε)
a(ε) .

Since

γ(ε)B − ps

2(1− s)
ε→


B(p−α)
αC > 0 as ε→ 0+

−
[
α+ω2(1−θ)

αC + ω1 + ω2θ
2

]
B − ps

2(1−s) < 0 as ε→ 1−,

then, there exists ε∗ ∈ (0, 1), such that

a(ε∗) = 0 and a(ε) > 0, ∀ε ∈ (0, ε∗).

Hence, we have

γ1(ε)− γ2(ε)→
{

+∞ as ε→ 0+

−∞ as ε→ ε−∗ .

Therefore, there exists ε0 ∈ (0, ε∗), such that γ1(ε0) = γ2(ε0) > 0. So, by setting

L(t) = F ′(t)− γ1(ε0)E(t),

M = γ1(ε0), (3.7)

and by using (2.3), we obtain

L(0) = (ut(0), u(0))− γ1(ε0)E(0)

> (ut(0), u(0))−ME(0) > 0.

Moreover, with this choice of ε0, (3.6) becomes

d

dt
L(t) ≥ a(ε0)L(t),
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which gives

L(t) ≥ L(0)ea(ε0)t, ∀t ≥ 0,

and hence

F ′(t) ≥ L(0)ea(ε0)t, ∀t ≥ 0.

By integrating this last inequality over (0, t), we get

‖u(t)‖22 = 2F (t) ≥ 2F (0) + 2
L(0)

a(ε0)

[
ea(ε0)t − 1

]
, ∀t ≥ 0. (3.8)

On the other hand, by using Hölder’s inequality and (2.2), we have

‖u(t)‖2 ≤ ‖u(0)‖2 +

∫ t

0

‖uτ (τ)‖2dτ

≤ ‖u(0)‖2 + C

∫ t

0

‖uτ (τ)‖mdτ

≤ ‖u(0)‖2 + Ct
m−1
m

∫ t

0

‖uτ (τ)‖mmdτ

≤ ‖u(0)‖2 + Ct
m−1
m

∫ t

0

−1

µ

dE(τ)

dτ
dτ

≤ ‖u(0)‖2 + Ct
m−1
m

[
E(0)− E(t)

µ

]1/m
≤ ‖u(0)‖2 + C

[
E(0)

µ

]1/m
t
m−1
m ,

which clearly contradicts (3.8). �

4. Lower bound for the blow-up time

In this section, we give a lower bound for the blow-up time Tmax. To this end,
we define

G(t) :=
1

p
‖u(t)‖pp.

Theorem 4.1. Let u be the solution of (1.1), and assume that{
2 < p ≤ α(n−2)+2n

2(n−α) , for n > α,

2 < p <∞, for n = α.

Then

Tmax ≥
∫ +∞

G(0)

{
τ +A1τ

2
α (p−1) +A2

}−1
dτ,

where A1 and A2 are positive constants to be determined later in the proof.
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Proof. By using inequality (2.1), we have

1

2
‖ut‖22 +

1

α
‖∇u‖αα = E(t) +

1

p
‖u(t)‖pp ≤ E(0) +G(t). (4.1)

Next, using the Schwarz inequality, the Sobolev-type inequality

‖u‖q ≤ Cq‖∇u‖α, ∀q ∈ [1, α∗], ∀u ∈W 1,α
0 (Ω), (4.2)

inequality (4.1) yields

G′(t) = (|u|p−2u, ut)

≤ 1

2
‖ut‖22 +

1

2
‖u‖2(p−1)2(p−1)

≤ 1

2
‖ut‖22 +

C
2(p−1)
2(p−1)

2
‖∇u‖2(p−1)α

≤ E(0) +G(t) +
C

2(p−1)
2(p−1)

2
[αE(0) + αG(t)]

2
α (p−1)

. (4.3)

From (4.3) and Jensen’s inequality, we obtain the differential inequality

G′(t) ≤ G(t) +A1 [G(t)]
2
α (p−1)

+A2, (4.4)

with

A1 = C
2(p−1)
∗ 2

2
α (p−1)−2α

2
α (p−1) and A2 = E(0) +A1 [E(0)]

2
α (p−1)

.

Hence, we get

Tmax ≥
∫ Tmax

0

{
G(s) +A1 [G(s)]

2
α (p−1)

+A2

}−1
G′(s)ds.

Since lim
t→T−

max

G(t) = +∞, so the previous inequality implies

Tmax ≥
∫ +∞

G(0)

{
τ +A1τ

2
α (p−1) +A2

}−1
dτ.

�

In the next theorem, when n > α, the upper bound for p is enlarged. We define

H(t) :=
1

σ
‖u(t)‖σσ,

where σ = α(n−2)+2n
2(n−α) . Then, we have

Theorem 4.2. Let u be the solution of (1.1), and assume that

α(n− 2) + 2n

2(n− α)
< p ≤ αn(2n− α+ 2)− 2α2

2n(n− α)
. (4.5)

Then

Tmax ≥
∫ +∞

H(0)

{
B1τ

b1 +B2τ
b2 +B3

}−1
dτ,

where B1, B2, B3, b1 and b2 are positive constants to be determined later in the proof.
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Proof. By using inequality (2.1), we have

1

2
‖ut‖22 +

1

α
‖∇u‖αα = E(t) +

1

p
‖u(t)‖pp ≤ E(0) +

1

p
‖u(t)‖pp. (4.6)

Using the Schwarz inequality, the Sobolev-type inequality (4.2), with q = α∗, and
inequality (4.6) we get

H ′(t) = (|u|σ−2u, ut)

≤ 1

2
‖ut‖22 +

1

2
‖u‖2(σ−1)2(σ−1)

≤ 1

2
‖ut‖22 +

Cα
∗

∗
2
‖∇u‖α

∗

α

≤ E(0) +
1

p
‖u‖pp +

Cα
∗

∗
2

[
αE(0) +

α

p
‖u‖pp

] n
n−α

. (4.7)

Next, the interpolation inequality, the Sobolev inequality and Young’s inequality give

‖u‖pp ≤ ‖u‖
θp
α∗ .‖u‖(1−θ)pσ , θ =

α∗(p− σ)

p(α∗ − σ)
,

≤ Cθp∗ ‖∇u‖θpα .‖u‖(1−θ)pσ ,

≤ 1

α
‖∇u‖αα +B‖u‖rσ, (4.8)

where

B = C∗

(
1− θp

α

)
(pθC∗)

pθ
α−pθ and r =

αp(1− θ)
α− θp

.

Note that in virtue of (4.5), we have α > θp. Hence, by (2.1) we have

‖u‖pp ≤ E(0) +
1

p
‖u‖pp +B‖u‖rσ, (4.9)

which gives
1

p
‖u‖pp ≤

1

p− 1
(E(0) +B‖u‖rσ) .

Inserting this last inequality in (4.7), and using Jensen’s inequality, we obtain

H ′(t) ≤ pE(0)

p− 1
+

B

p− 1
‖u‖rσ +

Cα
∗

∗
2

[
αpE(0)

p− 1
+

αB

p− 1
‖u‖rσ

] n
n−α

= B1 (H(t))
b1 +B2 (H(t))

b2 +B3, (4.10)

where

B1 =
Bσr

p− 1
, B2 =

Cα
∗

∗
2

2
α

n−α

[
αBσr

p− 1

] n
n−α

,

B3 =
pE(0)

p− 1
+
Cα

∗

∗
2

2
α

n−α

[
αpE(0)

p− 1

] n
n−α

,

b1 =
r

σ
, b2 =

rn

σ(n− α)
.
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Finally, integrating inequality (4.10) over (0, Tmax) we get

Tmax ≥
∫ Tmax

0

{
B1 (H(s))

b1 +B2 (H(s))
b2 +B3

}−1
H ′(s)ds,

and so

Tmax ≥
∫ +∞

H(0)

{
B1τ

b1 +B2τ
b2 +B3

}−1
dτ.

�
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