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Finite time blow-up for quasilinear wave
equations with nonlinear dissipation

Mohamed Amine Kerker

Abstract. In this paper we consider a class of quasilinear wave equations

m—2

urt — Mgt — w1 Ay — woAgur + plue|™ *ur = ul"~?u,

associated with initial and Dirichlet boundary conditions. Under certain condi-
tions on «, B, m, p, we show that any solution with positive initial energy, blows
up in finite time. Furthermore, a lower bound for the blow-up time will be given.
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1. Introduction
In this paper, we would like to study the blow-up of solutions of the following
initial boundary value problem of a quasilinear wave equation

gt — A — w1 Aup — woAguy + plug|™2up = [uP~?u, z€Q, t>0,
u(z,t) =0, x e, t>0,
u(z,0) = up(x), w(x,0) = ui(x), x €.

(1.1)

Here, © is a bounded domain of R™ with a smooth boundary 0. Additionally, we
assume that
up € W3 *(Q), € L2(9), (1.2)
and «, B, w1, ws, 4, m, p are positive constants, with
2<p<a*=;2, forn>a, (1.3)
2 < p < oo, for n = a. '
The operator A, is the classical a-Laplacian given by:

Aqu = div (|Vu|**Vu).
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Notice that Agu, is a quasilinear strong damping term, and it is degenerate when
8> 2.

Nonlinear hyperbolic equations of the type (1.1) have been investigated in the
papers [2, 5, 7, 9, 15], and the references therein. Several examples of this type arise
in physics, for example, the problem (1.1) represents a longitudinal motion of a vis-
coelastic rod obeying the nonlinear Voight model.

Zhijiang [14] proved a blow up result for the problem (1.1) when the initial
energy is sufficiently negative. This result was extended by Messaoudi and Houari [8]
to a situation when the solution has negative initial energy. Liu and Wang [6] studied
a more general model including (1.1), and by improving the arguments in [14] and [§]
they established a blow-up result in the subcritical initial energy case, i.e. E(0) < d,
where E(0) is the initial energy and d is the depth of the potential well.

For « = f = m = 2, equation in (1.1) reduces to the linearly damped wave
equation

gy — Au+ wAuy + puy = |uP . (1.4)

Gazzola and Squassina [3] studied (1.4) and gave a necessary and sufficient conditions

for blow-up if E(0) < d. Recently, Yang and Xu [13] gave a sufficient condition for

blow-up if E(0) > d. Sun et al. [12] obtained, for (1.4), an estimate of the lower bound

%. This work was extended by Guo and Liu

2
[4] to the case when the exponent p € (%, %

Baghaei [1] improved the results in [12] and [4] by enlarging the upper bound for p
to 2%.

for the blow-up time when 2 < p <

] Later, in the case of w > 0,

In related work, Song and Xue [11] studied the following nonlinear wave equation
with strong damping

t
uge — Au + / g((t — T)Au(T)dr — Auy = |ulP%u. (1.5)
0

They introduced a new technique to obtain a finite time blow-up result with arbitrary
high initial energy in the case of linear strong damping. By applying the technique
similar to that in [11], Song [10] extended the result in [11] to the case of nonlinear
weak damping p|u|™ 2u; in place of —Awu, in (1.5).

In this paper, by using the technique in [10], we give sufficient conditions for
finite time blow-up of solutions of (1.1), in the case E(0) > d. Furthermore, by using
the techniques in [4], we obtain a lower bound for the blow-up time.

2. Preliminaries

We denote by ||.|[, the LP(Q) norm (2 < p < o), and by (.,.) the L? inner
product. We introduce the following functional space

H = L([0,T), Wy (2)) N WH([0,T), L*(2))
N W0, T), Wh2(Q)) nWh™([0,T), L™(%),
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for T' > 0, and the energy functional
1 L1 1
E(t) = 5[ Vullg + S llullz — IglluIIﬁ-
We define also the following constant
A=DB, ",

where B, is the best constant of the Sobolev embedding W, *(Q) < LP(£2). Finally,
we characterize the depth of the potential well d as follows:

11
dz(—))\2.
a p

Lemma 2.1. Let u be a global solution to problem (1.1). Then we have
E'(t) = —w1 || V)3 - wQIIVutllﬁ — plluellm,  VE=0.
As a consequence, we have the following inequalities:
E(t) < E(0), Vt>0, (2.1)
and
—E'(t) > | Vuell3, () > we| Vel —E'()) = pllueli. (2:2)

Subsequently, we state the following theorems (see [6]).

Theorem 2.2 (Local existence). Assume that conditions (1.2) and (1.3) hold. Then
problem (1.1) has a unique local solution u € H.

Theorem 2.3 (Blow-up for F(0) < d). Assume (1.2) and (1.3) hold. Assume further
that o, B,m > 2 and p > « > max {m, }. Suppose E(0) < d and

HVUOHa > A (23)

Then u blows up in finite time.

3. Finite time blow-up

In this section we extend the blow-up result in [8] to the case E(0) > d. Here is
our main result:

Theorem 3.1 (Blow-up for E(0) > d). Assume (1.2), (2.3) and (1.3) hold. Assume
further that o, B,m > 2, a > f and p > max {m, a}. Suppose E(0) > d and

(u1(0), u(0)) > ME(0), (3.1)

where M > 0 is defined in (3.7), then the solution uw € H of (1.1) blows up in finite
time.
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Proof. Assume by contradiction that u(t) is a global solution of (1.1). Setting

1
F(t) = 5 u@®)l3,
it follows from (1.1) that
F(t) = uel3 + llullf = 1Vullg
— w1 (Vaug, Vi) — wa (| V| P72 Vg, u) — p(|ue| ™ 2y, w). (3.2)

By using Holder’s inequality and Young’s inequality, we estimate the two last terms
in the right-hand side of the previous equation, as follows

(Vug, V) < | Vull3 + 4 Va3, 7 >0,
(Ve *=2Vug,u) < 107 Vul|§ + S50/ =0 | Vuy||5, o >0,

(e ™ 2ue, w) < 8™ |ull + Bt 6™ O |7, 6> 0.

So, thatnks to the convexity of the function y*/z for y > 0 and = > 0, we have

o 5 2, 1—3s p—m
Tl < S0l + el s =220
1 0 1-6 _
EUﬂIIVUIlg < iUﬂHVUH% + UBHVqu, 0= Z_g_

Hence, (3.2) becomes
ws(1— ) . B
P >l - 1+ 2020 vuls - ol

waf 1—s
= (o + 2207 ) ot + 1= 2o

-1

wi 2 8/(1-8) g m—1
Ay I v —
477\\ wlly — wo 57 [Vue|y — p

75_%”%”%- (3.3)

Next, since u(t) is global and E(0) > d, then by Theorem 2.3, E(t) > d, ¥t > 0. Thus,
using the embedding LY() < L2(£2) and the inequality

1
zb§(2+a)<z+>, 2>20,0<b<1, a>0,
a
we obtain

IVull3 < e[Vl

= c[||Vull2]**

<c(1+3)Ivalz+a
< C[|Vu|® + E®)], Vt>o0. (3.4)
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By using Lemma 2.1 and (2.2), we get

d , L =1 -8 m—-1_ wm
N e

B

> F'(0) + 2Vl Fuw?

__B_ m—1__ _m_
o 1 ||Vut\|g+MT5 T el

793

Adding and subtracting p(1 — e)E(t), for € € (0,1), in the right-hand side of the last

inequality, and using (3.4) and the Poincaré inequality we obtain

d ’ ]. ﬁ—l _% m—17m7711
dt{F(t)—Ln+ o ]E(t)}

HS om w2(1 _ 0) el
>l - S om g - |1+ 20 =08 o

wob [ w1 —=35) .,
= (o + 2207 1ot + |1 - 2o iy

1 1S o a
| luellz = 0™ [l + k(o) [Vl

~—

> _1+§(176

p

v
—
+
|
_
|
2

. s
| luellz = 0™ 3 + () Vull3

e = =]l — (ki) + p(1 - )] )

IV
e
+

p 1 HUS
P =) huel3 + {28 - Eom} ul

e O =9 o [l = [k(e) +p(1 — )] E(1),

where

and B is the best constant of Poincaré inequality

IVul3 > Bllull3.

Therefore, taking n =€, 0 = ¢,

setting

1 -1 _8 m—-1(1-s\ ™1
ne) =g+ et L ()T

9 m

pe

wal [ 1—35) ]
= (n+ 2207 1wl + [ = H=om | g - o1 - 00

(3.5)
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and substituting in (3.5), we arrive at

d

@) = nE@E®] = [1+ 20 - )]

ps 2
B—— — 1—¢)] E(t).
+ [16B — g el - o) + 50 - 2 )
By using the Schwarz inequality, we have
172 ) 1/2
21450 -9]"" 3B - e (ww)

< [1+ 50— &) lluel3 + [4(2)B — 5sye] lul3.

Consequently, we obtain

% [F'(t) = n(e)E(t)] = ale)(ur, u) — [k(e) +p(1 — )] E(t)
=a(e) [F'(t) — 2(e) E(t)] (3.6)
where p
ale) = 2[1+301-2)]"" [1)B - zl5e]
72(8) _ k(8)+(p()175).
Since
Blp_a) g ase — 0F
~v(e)B — S RPN
2(1 - s) —[7a+wjg_e)+w1+‘%9}3—ﬁ<0 ase — 17,

then, there exists e, € (0,1), such that
a(e,) =0and a(e) >0, Ve € (0,e,).

Hence, we have
+oo ase— 0T
—00 asE— g,

(e = male) + {
Therefore, there exists g9 € (0,¢e,), such that v1(g9) = v2(e0) > 0. So, by setting
L(t) = F'(t) — n(e0) E(),

M = 71(60% (37)

and by using (2.3), we obtain
L(0) = (ue(0), u(0)) — v1(e0) E(0)

> (ut(0), w(0)) — ME(0) > 0.

Moreover, with this choice of g, (3.6) becomes
d

U0 = o)L,
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which gives
L(t) > L(0)e®=)t vt >0,
and hence
F'(t) > L(0)e®E0)t vt > 0.
By integrating this last inequality over (0,t), we get
L)
a(eo)

On the other hand, by using Holder’s inequality and (2.2), we have

lu(t)|2 = 2F (1) > 2F(0) + 2 [eawt - 1} V>0 (3.8)

lu®llz < [lu(O)]2 + / lar (7) 2
< u()]l2 + € / ltr (7) il

< lu(0) 2 + Ct* / lun (7) |

;1dE( T)
o p dr

{E(O) - E(t)} Hm

I

< u(0)||2 + Ct = dr

< [[u(0)]2 + Ct ™

E 0 1/m m—1
< @l +0 | 2O,

which clearly contradicts (3.8). O

4. Lower bound for the blow-up time

In this section, we give a lower bound for the blow-up time Ti,.x. To this end,
we define

G(t) = %Hu(t)llz

Theorem 4.1. Let u be the solution of (1.1), and assume that

2(n—a)

2<p<w, forn > «,
2 < p< oo, forn = a.

Then

+oo -1
Tmax Z / {T + AIT%(p_l) + A2} dTv
G(0)

where Ay and Ay are positive constants to be determined later in the proof.
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Proof. By using inequality (2.1), we have
1 1 1
§Hut||§ + o IVulls = E(2) + EHU(t)IIi < E(0) +G(1). (4.1)

Next, using the Schwarz inequality, the Sobolev-type inequality
lully < CollVulla, Vg€ [l,a%], Vue Wy (9), (4.2)
inequality (4.1) yields
G'(t) = (Jul""*u, )

1 o L, 201
< §||Ut||2 + §||U||2(p_1)

2(p—1)
1 Cop—1 —
< Slluel3 + 5[ Vul 2~V

CQ(P—U )
< E(0)+G(t) + % [@E(0) + aG ()] *@~Y (4.3)
From (4.3) and Jensen’s inequality, we obtain the differential inequality
G'(t) <G(t) + Ay [G(t)]%(Pfl) + A, (4.4)
with
Ay = G2 V9R0mD=2030-D  and Ay = E(0) + Ay [E(0)]* 7

Hence, we get
Tmax 5 1
T = [ {GO6) 4 A GEE 4 2} G (s)s.
0

Since lim G(t) = 400, so the previous inequality implies
t—=Tmax

+oo -1
Trnax > / {7’ + AlT%(pfl) + Ag} dr.
G(0)

O

In the next theorem, when n > «a, the upper bound for p is enlarged. We define
1 o
H(t) :== —[lu(®)ll7,
o

a(n—2)+2n
2(n—a)

Theorem 4.2. Let u be the solution of (1.1), and assume that
a(n—2)+2n <p< an(2n—a+2)—2a2.
2(n — a) 2n(n — )

where o = . Then, we have

(4.5)

Then

+oo
Tmax > / {BlTbl + -B27_b2 + 33}71 dTa
H(0)

where By, B, B3, b1 and bs are positive constants to be determined later in the proof.
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Proof. By using inequality (2.1), we have
1 1 1 1
§||Ut|\§ + o IVula = B@) + Ellu(t)llﬁ < E(0) + ];llu(t)HZ- (4.6)

Using the Schwarz inequality, the Sobolev-type inequality (4.2), with ¢ = «*, and
inequality (4.6) we get
H'(t) = (Jul”?u, uy)
1 2, 1 2001
< gluell3 + 32
1 ce .
< §||Ut||% + T”VUHg

n

1 cy o e
< E(0) + —[lulh + aB(0) + —|lullp . (4.7)
p 2 P
Next, the interpolation inequality, the Sobolev inequality and Young’s inequality give
Jully < 2 @0, 0= S @=2),
pla* —o)
< CP||Vul| &P flu) & =P
1 (03 T
< ~IVullg + Bllulls, (4.8)
where
0 P 1-6
B = C* (1 — p) (pec )04*9179 and r = M
a—0p

Note that in virtue of (4.5), we have o > 6p. Hence, by (2.1) we have
1 \
[ull; < E(0) + 5IIUHZ + Bllullg, (4.9)
which gives
*II I < 71 (E(0) + Bllull;) -
Inserting this last inequahty in (4.7), and using Jensen’s inequality, we obtain

pE(0 . C¥ [apE(0) aB , e
) < B Eopuly + G- |22 4

=&wmﬁ+&wm>+&, (4.10)

where

_pE) | O o [apB(O)] 7
p—1 2 ’

S
S
Il
\
o>
[\V]
Il
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Finally, integrating inequality (4.10) over (0, Tinax) We get

T [ B 4 B )+ B} H s

and so

“+o0
Trnax > / {Bim" + Byr® + B3} dr.
H(0)

0
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