
Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 4, 749–771
DOI: 10.24193/subbmath.2022.4.07

Existence for stochastic sweeping process
with fractional Brownian motion

Tayeb Blouhi, Mohamed Ferhat and Safia Benmansour
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process with fractional Brownian by time delay. The approach is based on dis-
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1. Introduction

The so-called sweeping process is a particular differential inclusion of the general form

−x′(t) ∈ NC(t)(x(t)) a, e. t ∈ [0, T ] (1.1)

x(0) ∈ C(0) (1.2)

where C(t) is a convex time dependance set,and NC(t)(x(t)) is the normal cone to
C(t) at x(t).The sweeping process, introduced by Moreau in the early 1970s, and
extensively studied by himself and other authors (see, e.g., [2, 7, 8, 5]).These models
prove to be quite useful in elastoplasticity, non smooth mechanics, convex optimiza-
tion, mathematical economics, queuing theory, etc. In this paper, we propose a simple
extension of the sweeping process. More precisely, We consider the problem formally
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expressed by

−dx(t) ∈ NC1(t)(x(t))dt+G1(t, xt, yt)dB
H1 a, e. t ∈ J := [0, T ]

−dy(t) ∈ NC2(t)(y(t))dt+G2(t, xt, yt)dB
H2 a, e. t ∈ J := [0, T ]

x(t) = φ(t), t ∈ [−r, 0], x(0) ∈ C1(0)

y(t) = φ(t), t ∈ [−r, 0], y(0) ∈ C2(0)

(1.3)

where C1(t), C2(t) is convex for all t, X is a real separable Hilbert space with inner
product 〈·, ·〉 induced by norm ‖·‖, Gj : M2([−r, 0], X)×M2([−r, 0], X)→ L0

QHj
(Y,X)

are given functions. Here, L0
QHj

(Y,X) denotes the space of all QHj
-Hilbert-Schmidt

operators from Y intoX,BHj is sequence of mutually independent fractional Brownian
motions with H1 6= H2 i.e (BH1 6= BH2) for each j = 1, 2 , with Hurst parameter
Hj >

1
2 . Here y(·, ·) : [−r, T ]×Ω→ X, then for any t ≥ 0, yt(·, ·) : [−r, 0]×Ω→ X is

given by:

yt(θ, ω) = y(t+ θ, ω), for θ ∈ [−r, 0], ω ∈ Ω.

Here yt(·) represents the history of the state from time t− r, up to the present time
t. Let M2([−r, 0], X) be the following space defined by

M2([−r, 0], X) =
{
φ, φ : [−r, 0]× Ω→ X, φ, φ ∈ C([−r, 0], L2(Ω, X))},

endowed with the norm

||φ(t)||M2
F0

=

∫ 0

−r
|φ(t)|2dt

Now, for a given T > 0, we define
M2([−r, T ], X) = y : [−r, T ]× Ω→ X, φ, φ ∈ C([−r, T ], L2(Ω, X)) and

sup
t∈[0,T ]

E(|y(t)|2) <∞,
∫ 0

−r
|φ(t)|2dt <∞.

Endowed with the norm

‖y‖M2
Fb

= sup
−r≤s≤T

(E‖y(s)‖2)
1
2 .

Random differential and integral equations play an important role in characterizing
many social, physical, biological and engineering problems; see for instance the mono-
graphs by Da Prato and Zabczyk [3], Gard [4],Sobzyk [10] and Tsokos and Padgett
[11]. For example, a stochastic model for drug distribution in a biological system was
described by Tsokos and Padgett [11] to a closed system with a simplified heat, one
organ or capillary bed, and re-circulation of a blood with a constant rate of flow, where
the heart is considered as a mixing chamber of constant volume. For the basic theory
concerning stochastic differential equations see the monographs by Bharucha-Reid [1],
Mao[6], Øksendal[9], Tsokos and Padgett [11].

This paper is organized as follows. In Section 2 and 3, we recall some definitions
and results that will be used in all the sequel. Section 4 is devoted to the study of the
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existence problem of (1.3).In Section 5, we restrict our attention to the case when the
perturbation with F .

2. Basic definitions of stochastic calculus

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.Actually we will borrow them from [?].Let (Ω,F ,P)
be a complete probability space with a filtration (F = Ft)t≥0 satisfying the usual
conditions (i.e. right continuous and F0 containing all P-null sets).

For a stochastic process x(·, ·) : [0, T ] × Ω → X we will write x(t) (or simply x
when no confusion is possible) instead of x(t, ω).

Definition 2.1. GivenH1, H2 ∈ (0, 1),H1 6= H2 a continuous centered Gaussian process
BH is said to be a two-sided one-dimensional fractional Brownian motion (fBm) with
Hurst parameter Hj ,j = 1, 2 if its covariance function RHj (t, s) = E[BHj (t))BHj (s)]
satisfies

RHj
(t, s) =

1

2
(|t|2Hj + |s|2Hj − |t− s|2Hj ) t, s ∈ [0, T ].

It is known that BH(t) with Hj >
1
2 admits the following Volterra representation

BHj (t) =

∫ t

0

KHj
(t, s)dW (s) (2.1)

where W is a standard Brownian motion given by

W (t) = BHj ((K∗Hj
)−1ξ[0,t]),

and the Volterra kernel the kernel K(t, s) is given by

KHj (t, s) = cHjs
1/2−Hj

∫ t

s

(u− s)Hj− 3
2

(u
s

)Hj− 1
2

du, t ≥ s,

where cHj =
√

Hj(2Hj−1)

β(2Hj−2,Hj− 1
2 )

and β(·, ·) denotes the Beta function, K(t, s) = 0 if

t ≤ s, and it holds

∂KHj

∂t
(t, s) = cH

(
t

s

)Hj− 1
2

(t− s)Hj− 3
2 ,

and the kernel K∗Hj
is defined as follows. Denote by E the set of step functions on

[0, T ]. Let H be the Hilbert space defined as the closure of E with respect to the scalar
product

〈χ[0,t], χ[0,s]〉H = RHj
(t, s),

and consider the linear operator K∗Hj
from E to L2([0, T ]) defined by,

(K∗Hj
φj)(t) =

∫ T

s

φj(t)
∂KHj

∂t
(t, s)dt.

Notice that,

(K∗Hj
χ[0,t])(s) = KHj

(t, s)χ[0,t](s).
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The operator K∗Hj
is an isometry between E and L2([0, T ]) which can be extended to

the Hilbert space H. In fact, for any s, t ∈ [0, T ] we have

〈K∗Hj
χ[0,t],K

∗
Hj
χ[0,t]〉L2([0,T ]) = 〈χ[0,t], χ[0,s]〉H = RHj

(t, s).

In addition, for any φj ∈ H,∫ T

0

φj(s)dBHj (s) =

∫ T

0

(K∗Hj
φj)(s)dW (s),

if and only if K∗Hj
φ ∈ L2([0, T ]). Next we are interested in considering an fBm with

values in a Hilbert space and giving the definition of the corresponding stochastic
integral.

Definition 2.2. An Ft-adapted process φj on [0, T ]×Ω→ X is an elementary or simple
process if for a partition ψ = {t̄0 = 0 < t̄1 < . . . < t̄n = T} and (Ft̄i)-measurable

X-valued random variables (φjt̄i)1≤i≤n, φt satisfies

φjt (ω) =

n∑
i=1

φji (ω)χ(t̄i−1,t̄i](t), for 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integral of the simple process φj is defined as

IHj
(φj) =

∫ T

0

φj(s)dBHj (s) =

n∑
i=1

φj(t̄i)(B
Hj

l (t̄i)−B
Hj

l (t̄i−1)), (2.2)

whenever φjt̄i ∈ L
2(Ω,Ft̄i ,P, X) for all i ≤ n.

Let (X, 〈·, ·〉, |·|X), (Y, 〈·, ·〉, |·|Y ) be separable Hilbert spaces. Let L(Y,X) denote
the space of all linear bounded operators from Y into X. Let en, n = 1, 2, . . . be a
complete orthonormal basis in Y and QHj

∈ L(Y,X) be an operator defined by

QHjen = λjnen with finite trace trQHj =
∑∞
n=1 λ

j
n < ∞ where λjn, n = 1, 2, . . ., are

non-negative real numbers. Let (β
Hj
n )n∈N be a sequence of two-sided one-dimensional

standard fractional Brownian motions mutually independent on (Ω,F ,P). If we define
the infinite dimensional fBm on Y with covariance QHj as

BHj (t) =

∞∑
n=1

√
λnβ

Hj
n (t)en, (2.3)

then it is well defined as an Y -valued QHj
-cylindrical fractional Brownian motion (see

[?]) and we have

E〈βHj

l (t), x〉〈βHk (s), y〉 = RHlk
(t, s)〈QHj

(x), y〉, x, y ∈ Y and s, t ∈ [0, T ]

such that

RHj
lk

=
1

2
{| t |2Hj + | s |2Hj + | t− s |2Hj}δlk t, s ∈ [0, T ],

where

δlj =

{
1 k = l,
0, k 6= l.
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In order to define Wiener integrals with respect to a QHj
− fBm, we introduce the

space L0
QHj

:= L0
QHj

(Y,X) of all QHj−Hilbert-Schmidt operators ϕj : Y −→ X. We

recall that ϕj ∈ L(Y,X) is called a QHj−Hilbert-Schmidt operator, if

‖ϕj‖2L0
QHj

= ‖ϕQ1/2
Hj
‖2HS = tr(ϕjQϕ

∗
j ) <∞.

Definition 2.3. Let φj(s), s ∈ [0, T ], be a function with values in L0
QHj

(Y,X). The

Wiener integral of φj with respect to fBm given by (2.3) is defined by∫ T

0

φj(s)dBHj (s) =

∞∑
n=1

∫ t

0

√
λnφ

j(s)endβ
Hj
n

=

∞∑
n=1

∫ T

0

√
λnK

∗
Hj

(φjen)(s)dβn. (2.4)

Notice that if
∞∑
n=1

‖φQ1/2en‖L1/Hj ([0,T ];X)
<∞, (2.5)

the next result ensures the convergence of the series in the previous definition. It can
be proved by similar arguments to those used to prove Lemma 2.4 in Caraballo et al.
[?].

Lemma 2.4. For any φj : [0, T ] → L0
QHj

(Y,X) such that (2.5) holds, and for any

α, β ∈ [0, T ] with α > β, for each j = 1, 2

E

∣∣∣∣∣
∫ β

α

φj(s)dBHj (s)

∣∣∣∣∣
2

X

≤ c2(Hj)Hj(2Hj − 1)(α− β)2Hj−1
∞∑
n=1

∫ β

α

∣∣∣φj(s)Q1/2en

∣∣∣2
X
ds.

(2.6)
where c2(Hj) is a constant depending on Hj. If, in addition,

∞∑
n=1

|φjQ1/2en|X is uniformly convergent for t ∈ [0, T ],

then,

E

∣∣∣∣∣
∫ β

α

φj(s)dBHj (s)

∣∣∣∣∣
2

X

≤ c2(Hj)Hj(2Hj−1)(α−β)2Hj−1

∫ β

α

∥∥φj(s)∥∥2

L0
Q

Hj

ds. (2.7)

3. Nonsmooth analysis

Let x, y ∈ X; the projection of x,y into Cj ⊂ X is the set

Proj(y, Cj) = {z ∈ Cj : d(z, Cj) = ||z − y||}.

This set is nonempty if, for example, Cj is weakly closed.Let Cj be a closed
subset of space X;and let x, y ∈ Ci: We say that a vector v ∈ X is a proximal normal
to Cj at z if v = y− z for some y ∈ X with z ∈ Proj(y, Cj). We denote by Np(z, Cj).
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the normal cone. One can show that η ∈ Np(y, Cj) if and only if there exists M such
that the following proximal normal inequality holds,

〈η, z − y〉 ≤M ||z − y||,

for all z ∈ Cj . (In general, M will depend on x). On the other hand

Np(z, Cj) =

∞⋃
n=1

{
v ∈ X : d(y +

v

n
) =
||v||
n

}
.

This cone is convex, but in general not closed . An useful characterization of the
proximal normal cone is the following (see,e.g., [?], Proposition 1.1.5(a)):

Np(z, Cj) = ∪µ>0{v ∈ X : 〈v, a− z〉 ≤ µ||z − y||2, a ∈ Cj}.

If Cj is closed and convex then we have

z ∈ Np(z, Cj)⇐⇒ y ∈ Cj and 〈z, y〉 = σ(z, Ci)⇐⇒ y ∈ Cj , x ∈ ∂ϕCj (y)

where σ is the support function of a subset Cj of X, ∂ϕCj is the subdifferential in
the sense of convex analysis and Ci is the indicator function of a subset Cj of X

∂ϕCj
(y) =

 0, if y ∈ Cj ,

∅, if y ∈ Cj .

We define the Bouligand cone by

TCj (x) =
{
v ∈ X : lim

h→0
inf

d(z + hv,Cj)

h

}
=
⋂
ε>0

⋂
δ>0

⋃
0<h<δ

(Cj − z
h

+ εB(0, 1)
)
.

For more informations about nonsmooth analysis we see the monographs of Clarke
and Ledyaev et al [?] and Clarke [?].

3.1. Multi-valued analysis

Pcl(X) = {y ∈ P(X) : y closed },
Pb(X) = {y ∈ P(X) : y bounded },
Pc(X) = {y ∈ P(X) : y convex },
Pcp(X) = {y ∈ P(X) : y compact }.

Consider Hd : P(X)× P(X) −→ Rn+ ∪ {∞} defined by

Hd(A,B) :=

Hd1(A,B)
...

Hdn(A,B)


Let (X, d) be a generalized metric space with

d(x, y) :=

d1(x, y)
...

dn(x, y)


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Notice that d is a generalized metric space on X if and only if di, i = 1, .., n are
metrics on X,

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then, (Pb,cl(X), Hd) is a met-
ric space and (Pcl(X), Hd) is a generalized metric space.

A multivalued map F : X −→ P(X) is convex (closed) valued if F (y) is convex
(closed) for all y ∈ X, F is bounded on bounded sets if F (B) =

⋃
y∈B F (y) is bounded

in X for all B ∈ Pb(X). F is called upper semi-continuous (u.s.c. for short) on X if
for each y0 ∈ X the set F (y0) is a nonempty, closed subset of X, and for each open
set U of X containing F (y0), there exists an open neighborhood V of y0 such that
F (V) ∈ U . F is said to be completely continuous if F (B) is relatively compact for
every B ∈ Pb(X).

If the multivalued map F is completely continuous with nonempty compact
valued, then F is u.s.c. if and only if F has a closed graph, i.e., xn −→ x∗, yn −→ y∗,
yn ∈ F (xn) imply y∗ ∈ F (x∗).

A multi-valued map F : J −→ Pcp,c is said to be measurable if for each y ∈ X,
the mean-square distance between y and F (t) is measurable.

Definition 3.1. The set-valued map F : J × X × X → P(X × X) is said to be L2-
Carathéodory if

(i). t 7→ F (t, v) is measurable for each v ∈ X ×X;
(ii). v 7→ F (t, v) is u.s.c. for almost all t ∈ J ;
(iii). for each q > 0, there exists hq ∈ L1(J,R+) such that

‖F (t, v)‖2 := sup
f∈F (t,v)

‖f‖2 ≤ hq(t), for all ‖v‖2 ≤ q and for a.e. t ∈ J.

We denote the graph of G to be the set gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.

Lemma 3.2. [?] If G : X → Pcl(Y ) is u.s.c., then gr(G) is a closed subset of X × Y .
Conversely, if G is locally compact and has nonempty compact values and a closed
graph, then it is u.s.c.

Lemma 3.3. [?] If G : X → Pcp(Y ) is quasicompact and has a closed graph, then G is
u.s.c.

Definition 3.4. A set-valued operator G : J −→ Pcl(X) is said to be a contraction if
there exists 0 ≤ γ < 1 such that

Hd(G(x), G(y)) ≤ γd(x, y), for all x, y ∈ X,

The following two results are easily deduced from the limit properties.

Lemma 3.5. (See e.g. [?], Theorem 1.4.13) If G : X → Pcp(X) is u.s.c., then for any
x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).
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Lemma 3.6. (See e.g. [?], Lemma 1.1.9) If Let (Kn)n∈N ⊂ K ⊂ X be a sequence of
subsets where K is compact in the separable Banach space X. Then

co(lim sup
n→∞

Kn) = ∩N>0co(∪n≥NKn)

where coA refers to the closure of the convex hull of A.

The second one is due to Mazur, 1933:

Lemma 3.7. (Mazur’s Lemma, ([?] [Theorem 21.4])) Let X be a normed space and
{xk}k∈N ⊂ X be a sequence weakly converging to a limit x ∈ X. Then there exists a

sequence of convex combinations ym =

m∑
k=1

αmkxk with αmk > 0 for k = 1, 2, ..,m and

m∑
k=1

αmk = 1, which converges strongly to x.

Lemma 3.8. [?] C : [0, T ]→ Pcl(X) such that

(i). C is Hausdorff lower semicontinuous at t = 0;
(ii). ∂C is Hausdorff upper semicontinuous at t = 0;
(iii). there exist x ∈ X and r0 > 0 such that B(x, r0) ⊆ C(0)

Then for every r ∈ (0, r0) there exists δ > 0 such that B(x, r) ⊂ C(r) for all t ∈ [0, δ].

4. Statement of the main results

Definition 4.1. A function x, y ∈ M2([−r, T ], X), is said to be a solution of (1.3) if
x, y satisfies the equation dx(t) ∈ Np(x(t), C1(t))dt+G1(t, xt, yt)dB

H1 a, e. t ∈ [0, T ]

dy(t) ∈ Np(y(t), C2(t))dt+G2(t, xt, yt)dB
H2 a, e. t ∈ [0, T ]

and the conditions (x(t), y(t)) ∈ (C1(t), C2(t)), for all t ∈ [0, T ].

First, we will list the following hypotheses which will be imposed in our main
theorem. In this section,

(H1) Cj(t) is convex for every t ∈ [0, T ] and there exists λ > 0 such that

Hdj (Cj(t), Cj(s)) ≤ λ|t− s|,

for all t, s ∈ [0, T ],
(H2) there exists a positive constant αj , βj for each j = 1, 2 such that

E|Gj(t, x, y)−Gj(t, x, y)| ≤ αj ||x− x||M2
F0

+ βj ||y − y||M2
F0
,

for all t ∈ [0, T ] and x, y, x, y ∈M2([−r, 0], X)

Theorem 4.2. Assume that (H1) and (H2) hold. Then, problem (1.3) possesses a
unique solution on [0, T ].
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Proof. The existence part. Therefore, we pass immediately to uniqueness. We shall
obtain the solution by a well-establish discretization procedure.
The following discretization scheme lies at the heart of many proofs for sweeping
processes. Consider for every n ∈ N, the following partition of [0, T ],

tn,i :=
iT

2n
, 0 ≤ i ≤ 2n and In,i = (tn,i, tn,i+1], if 0 ≤ i ≤ 2n − 1, n ≥ 0.

xn,0 =

 φ(t), t ∈ [−r, 0],

φ(0), t ∈ [0, tn,0],

for any In,0 = (tn,0, tn,1], we have

xn,1 =


xn,0(t), t ∈ [−r, tn,0],

proj
(
φ(0) +G1(tn,0, x(n,0)tn,0

, y(n,0)tn,0
)(BH1(tn,1)−BH1(tn,0), C1(tn,1)

)
,

t ∈ [tn,0, tn,1]

for any In,1 = (tn,1, tn,2], we have

xn,2 =


xn,1(t), t ∈ [−r, tn,1],

proj
(
xn,1(tn,1) +G1(tn,1, x(n,1)tn,1

, y(n,1)tn,1
)(BH1(tn,2)

−BH1(tn,1), C1(tn,2)
)
,

t ∈ [tn,1, tn,2].

With the same argument we can define recursively

xn,i+1 =


xn,i(t), t ∈ [−r, tn,i],
proj

(
xn,i(tn,i)

+G1(tn,i, x(n,i)tn,1
, y(n,i)tn,1

)(BH1(tn,i+1)

−BH1(tn,i), C1(tn,i+1)
)
, t ∈ [tn,i, tn,i+1].

Estimate (xn, yn) by norm M2([−r, T ], X)×M2([−r, T ], X), since (xn, yn) is piecewise
affine, by direct calculations,

sup{
√
E|xn,i+1(t)− xn,i(t)|2 : t ∈ [−r, T ]} ≤ λ T

2n
. (4.1)

Observe that (xn,i(t), yn,i(t)) ∈ (C1(tn,i), C2(tn,i)),and

E|xn,i+1(t)− xn,i(t)| ≤ EHd1(C1(tn,i), C1(tn,i+1)) ≤ λ T
2n

(4.2)

and

E|yn,i+1(t)− yn,i(t)| ≤ EHd2(C2(tn,i), C2(tn,i+1)) ≤ λ T
2n
, (4.3)

for all t ∈ (tn,i−1, tn,i], for every 0 ≤ i ≤ 2n.
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By affine interpolation we define a corresponding sequence of approximate solutions
xn, yn ∈M2([−r, T ], X); for t ∈ In,i the explicit formula is

xn(t) =


xn,i(t), t ∈ [−r, tn,i]

xn,i(tn,i) +
t−tn,i

εn
(xn,i+1(t)− xn,i(t))

+G1(tn,i, x(n,i)tn,i)(B
H1(t)−BH1(tn,1)), t ∈ [tn,i, tn,i+1]

and

yn(t) =


yn,i(t), t ∈ [−r, tn,i]

yn,i(tn,i) +
t−tn,i

εn
(yn,i+1(t)− yn,i(t))

+G2(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH2(t)−BH2(tn,1)), t ∈ [tn,i, tn,i+1]

where εn = T
2n and for every 0 ≤ i ≤ 2n − 1.

From the definition of normal proximal cone, we have

dxn(t) ∈ −N(xn,i+1, C1(tn,i+1))dt

+G1(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH1(t)−BH1(tn,1)). (4.4)

and

dyn(t) ∈ −N(yn,i+1, C2(tn,i+1))dt

+G2(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH2(t)−BH2(tn,1)). (4.5)

Now we prove that {xn, yn, n ∈ N} is compact in M2([−r, T ], X), for each
zn = (xn, yn) in M2([−r, T ], X)×M2([−r, T ], X).
Step 1. {(xn, yn) n ∈ N} are bounded sets in M2([−r, T ], X)×M2([−r, T ], X).
We obtain

|xn(t)| ≤ |xn,i(t)| + |xn,i+1(t)− xn,i(t)|
+b|G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)||(BH1(t)−BH1(tn,1))|

≤ |xn,0(t)|+
i+1∑
k=1

|xn,k−1(t)− xn,k(t)|

+T |G1(tn,i, x(n,i, y(n,i)tn,i
, y(n,i)tn,i

)||(BH1(t)−BH1(tn,1))|

≤ ||φ||+ 2T + T
(
|G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)

−G1(tn,i, 0, 0)|+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|

≤ ||φ||+ 2T + T
(
α1||(xn,i)tn,i

||M2
F0

+β1||(yn,i)tn,i ||M2
F0

+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|.

By definition (xn,i, yn,i) we can prove that there exist M,M > 0 such that

sup{E|xn,i(t)| : t ∈ [−r, T ]} ≤M
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and
sup{E|yn,i(t)| : t ∈ [−r, T ]} ≤M.

Hence, by using (4.2) and (4.3), we have

E|xn(t)|2 ≤2E||φ||2 + 4T 2 + 2T 2
(
α1E||(xn,i)tn,i ||2 + β1E||(yn,i)tn,i ||2

+ sup
t∈[0,b]

|G1(t, 0, 0)|2
)
E|(BH1(t)−BH1(tn,1))|2

≤2E||φ||2 + 4T 2 + 2T 2
(
α1E||(xn,i)tn,i ||2 + β1E||(yn,i)tn,i ||2

+ sup
t∈[0,T ]

|G1(t, 0, 0)|2
)
|t− tn,1|2H1

≤2E||φ||2 + 4T 2 + 2T 2
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
|t− tn,1|2H1

≤2E||φ||2 + 4T 2 + 2T 2
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
T 2H1 = l1.

Similarly, we have

E|yn(t)|2 ≤2E||φ||2 + 4T 2 + 2T 2
(
α2M + β2M + sup

t∈[0,T ]

|G2(t, 0, 0)|2
)
T 2H2 = l2.

which implies that (
E|xn(t)|2
E|yn(t)|2

)
≤
(
l1
l2

)
Step 2. {(xn, yn) n ∈ N} are equicontinuous sets in M2([−r, T ], X)×M2([−r, T ], X).
Let τ1, τ2 ∈ [tn,i, tn,i+1], τ1 < τ2. Thus

E|xn(τ2)− xn(τ1)|2

= E
∣∣∣τ2 − τ1

εn
(xn,i+1 − xn,i) +G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)(BH1(τ2)−BH1(τ1))

∣∣∣2
≤ 2|τ2 − τ1|2 + 2

(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
|τ2 − τ1|2H1 .

Similarly

E|yn(τ2)− yn(τ1)|2 ≤ 2|τ2 − τ1|2

+ 2
(
α2M + β2M + sup

t∈[0,T ]

|G2(t, 0, 0)|2
)
|τ2 − τ1|2H2 .

The right-hand side tends to zero as τ2 − τ1 → 0, and ε sufficiently small. From
Steps 1, 2. By the Arzela-Ascoli theorem, we conclude that there is a subsequence of
(xn, yn), again denoted (xn, yn) which converges to (x, y) ∈M2([−r, T ], X).
Now, we prove that (x(t), y(t)) ∈ (C1(t), C2(t)). Let ρn(t) ,µn(t) be two functions
from [0, T ] into [0, T ] defined by

ρn(t) = tn,i, if t ∈ [tn,i, tn,i+1), ρn(0) = 0

µn(t) = tn,i+1 if t ∈ [tn,i, tn,i+1), µn(0) = 0,
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for all t ∈ [0, T ]. From (4.4) and (4.5) we have

dxn(t) ∈ −N(xn(µn(t)), C1(µn(t)))dt

+G1(tρn(t), xρn(t), yρn(t))dB
H1(ρn(t)), a.e. t ∈ [0, T ] (4.6)

and

dyn(t) ∈ −N(xn(µn(t)), C2(µn(t)))dt

+G2(tρn(t), xρn(t), yρn(t))dB
H2(ρn(t)), a.e. t ∈ [0, T ]. (4.7)

Moreover, for all n large enough,we have

ρn(t)→ t, µn(t)→ t uniformly on [0, b]

Since |ρn(t)− t| ≤ T
2n and |µn(t)− t| ≤ T

2n . Thus

|yn(ρn(t))− yn(t)| ≤ Hd1(C1(ρn(t)), C1(t)) ≤ λ|ρn(t)− t|,

which immediately yields

sup{
√
E|yn(ρn(t))− yn(t)|2 : t ∈ [0, T ]} ≤ λ

√
E|ρn(t)− t|2 → 0 as n→∞.

Let t ∈ [0, T ].From (4.1) for each n ∈ N,tn,i ∈ In,i for some i,

|xn(t)− C1(t)| ≤ |xn(t)− xn(tn,i)|+ d(xn(tn,i), C1(t))

≤ λ
T

2n
+Hd1(C1(tn,i), C1(t)).

Thus

|xn(t)− C1(t)| ≤ λ T

2n−1
. (4.8)

Since (xn, yn) is defined by linear interpolation, we obtain

|x′n(t)| ≤ 1

εn
sup
i
|xn,i+1(t)− xn,i(t)|,

and

|y′n(t)| ≤ 1

εn
sup
i
|yn,i+1(t)− yn,i(t)|.

By letting n→∞ in(4.8) for all t ∈ [0, T ],we obtain that

(x(t), y(t)) ∈ (C1, C2).

Now, we prove that the sequences of composition mappings (xn ◦ µn, y ◦ µn) and
(xn ◦ ρn, y ◦ ρn) converge uniforms to (xt, yt) in M2([−r, 0], X)

E|xn(ρn(t) + τ)− x(t+ τ)|2 ≤ 3E|xn(ρn(t) + τ)− xn(t+ τ)|2

+ 3E|xn(ρn(t) + τ)− xn(µn(t) + τ)|2

+ 3E|xn(µn(t) + τ)− xn(t+ τ)|2.

Thus

sup
τ∈[−r,0]

E|(xn)ρn(t) − xt|2 ≤ 3λ2E|ρn(t)− t|2 + 3E|ρn(t)− µn(t)|2

+ 3 sup
τ∈[−r,T ]

E|xn(µn(t))− x(t)|2 → 0 as n→∞.
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Since |(ρn(t)− τ)− (t− τ)| ≤ T
2n and |µn(t)− ρn(t)| ≤ T

2n−1 . We can pass to the limit
when n→∞, we deduce from

(xρn(t), yρn(t))→ (xt, yt) ∈M2([−r, 0], X)

and,the fact that Gi(., ., .) is a continuous function then we have

Gi(ρn(t), xρn(t), yρn(t))→ Gi(t, xt, yt).

Now, we show that

dx(t) ∈ −N(x(t), C1(t))dt+G1(t, xt, yt)dB
H1(t), a.e. t ∈ [0, T ]. (4.9)

and

dy(t) ∈ −N(y(t), C2(t))dt+G2(t, xt, yt)dB
H2(t), a.e. t ∈ [0, T ]. (4.10)

Since (xn, yn) is bounded in X ×X,there exists a subsequence of (xn, yn)converge to
(x, y). Then∫ T

0

σ
(
− x′n(t) +G1(t, (xn)t, (yn)t)dB

H1(t), C1(µn(t))
)
dt

≤
∫ T

0

(
− x′n(t) +G1(t, (xn)t, (yn)t)dB

H1(t), x(µn(t))
)
dt. (4.11)

Using the fact that σ(., Cj(t)) is lower semicontinuous [?],then

lim inf
n→∞

∫ T

0

σ
(
− x′n(t) +G1(t, (xn)t, (yn)t)dB

H1(t), C1(µn(t))
)
dt

≥
∫ T

0

(
− x′(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (4.12)

By (5.16) and (5.18),we obtain∫ T

0

(
− x′(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt

≥
∫ T

0

σ
(
− x′(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (4.13)

Thus,
dx(t) ∈ −N(x(t), C1(t))dt+G1(t, xt, yt)dB

H1(t), a.e. t ∈ [0, T ].

and
dy(t) ∈ −N(y(t), C2(t))dt+G2(t, xt, yt)dB

H2(t), a.e. t ∈ [0, T ].

Finally, we prove the uniqueness of solutions of the problem (1.3).Let us assume that
(x, y) and (x, y) are two solutions of (1.3).

dx(t) ∈ −N(x(t), C1(t))dt+G1(t, xt, yt)dB
H1(t), a.e. t ∈ [0, T ],

and
dy(t) ∈ −N(y(t), C2(t))dt+G2(t, xt, yt)dB

H2(t), a.e. t ∈ [0, T ].

Since C(t) = (C1(t), C2(t)) is a convex set, then

TCj
(z) = ∪h>0

Cj(t)− z
h

,
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for all t ∈ [0, T ],

TCj (z) ⊂ {v ∈ X : 〈v, ξ〉 ≤ 0 for all ξ ∈ Np(z, ξ)},

which immediately yields〈
x′(t)− x′(t) +

(
G1(t, xt, yt)−G1(t, xt, yt)

)
dBH1(t), x(t)− x(t)

〉
≤ 0.

Thus, we deduce〈
x′(t)− x′(t), x(t)− x(t)

〉
+
〈(
G1(t, xt, yt)−G1(t, xt, yt)

)
dBH1(t), x(t)− x(t)

〉
≤ 0.

By assumptions (H1), (H2) imply

1

2
.
d

dt

∣∣∣x(t)− x(t)
∣∣∣2 ≤ α1||xt − xt||M2

F0

∣∣∣x(t)− x(t)
∣∣∣dBH1(t)

+β1||yt − yt||M2
F0

∣∣∣x(t)− x(t)
∣∣∣dBH1(t) (4.14)

and
1

2
.
d

dt

∣∣∣y(t)− y(t)
∣∣∣2 ≤ α2||xt − xt||M2

F0

∣∣∣y(t)− y(t)
∣∣∣dBH1(t)

+β2||yt − yt||M2
F0

∣∣∣y(t)− y(t)
∣∣∣dBH1(t). (4.15)

Integrating (4.14)and (4.15) over (0, t) we arrive at∣∣∣x(t)− x(t)
∣∣∣2 ≤ α1

∫ t

0

||xs − xs||M2
F0

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

+ β1

∫ t

0

||ys − ys||M2
F0

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

≤ α1

∫ t

0

sup
s∈[0,t]

√
E|x(s)− x(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

+ β1

∫ t

0

sup
s∈[0,t]

√
E|y(s)− y(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s).

Then, for each t ∈ [0, T ] and thanks to Lemma 2.4,

E
∣∣∣x(t)− x(t)

∣∣∣4 ≤ 2α1E
∣∣∣ ∫ t

0

sup
s∈[0,t]

√
E|x(s)− x(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

∣∣∣2
+ 2β1E

∣∣∣ ∫ t

0

sup
s∈[0,t]

√
E|y(s)− y(s)|2

∣∣∣x(s)− x(s)
∣∣∣dBH1(s)

∣∣∣2
≤ 2c2(H1)H1(2H1 − 1)T 2H1−1α1

∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds

+ 2c2(H1)H1(2H1 − 1)T 2H1−1β1∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|2E|y(s)− y(s)|2ds.
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Thus

E
∣∣∣x(t)− x(t)

∣∣∣4 ≤ A1

∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds+B1

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds,

where
A1 = 2c2(H1)H1(2H1 − 1)T 2H1−1(2α1 + β1)

and
B1 = c2(H1)H1(2H1 − 1)T 2H1−1β1.

In the same way, we also have

E
∣∣∣y(t)− y(t)

∣∣∣4 ≤ 2c2(H2)H2(2H2 − 1)T 2H2−1α2

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds

+ 2c2(H2)H2(2H2 − 1)T 2H2−1β2∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|2E|y(s)− y(s)|2ds,

and, consequently,

E
∣∣∣y(t)− y(t)

∣∣∣4 ≤ A2

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds+B2

∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds,

where
A3 = c2(H2)H2(2H2 − 1)T 2H2−1(2α2 + β2),

and
A4 = c2(H2)H2(2H2 − 1)T 2H2−1β2.

Adding these we obtain

E
∣∣∣x(t)− x(t)

∣∣∣4 + E
∣∣∣y(t)− y(t)

∣∣∣4 ≤ A∗ ∫ t

0

sup
s∈[0,t]

E|x(s)− x(s)|4ds

+B∗

∫ t

0

sup
s∈[0,t]

E|y(s)− y(s)|4ds,

where A∗ = A1 +B2, B∗ = A2 +B1. Then

sup
s∈[0,t]

E
∣∣∣x(t)− x(t)

∣∣∣4 + E|y(t)− y(t)
∣∣∣4 ≤ A∗∗ ∫ t

0

sup
s∈[0,t]

(
E|x(s)− x(s)|4

+ E|y(s)− y(s)|4
)
ds,

where A∗∗ = max{A∗, B∗}.
By a generalization of Gronwall inequality, we have

sup
s∈[0,t]

E
∣∣∣x(t)−x(t)

∣∣∣4 +E
∣∣∣y(t)−y(t)

∣∣∣4 = 0 =⇒ (x(t), y(t)) = (x(t), y(t)), a.e. t ∈ [0, T ].

The proof is therefore complete. �
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5. Perturbation Problem (1.3)

To prove the main result we will need the following auxiliary inclusion:

−dx(t) ∈ NC1(t)(x(t))dt+ F 1(t, xt, yt)dt

+G1(t, xt, yt)dB
H1 , a.e. t ∈ [0, T ]

−dy(t) ∈ NC2(t)(y(t))dt+ F 2(t, xt, yt)dt

+G2(t, xt, yt)dB
H2 , a.e. t ∈ [0, T ]

x(t) = φ(t), t ∈ [−r, 0], x(0) ∈ C1(0)

y(t) = φ(t), t ∈ [−r, 0], y(0) ∈ C2(0)

(5.1)

Very recently in the case where Gi = 0 the perturbation problem was studied by
Castaing et al . [?]. The aim in those works, is to study the existence of a solution of
the problem (5.1) and investigated the topological structure of the solution set. The
goal of this section is to study the existence result of the problem (5.1).

Theorem 5.1. Assume that (H1) and (H2) and the conditions .

(H3) F j : [0, T ] ×M2([−r, 0], X) ×M2([−r, 0], X) → Pcp,cv(X) be a u.s.c. Carathe-
dory multimap, and for each t ∈ [0, T ], scalarly L([0, T ])⊗B(M2([−r, 0], X), X)
measurable, where L([0, T ]) is the σ− algebra of Lebesgue measurable sets of
[0, T ] and B(M2) is the Borel tribe of M2 and |F j(t, x, y)| ≤ kj for all
(t, x, y) ∈ [0, T ]×M2([−r, 0], X)×M2([−r, 0], X) or some constant kj > 0.

Then, problem (5.1) has at least one solution on [0, T ].

Proof. Consider for every n ∈ N, the following partition of [0, T ],

tn,i :=
iT

2n
, 0 ≤ i ≤ 2n and In,i = (tn,i, tn,i+1], if 0 ≤ i ≤ 2n − 1, n ≥ 0.

xn,0 =

 φ(t), t ∈ [−r, 0],

φ(0), t ∈ [0, tn,0],

for any In,0 = (tn,0, tn,1], we have

xn,1 =



xn,0(t), t ∈ [−r, tn,0],

proj
(
φ(0) + g1

0(tn,0)

+G1(tn,0, x(n,0)tn,0 , y(n,0)tn,0)(BH1(tn,1)

−BH1(tn,0), C(tn,1)
)
, t ∈ [tn,0, tn,1].
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Similarly,for any In,1 = (tn,1, tn,2], we have

xn,2 =


xn,1(t), t ∈ [−r, tn,1],

proj
(
xn,1(tn,1) + g1

0(tn,1)

+G1(tn,1, x(n,1)tn,1
, y(n,1)tn,1

)(BH1(tn,2)

−BH1(tn,1), C(tn,2)
)
, t ∈ [tn,1, tn,2].

With the same argument we can define recursively, for any In,i = (tn,i, tn,i+1],

xn,i+1 =


xn,i(t), t ∈ [−r, tn,i],

proj
(
xn,i(tn,i) + g1

0(tn,i)

+G1(tn,i, x(n,i)tn,1
, y(n,i)tn,1

)(BH1(tn,i+1)

−BH1(tn,i), C(tn,i+1)
)
, t ∈ [tn,i, tn,i+1]

where
gj0(t, u) = min{|x| : x ∈ F j(t, u)}.

By construction, we have (xn,i, yn,i) ∈ (C1, C2), for all t ∈ [tn,i−1, tn,i].
Then for every 0 ≤ i ≤ 2n,

|xn,i+1(t)− xn,i(t)| ≤ Hd1(C1(tn,i), C1(tn,i+1)) ≤ λ T
2n

and

|yn,i+1(t)− yn,i(t)| ≤ Hd2(C1(tn,i), C1(tn,i+1)) ≤ λ T
2n

and, consequently,

sup
{√

E|xn,i+1(t)− xn,i(t)|2 : t ∈ [−r, T ]
}
≤ λ T

2n
(5.2)

and

sup
{√

E|yn,i+1(t)− yn,i(t)|2 : t ∈ [−r, T ]
}
≤ λ T

2n
(5.3)

Put

xn(t) =


xn,i(t), t ∈ [−r, tn,i]

xn,i(tn,i) +
t−tn,i

εn
(xn,i+1(t)− xn,i(t)) + (t− tn,i)g1

0(tn,i)

+G1(tn,i, xtn,i , ytn,i)(B
H1(t)−BH1(tn,1)), t ∈ [tn,i, tn,i+1].

and

yn(t) =


yn,i(t), t ∈ [−r, tn,i]

yn,i(tn,i) +
t−tn,i

εn
(yn,i+1(t)− yn,i(t)) + (t− tn,i)g2

0(tn,i)

+G2(tn,i, xtn,i
, ytn,i

)(BH2(t)−BH2(tn,1)), t ∈ [tn,i, tn,i+1].

Since (xn, yn) is defined by linear interpolation, we have

|x′n(t)| ≤ 1

εn
sup
i
|xn,i+1(t)− xn,i(t)|
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and

|y′n(t)| ≤ 1

εn
sup
i
|y

n,i+1
(t)− y

n,i
(t)|.

Using the fast that the projections are non-expansive, thus

|xn,i+1(t)− proj(xn,i(t), C1(tn,i+1))| ≤ εn|g1
0(tn,i)| ≤ εnk1.

and

|yn,i+1(t)− proj(yn,i(t), C2(tn,i+1))| ≤ εn|g2
0(tn,i)| ≤ εnk2.

Hence

|xn,i+1(t)− xn,i(t)| ≤ εn(k1 + λ). (5.4)

Thus

|x′n(t)| ≤ k1 + λ and sup
t∈J
|x′n(t)|2 ≤ (k1 + λ)2. (5.5)

From the definition of normal proximal cone, we have

dxn(t) ∈ −N(xn,i+1, C1(tn,i+1))dt+ g1
0(tn,i)dt

+G1(tn,i, x(n,i)tn,i , y(n,i)tn,i)(B
H1(t)−BH1(tn,1)), a.e. t ∈ [0, T ] (5.6)

and

dyn(t) ∈ −N(yn,i+1, C2(tn,i+1))dt+ g2
0(tn,i)dt

+G2(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH2(t)−BH2(tn,1)), a.e. t ∈ [0, T ]. (5.7)

Now we prove that {(xn, yn) , n ∈ N} is compact inM2([−r, T ], X)×M2([−r, T ], X).

Step 1. {(xn, yn) n ∈ N} are bounded sets in M2([−r, T ], X)×M2([−r, T ], X).
We have

|xn(t)| ≤|xn,i(t)|+ |xn,i+1(t)− xn,i(t)|+ T |g1
0(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)|

+ |G1(tn,i, x(n,i)tn,i , y(n,i)tn,i)||(BH1(t)−BH1(tn,1))|

≤|xn,0(t)|+ 2

i+1∑
k=1

|xn,k−1(t)− xn,k(t)|+ Tk1

+ |G1(tn,i, x(n,i, y(n,i)tn,i
, y(n,i)tn,i

)||(BH1(t)−BH1(tn,1))|

≤||φ||+ 2T +
(
|G1(tn,i, x(n,i)tn,i

, y(n,i)tn,i
)−G1(tn,i, 0, 0)|

+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|

≤||φ||+ 2T + Tk1

+ T
(
α1||(xn,i)tn,i ||M2

F0
+ β1||(yn,i)tn,i ||M2

F0

+ |G1(tn,i, 0, 0)|
)
|(BH1(t)−BH1(tn,1))|.



Stochastic sweeping process with fractional Brownian motion 767

Then,

E|xn(t)|2 ≤2(||φ||2 + 2T + Tk1)2 + 2T 2
(
α1M + β1M

+ sup
t∈[0,T ]

|G1(t, 0, 0)|2
)
E|(BH1(t)−BH1(tn,1))|2

≤2(||φ||2 + 2T + Tk1)2

+ 2T 2
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
T 2H1 := l1.

Hence

sup{
√
E|xn(t)|2 : t ∈ [−r, T ]} ≤ l1.

and

sup{
√
E|yn(t)|2 : t ∈ [−r, T ]} ≤ l2.

Which implies that (
E|xn(t)|2
E|yn(t)|2

)
≤
(
l1
l2

)
Step 2. {(xn, yn), n ∈ N} are equicontinuous sets in M2([−r, T ], X).
Let τ1, τ2 ∈ [tn,i, tn,i+1], τ1 < τ2 . Thus

E|xn(τ2)− xn(τ1)|2

= E
∣∣∣τ2 − τ1

εn
(xn,i+1 − xn,i) + (τ2 − τ1)g1

0(tn,i, x(n,i)tn,i , y(n,i)tn,i)

+ G1(tn,i, x(n,i)tn,i
, y(n,i)tn,i

)(BH1(τ2)−BH1(τ1))
∣∣∣2

≤ 3|τ2 − τ1|2 + 3
(
α1M + β1M + sup

t∈[0,T ]

|G1(t, 0, 0)|2
)
|τ2 − τ1|2H1

+ 3k2
1|τ2 − τ1|2.

Similarly,

E|yn(τ2)− yn(τ1)|2 ≤ 3|τ2 − τ1|2 + 3
(
α2M + β2M + sup

t∈[0,T ]

|G2(t, 0, 0)|2
)
|τ2 − τ1|2H2

+ 3k2
2|τ2 − τ1|2.

The right-hand side tends to zero as τ2−τ1 → 0, and ε sufficiently small. From Steps 1,
2, by the Arzela-Ascoli theorem, we conclude that there is a subsequence of (xn, yn),
again denoted (xn, yn) which converges to (x, y) in M2([−r, T ], X)×M2([−r, T ], X).
It remains to prove that (x(t), y(t)) ∈ (C1(t), C2(t)). Let t ∈ [0, T ] ,from (5.5) ,we
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obtain

0 ≤ |xn(t)− C1(t)| = d(xn(t), C1(t))

≤
∣∣∣xn(t)− xn(tn,i)

∣∣∣+ d(xn(tn,i), C1(t))

≤ (k1 + λ)|t− tn,i|+Hd1(C1(tn,i), C1(t))

≤ (k1 + λ)b

2n−1
.

Then

|xn(t)− C1(t)| ≤ (k1 + λ)T

2n−1
. (5.8)

and

|yn(t)− C2(t)| ≤ (k2 + λ)T

2n−1
. (5.9)

By letting n→∞ in (5.8) and (5.9) ,we obtain that

(x(t), y(t)) ∈ (C1, C2) (5.10)

Now, we define, for t ∈ [0, T ]

ρn(t) = tn,i, µn(t) = tn,i+1 if t ∈ [tn,i, tn,i+1).

Hence, by using (4.4) and (4.5) we have

dxn(t) ∈ −N(xn(µn(t)), C1(µn(t)))dt+ g1
0(tρn(t), xρn(t), yρn(t))

+G1(tρn(t), xρn(t), yρn(t))dB
H1(ρn(t)) a,e. t ∈ [0, T ]. (5.11)

and
dyn(t) ∈ −N(xn(µn(t)), C2(µn(t)))dt+ g2

0(tρn(t), xρn(t), yρn(t))

+G2(tρn(t), xρn(t), yρn(t))dB
H2(ρn(t)) t ∈ a,e. t ∈ [0, T ]. (5.12)

Hence
ρn(t)→ t, µn(t)→ t uniformly on [0, b]

Since |ρn(t)− t| ≤ T
2n and |µn(t)− t| ≤ T

2n . Moreover,

|xn(ρn(t))− xn(t)| ≤ Hd1(C1(ρn(t)), C1(t)) ≤ λ|ρn(t)− t|.
Similarly,

|yn(ρn(t))− yn(t)| ≤ Hd2(C2(ρn(t)), C2(t)) ≤ λ|ρn(t)− t|.
Therefore,

sup{
√
E|xn(ρn(t))− xn(t)|2 : t ∈ [0, T ]} ≤ λ

√
E|ρn(t)− t|2 → 0 as n→∞.

and

sup{
√

E|yn(ρn(t))− yn(t)|2 : t ∈ [0, T ]} ≤ λ
√

E|ρn(t)− t|2 → 0 as n→∞.
In Theorem (4.2) was proved that (xρn(t), yρn(t)) converge to (xt, yt) in

M2([−r, T ], X).

Let vj
n
(t) = gj0(ρn(t), (xn)ρn(t)), (yn)ρn(t))).From H3 we have |vj

n
(t)| ≤ kj for n ∈ N

implies that vj
n
(t) ∈ lB(0, 1), hence (vj

n
)n∈N which converges weakly to some limit

vj ∈ L2(J,X). Since F (., x, y) is u.s.c. with closed and convex values and F j(., ., .)
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is bounded for each j = 1, 2 , then exists a sequence {Fm}m∈N of globally u.s.c. set-
valued mappings on J ×M2([−r, 0], X)×M2([−r, 0], X) with convex compact values
in X ×X satisfying the following conditions:

||F jm(t, x, y)|| ≤ kj ,

for all (t, x, y) ∈ J ×M2([−r, 0], X)×M2([−r, 0], X) and j = 1, 2,

F jm+1(t, x, y) ⊂ F jm(t, x, y), F (t, x, y) = ∩m≥1F
j
m(t, x, y).

Now we need to prove that υj(t) ∈ F j(t, xt, yt), for a.e. t ∈ J. Lemma 3.7 yields the

existence of constants αni ≥ 0, l = 1, 2.., k(n) and j = 1, 2 such that

k(n)∑
l=1

αnl = 1 and

the sequence of convex combinations ψjn(.) =

k(n)∑
l=1

αnl υ
j
l (.) converges strongly to some

limit υj ∈ L2(J,X). Since F j takes convex values, using Lemma 3.6, we obtain that

υj(t) ∈
⋂
n≥1

{ψjn(t)}, a.e t ∈ J

⊂
⋂
n≥1

co{υjk(t), k ≥ n}

⊂
⋂
n≥1

co{
⋃
k≥n

F jm(ρk(t), (xk)ρk(t), (yk)µk(t))}

= co{lim sup
k→∞

F jm(µk(t), (xk)µk(t), (yk)µk(t))}. (5.13)

Since F jm is u.s.c. and has compact values, then by Lemma 3.5, we have

lim sup
n→∞

F jm(ρn(t), (xn)ρn(t), (yn)ρn(t)) = F jm(t, xt, yt) for a.e t ∈ J.

This and (5.13) imply that υj(t) ∈ co(F j(t, xt, yt). Since, for each j = 1, 2 , F jm(., ., .)
has closed, convex values, we deduce that υj(t) ∈ F jm(t, xt, yt) for a.e. t ∈ J ,then
υj(t) ∈ F j(t, xt, yt).
We can pass to the limit when n→∞, we deduce from

(xρn(t), yρn(t))→ (xt, yt) ∈M2([−r, 0], X) as n→ ∞.

Using the fact that Gj(., ., .) is a continuous function then we have

Gj(ρn(t), xρn(t), yρn(t))→ Gj(t, xt, yt) as n→ ∞.

Now, we show that

dx(t) ∈ −N(x(t), C1(t))dt+ v1(t)dt+G1(t, xt, yt)dB
H1(t) a.e. t ∈ [0, T ]. (5.14)

and

dy(t) ∈ −N(y(t), C2(t))dt+ v2(t)dt+G2(t, xt, yt)dB
H2(t) a.e. t ∈ [0, T ]. (5.15)
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Since (xn, yn) is bounded in X ×X,there exists a subsequence of (xn, yn)converge to
(x, y).Then∫ T

0

σ
(
− x′n(t) + v1

n(t) +G1(t, (xn)t, (yn)t)dB
H1(t), C1(µn(t))

)
dt

≤
∫ T

0

(
− x′n(t) + v1

n(t) +G1(t, (xn)t, (yn)t)dB
H1(t), x(µn(t))

)
dt. (5.16)

Using the fact that σ(., C1(t)) is lower semicontinuous ,then

lim inf
n→∞

∫ T

0

σ
(
− x′n(t) + v1

n(t) +G1(t, (xn)t, (yn)t)dB
H1(t), C1(µn(t))

)
dt

≥
∫ T

0

(
− x′(t) + v1(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (5.17)

By (5.16) and (5.18),we obtain∫ T

0

(
− x′(t) + v1(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt

≥
∫ T

0

σ
(
− x′(t) + v1(t) +G1(t, xt, yt)dB

H1(t), C1(t)
)
dt. (5.18)

Thus,

dx(t) ∈ −N(x(t), C1(t))dt+ F 1(t, xt, yt)dt+G1(t, xt, yt)dB
H1(t), a.e. t ∈ [0, T ].

and

dy(t) ∈ −N(y(t), C2(t))dt+ F 1(t, xt, yt)dt+G2(t, xt, yt)dB
H2(t), a.e. t ∈ [0, T ].

and the proof is finished. �
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