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Abstract. In this work, we establish some new midpoint and trapezoidal type
inequalities for prequasiinvex functions via the Katugampola fractional integrals.
Some of the results obtained in this paper are generalizations of some earlier
results in the literature.
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1. Introduction

A function f : [a,b] — R is said to be convex on [a, b] if

fltz + (1 =t)y) < tf(x)+ (1 -1)f(y)
for all z,y € [a,b] and t € [0, 1] (see [26, 28]). The following result which holds for
convex functions is known in the literature as the Hermite-Hadamard inequality.

Theorem 1.1 ([10]). If f : [a,b] — R is convex on [a,b] with a < b, then

f(a;b) < bia/abf(x)dng(a);f(b)'

Many authors have studied and generalized the Hermite-Hadamard inequality in
several ways via different classes of convex functions. For some recent results related
to the Hermite-Hadamard inequality, we refer the interested reader to the papers
[1, 22, 23, 13, 20, 21, 4, 9, 3, 2, 18, 19].
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The concept of quasi-convexity which generalizes the concept of convexity is
defined as follows.

Definition 1.2 (See [26, 28]). A function f : [a,b] — R is said to be quasi-convex on
[a, b] if
flte + (1 =t)y) < max{f(z), f(y)}
for all z,y € [a,b] and ¢ € [0,1].
In [12], Ton introduced the following Hermite-Hadamard type inequalities also

known as trapezoidal-type inequalities for quasi-convex functions as follows.

Theorem 1.3. Let f : [a,b] — R be a differentiable function on (a,b). If | f'| is quasi-
convex on |a,b], then the following inequality holds:

fa) + f(b)
2 bfa/f Jdz

< 2 max{| (@), 1701}

Theorem 1.4. Let f : [a,b] — R be a differentiable function on (a,b). If |f’|P%1, p>1
is quasi-convex on [a,b], then the following inequality holds:

f();rf 7a/f

2(p _1-_1)1/1, (max{|f/(a)|ﬁ’ |f’(b)|ﬁ})%

For more results related to quasi-convex functions, we refer the interested reader
to the papers [9, 3, 1, 2]. The concept of preinvexity was introduced in [5, 11, 32] as
a generalization of convexity as follows.

Definition 1.5. Let I CR and n: I x I — R be a bifunction. [ is said to be an invex
set with respect to 7, if

x+tn(y,z) €1 for all z,y € I and ¢ € [0, 1].

If I C R is an invex set with respect to the bifunction 7, then a function f: I — R is
said to be a preinvex function with respect to n, if

fle+tn(y,z)) <A —¢)f(z)+tf(y) for all z,y € I and t € [0, 1].

Remark 1.6. If n(y,z) = y — x in Definition 1.5, then we have that f is a convex
function. Thus, every convex function is a preinvex function with respect to the bi-
function 7(y,x) = y — . However, not every preinvex function is a convex function
(see [32] for more details).

In a similar way, the concept of quasi-convexity has been generalized in the
following definition.

Definition 1.7 ([24]). If I C R is an invex set with respect to the bifunction 7, then a
function f : I — R is said to be prequasiinvex with respect to n, if

fxz+1tn(y,x)) < max{f(x), f(y)} for all z,y € I and t € [0, 1].

Remark 1.8. Every quasi-convex function is a prequasiinvex function with respect
to the bifunction n(y,x) = y — x. However, not every prequasinvex function is a
quasi-convex function (see [33] for more details).
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Barani et al. [4] established the following trapezoidal-type inequalities for pre-
quasiinvex functions which are generalizations of Theorem 1.3 and Theorem 1.4.

Theorem 1.9. Let A C R be an open invexr subset with respect ton : A x A — R.
Suppose that f : A — R is a differentiable function. If | f'| is prequasiinvex on A, then
for every a,b € A the following inequality holds:

a a a a+n(b,a)
e fla ) L[

n(b, a)| , ,
2 n(b, a x| < = max{| f'(a)], [/ (0)1}-

Theorem 1.10. Let A C R be an open inver subset with respect ton : A x A — R.
p

Suppose that f: A — R is a differentiable function. If |f'|P=1 is prequasiinvez on A,

then for every a,b € A the following inequality holds:

fl@)+ fla+n(ba) 1 atn(b,a)
2 ﬂ(b’a)/a f(z)dx

< L s {01 014 ))

For more information and results related to prequasiinvex functions, we refer
the interested reader to the papers [24, 33, 13, 20, 21]. In [13], the author generalized
Theorem 1.9 and Theorem 1.10 using the Riemann-Liouville fractional integrals.

Our goal in this paper is to provide some midpoint and trapizoidal type in-
equalities for functions whose derivative in absolute value to some exponents are pre-
quasiinvex via the Katugampola fractional integrals. Some of our results generalize
the results in [13]. We end this section with the definitions of the Riemann-Liouville,
Hadamard and Katugampola fractional integrals and some preliminary results.

Definition 1.11 ([25]). The left- and right-sided Riemann-Liouville fractional integrals
of order @ > 0 of f are defined by

I fe) = s [ @00 toar

and

b
T fe) = g [ =t

with a < < b and T'(+) is the gamma function given by
(oo}
I(x) ::/ t" te7tdt, Re(x) >0
0
with the property that I'(z + 1) = zT'(x).

Definition 1.12 ([29]). The left- and right-sided Hadamard fractional integrals of order
a > 0 of f are defined by

HE, f(z) = ﬁ / (1n %)a_l @dt
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and

HY f(x):= ﬁ /: (111 i)al @dt.

Definition 1.13. X?(a,b) (c € R, 1 < p < o) denotes the space of all complex-valued
Lebesgue measurable functions f for which | f[|x» < oo, where the norm || - || x» is
defined by

/]

b 1/p
Xs< / It”f(t)l”it> (1<p<oo)

and for p = oo
[fllxe = ess sup [t°f ().
a<t<b
In 2011, Katugampola [14] introduced a new fractional integral operator which

generalizes the Riemann-Liouville and Hadamard fractional integrals as follows:

Definition 1.14. Let [a,b] C R be a finite interval. Then, the left- and right-sided
Katugampola fractional integrals of order a > 0 of f € XP(a,b) are defined by

11—« x —1
PIS f(x) == fli(a) / o i”tp)raf(t)dt

and

-« b p—1
PIE f(x) = ?(oz) /J: G _t w)ia f(¥)dt

with a < x < b and p > 0, if the integrals exist.

Remark 1.15. It is shown in [14] that the Katugampola fractional integral operators
are well-defined on X?(a,b).

Theorem 1.16 ([14]). Let o > 0 and p > 0. Then for z > a
o pTQ _ g
1. ;L}Inl Ia—i—f(z) Ja-‘,—f(‘r);
2. 't 212, f(z) = HE, f(2).
p—0+

Similar results also hold for the right-sided operators.

For more information about the Katugampola fractional integrals and related
results, we refer the interested reader to the papers [6, 14, 15, 16, 17].

Lemma 1.17 (See [27, 31]). For any o € [0,1] and z,y € [0,1], we have

2% =y < |z —y|*.
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2. Main results

2.1. Midpoint-type inequalities

The following lemma is a generalization of [7, Lemma 16] via the Katugampola
fractional integrals.

Lemma 2.1. Let a,p > 0, I C R be an open invex set with respect to the bifunction
n:IxI —=Rand f: I — R be a differentiable mapping on I. If a,b > 0 with

a < b such that a?,b* € I, n(b?,a”) > 0 and [’ € Ll([ap,aern(bP,ap)}), then the
following equality via the fractional integrals holds:

<2ap + (b, a”)> p°T(a+1)
! 2 —2(be, ar)e

Iz )

1 armiran) - W’)]

bP, a?
= W(h +h+ I+ 1), (2.1)
where
{/1/2
h= / HeFDOLf @ 4 (b, af))dt,
0
/172
= ‘/ (oD (@ 4 (1= 1) (¥, a”))
0
1
I :/ (t* — 1)t (a? + tPn(b°, aP))dt
° {/1/2
and

1
— A Y _ P P aqf )
14/1/2<1 £0) L f (@ + (1= t)n(bP, af) ) dt

Proof. By integrating by parts, we have

{/1/2
= / HeH DI (g0 4 40 b0, aP))dt
0

P </1/2
S P4 tPn(bP. aP
(b,,_ap)pf(a +t'n(V’,a ))0
@ 12 ap—1 P Pn(b?. aP))d
s [ e o

~n(br,af)p

22—« f (Qap +772(b”,ap)>

«

Y/
_ W /O tap—lf(ap + tpn(bp7 aP))dt. (2.2)
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Similarly, we have

2~ (Qa” +77(bp,a”))
I =

n(b?,a?)p 2
>
n(b?, ar)

e
/ (0 f(af + (L= ), af))dt,  (23)
0
1
I = /e/ﬁt% — )L (0 + (b, 0”))dt

1

£/1/2
1
(0%
- tP=Lf(af + tPn(b°, a?))dt
o | I XG)
1-27° 2a” + n(b?, a”)
~ n(be,ar)p 2

_ gf(ap +tPn(bP, aP))
n(be,ar)p e

S / L e F(a? + (b, aP))dt (2.4)
n(b,ar) J¢/17z ’

and

Iy =

1—-27« f 2a” 4+ n(b?, a”)
(P, aP)p 2

1
_ @ ap=1g(,P _ P P af ) .
a7 I Ot 25)

Now, by using (2.2), (2.3), (2.4) and (2.5), we have

2 2aP bP . aP 1
(o ap)pf'( - +_z; i )> __n(ngap) [/ﬁ tP=Lf(aP + tPn(bP, a”))dt

1
+ [ @ (1= e, 0
0
=L+ 1+ I3+ 14. (2.6)
By using change of variables and Definition 1.14, we have

' ap— PPy (BP P P (e )
/Ot 1f(a + tPn(b?,a”))dt = W I(W) fa?) (2.7)
and
p*'T(a)

1
/0 t*P= 1 f(a? + (1 — tP)n(b°, a”))dt = W”[3+f(ap +n(b?,a”)). (2.8)
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Substituting (2.7) and (2.8) in (2.6), we obtain

2 s (2ap +7](bp7ap)> B P I (a+ 1)
)p

L+DL++1=

n(b/)’ aP 2 77([){77 aﬂ)a+1
PRI 00 0 s S@)] @9)
The desired identity in (2.1) follows from (2.9). Hence, the proof is complete. O

Remark 2.2. If we choose p =1 in Lemma 2.1, then we obtain [7, Lemma 16]. Also,
if p # 1 and n(z,y) = ¢ — y in Lemma 2.1, then we obtain [8, Lemma 2.1] with a
minor mistake in the identities obtained in [8] where I'(ac 4 1) should have been I'(«)
instead.

Theorem 2.3. Under the conditions of Lemma 2.1, if |f'|%,q > 1 is prequasiinvezr on
1, then the following inequality holds:

p bP. af T
’f <2a +772( ,Q )) _ gn(b(:;)la) |:plgé+ (ap+n(bﬁ’ap))

1 ) @)
1 1 1

<ut”.a") (3 - o1+ ey (e {I @I eN)

1/q

Proof. By using Lemma 2.1 and the properties of the absolute value, we have

2a” 4 n(b?, a”) pP*T(a+1)
’f< 2 ) 2 (b, ar)”

[ﬂfsqf(ap (b, a?))

1 ) )|

bP, a”
< aP)p (|I1\+|I2|+\I3|+|I4\)' (2.10)

- 2

By using the power mean inequality, we have

— 1-1/q — 1/q
12 (a+1)p—1 e (at+1)p=1| /(P Por(bP P))|4
|| < t dt t |f'(a® 4+ tPn(b°, a?))|9dt :
0 0
(2.11)

Using the prequasiinvexity of |f’|2, we have
£ (@ + (b, a))|? < max {| /(@)% |£'(0")]7 }- (2.12)

Substituting (2.12) in (2.11), we obtain

1 g ({7 @pn oo} (2.13)
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Using similar arguments, we deduce that

11 < gy, (mex (@ irenrr) (2.14)

1/q

13] < /W ¢ — 1]t~ (maox { |/ (a) |7, |/ (%)} )

1 ! @ ! ! 1/q
=5 o (mas {0 7001 )
1,1 1 1 1/
A sy g (i) s
and
11 1 1 , , 1/q
<2 (5 - aog * e ry) (e {7 @In @) ) @6
The desired inequality follows from (2.10) by using (2.11)-(2.12). O

Corollary 2.4. If in Theorem 2.3 we take n(z,y) = x—y for allz,y € I, i.e, |f'|9,q > 1,
s quasiconver, then the following inequality holds:

’f (a”—&—b”) p°T(a+1)

12,50 4015 )

2 ) 20r—ar)”
<t -Gt za<a1+ i) (max {17 @, o)

Remark 2.5. It is worth noting that in [8, Theorem 2.8] the authors established an-
other estimate for the left hand side of the inequality in Corollary 2.4 under the
condition that |f’| is convex. On the other hand, since every convex function is qua-
siconvex it follows that the inequality in Corollary 2.4 holds if | f/|7,¢ > 1 is convex.

Theorem 2.6. Under the conditions of Lemma 2.1, if |f'|,q > 1 is prequasiinver on
1, then the following inequality holds:

200 + n(1,a?)\  pT(a+ 1)
‘f ( 2 >2n<bp,av>a

1z S )

|

arn(b7,ar) ) -

P P 1/r 1 ir
<n(b,a){( L ) + 2/ |u® — 1]"du }
2 20”‘(047""' 1) 1/2

< (max {1 @y 1 one}) ™, (2.17)
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1 1
where — 4+ — = 1. In addition, if a € (0,1], then we have the inequality
r o oq

2a” + n(b?, a”) p°T(a+1)
() - S

[”L:ufw (e, a?))

1 )|

1 r , ) 1/q
<@ (gmrry ) (m{r@miren)”. e
Proof. By using Lemma 2.1 and the properties of the absolute value, we have

2a° + (b, a” or
() e e

pro P
+ (ﬁ/ap-‘rn(bﬂ,aﬂ))—f(a ):| ‘
b, aP
< M e)p - L OARDARARA (2.19)

By using the Holder’s inequality, we have

,—1/2 1/r
1| < / tePriP=lat
0

Using the prequasiinvexity of |f’|%, we have
/(@ + (v, )7 < max {|f/(a”) |9, |1 (4)]7}. (2.21)
Substituting (2.21) in (2.20), we obtain

1 1/r 1 1/q
‘Il| < (20”,_’_1(001_‘_1)%)> <2pmax{|f/(ap)|q7f/(bp)|Q})

- 21/) (2@1“))/ (mase {7/ @) 7001 }) (2.22)

Using similar arguments, we deduce that

nl< 5 (2(1))/ (max {7 @y 1@ }) ", @)

ar +1

1 1/r L
< ( - 1rtﬂ—1dt> <max{|f'<ap>|q, el /mtp‘ldt>
! Hr 1/q
« r 1 ’ q / q
I du) (5, mex (i@l @}

L 1/r g
- (2 / ju — 17‘du) (max {1/ (@")I7, 1 0)|7}) / (2.24)

/2

/12 1/q
(/O 01| (0 + tpn(bp,a”))|th> . (2.20)

1/q
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and

1 1/r
|14 < 2—1[) (2 /1/2 Ju® — 1|7"du> (max {|f’(a”)|q’ |f/(bp)‘q})1/q. (2.25)

The inequality in (2.17) follows from (2.19) by using (2.20)-(2.21). Now, if a € (0, 1],
then it follows from Lemma 1.17 that

1 1
1
uaflrdug/ 1—u)dy = ——— . 2.26
[ e s [ i s (2.26)
The inequality in (2.18) follows from (2.17) by using (2.26). Hence, the proof is com-
plete. O

Corollary 2.7. If in Theorem 2.6 we taken(x,y) = x—y forallxz,y € I, i.e, |f'|7,q > 1,
18 quasiconvez, then the following inequality holds:

£(U57) - s sy en |

2(bP — ar)

1/r
P — aP 1 1/r 1
2 20”’(067‘ + 1) 1/2

< (mae {7/, 1700y })

1 1
where — + = = 1. In addition, if a € (0,1], then we have the inequality
T

‘f (aP + bﬂ) B Qp:‘bz(f :;,,)1(1 {p[;;f(bp) + Pfg“f(ap)] ‘

< (b —a”) (1))1/r (max{|f’(aﬂ)|q, |f’(bP)‘q})1/‘1.

207 (ar 4+ 1

2.2. Trapezoidal-type inequalities

The following lemma is a generalization of Lemma 2.4 in [6] for the invex case.
Lemma 2.8. Let a,p > 0, I C R be an open invex set with respect to the bifunction
n:IxI —Rand f: 1 — R be a differentiable mapping on I. If a,b > 0 with
a < b such that a?,b” € I, n(b?,a”) > 0 and f" € Ll([ap,a” + (b, a”)] ), then the
following equality via the fractional integrals holds:

F(a?) + @ £ n,a7)  pTat )], )
2 27’](()9 aP (W)

eIe, f(a? +n<bp,ap>>]

SpLEL / 1[(1 — )" — PP (af + (1= 17)n(b, o)) dt. (2.27)
2 0
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Proof. We observe that
1
/ [(1 =19 = 7)7= (@ + (1= 47)n(VP, a?))dt = Ly — I,
0
where
1
L= / (1= 7421 f'(af + (1 — t2)(bP, o)) dt

0

and
1
I = / toPtP=1 ' (aP 4 (1 — tP)n(bP, a))dt.
0

By integrating by parts and change of variables, we have

1
IL = / (1 —t")tP= L (a? + (1 — t°)n(b?, a?))dt
0

(1) 1

= _Mf(ap + (1 = t")n(d,a”)) i
N W /1(1 — )P f (0P + (1 —tP)n(b°, af))dt
) 0
= )
~ e / (1) (L (8,0
) 0
- ﬁf (a” + (b, a"))
- ﬁ / (u” = a”)*~ !~ f(uf)du. (2.28)

a
By using Definition 1.14 and (2.28), we have
_ fla? +n(r.a”))  p*'T(a+1), , ,
=" ap et (e (229
By a similar argument, we have
@) T,
n(2,ar)p (b, ar)ott
By using (2.29) and (2.30), we have
_ f@?) + f(a? +n(,a”)  p*T(a+1), o
L—1,= - (W)_f(a)

n(be,aP)p n(br,ar)att
010, F(af 4+, aP»} . (2.31)

I =

I f(a? 4+ n(b°, a?)). (2.30)

The desired identity in (2.27) follows from (2.31). O
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Remark 2.9. If n(z,y) =  — y in Lemma 2.8, then we obtain [6, Lemma 2.4] with
minor mistakes in the identity obtained in [6] where I'(aw 4+ 1) should have been I'(«)

b? — af " —a”)p

and should have been instead.

Theorem 2.10. Under the conditions of Lemma 2.8, if | f'|9,q > 1 is prequasiinvex on
1, then the following inequality holds:

‘f(ap) + f(a” + n(b*,a?)  p"T(at1) [m fla
2 2n(be, ar)e (W)*
)|
<M (1 50 ) (max{ i@l en) ) (2.32)

Proof. Using Lemma 2.8, the power mean inequality and the prequasiinvexity of | f/|9,
we have

‘f(ap)+f(ap+77(b”7a”)) p*T(a+ ){ f(a”)
2 27’)(()!’ aP)e (f/a"’«kn br,ar )

L%, fla + ap>>] \
1-1/q
P 1dt>

(0P + (1 — t7)n(b”, a”))‘th> .

bf’ af)p </ ’ _ypa
x(/ mf¢®“—ﬁa
n(b?,a”)p a” </ ‘ _yea
:W””< /‘1—u —

Now, we observe that
1/2 1
—/ ((1—u)a—ua)du+/ (uo‘—(l—u)o‘)du
0 1/2

/01)(1—u)°‘—u“

Pt

1/q

o=t ) (max {7 @) 17 017}

) (max {7/ @) 1 @or}) " (233)

IR N SR B
S a+1l 2%(a+1)  a+1 2%(a+1)
2 1
=—(1-—). 2.34
a+1 ( 2a> (2:34)
The inequality in (2.32) follows from (2.33) and (2.34). O

Remark 2.11. If n(z,y) = ¢ — y in Theorem 2.10, then we recover the result in [30,
Theorem 2.4]. Also, if p = 1 in Theorem 2.10, then we obtain the result in [13,
Theorem 2.3].
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Theorem 2.12. Under the conditions of Lemma 2.8, if | f'|9,q > 1 is prequasiinvex on
1, then the following inequality holds:

‘f(ap) + f(a? 4+, a")  pT(at1) {pla fla
2 2n(be,ar) | (§/arsn(oran)) -

oI f(a 00|

)W (mas { /@) 1 @7}) " 239)

1 1
where — + — = 1. In addition, if o € (0, 1], then we have the inequality
roq

RS TR TR LEA3] o
2 2n(be, ar)® ({’/W)*
)|
<1 (LN ({0 ) (2.36)

Proof. Using Lemma 2.8, the Holder’s inequality and the prequasiinvexity of | f|?, we
have

‘f(af’)+f(af’+n(b",aﬂ)) p*T(a+1) [,, fa)
2 2n(be,ar)e |~ (§/ar+n(r,a)) -
Oz T 00|
1/r

U(bp,;p)P (/01‘(1_#))(1_#)@

X </01tp1
S bpap ( / ‘1_u
(o

tf’—ldt)

"(af + (1 — )b, ap))‘th> v

>1/T (;m“{lf’w")q, If’(b”)l"}>

)w (max { | (@)1, /017 }) "

1/q
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This proves the inequality in (2.35). By using Lemma 1.17 with « € (0, 1], we deduce

that
1 ” 1
/ ‘(1—u)a—ua dug/ ‘1—2u
0 0

1/2 1
= / (1 —2u)*"du +/ (2u — 1)*"du
0 1/2

ar
du

1 1
2(ar+1) + 2(ar+1)
1

=— (2.37)

The inequality in (2.36) follows from (2.35) and (2.37). O

Remark 2.13. If p = 1 in the inequality (2.36) in Theorem 2.12, then we obtain the
result in [13, Theorem 2.4].

Corollary 2.14. If in Theorem 2.12 we take n(x,y) = x —y for all z,y € I, i.e,
|71, q > 1, is quasiconvez, then the following inequality holds:

eI e e s+ erz )|

o _ aP 1
Sb a </ ‘(l_u)a_ua
2 0

1 1
where — + — = 1. In addition, if o € (0, 1], then we have the inequality
roq

) 7 (s {500

eI L D n s+ rz s )|

) o ; af' ( ) >1/,. (max{|f/(ap)|q’ |f/(bﬂ)|q})1/q.

ar +1

3. Conclusion

We established two midpoint-type inequalities and two trapezoidal-type inequal-
ities for functions whose derivatives in absolute value to some powers are prequasiinvex
with respect to a bifunction 7 via the Katugampola fractional integral operators. By
considering the bifunction 7(z,y) = z — y, the results for quasiconvex functions has
been obtained from our main results. Several other results can be obtained from our
results by considering different bifunctions and/or different values of the parameters
involved. In particular, if we take p = 1, then our results are in terms of the Riemann-
Liouville fractional integrals. Also, we hope that under certain conditions on f and 7,
similar results via the Hadamard fractional integrals could be derived from our results
by taking the limit as p — 0. The details are left for the interested reader.
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