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The size of some vanishing and critical sets

Cornel Pintea

Abstract. We prove that the vanishing sets of all top forms on a non-orientable
manifold are at least 1-dimensional in the general case and at most 1-codimen-
sional in the compact case. We apply these facts to show that the critical sets
of some differentiable maps are at least 1-dimensional in the general case and at
most 1-codimensional when the source manifold is compact.
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1. Introduction

It is well-known that the orientability of a manifold is characterized by the
existence of a top differential form which never vanishes. Therefore it is natural to
investigate the size of the vanishing sets V (θ) := {p ∈ M : θp = 0} of the top forms
θ ∈ Ωm(M) towards a measure of the deviation from orientability of the involved non-
orientable manifold M . Indeed, the complement of every vanishing set of a top form
is orientable and the smallest such vanishing sets are good candidates to measure this
deviation. In this paper we show that the top forms of non-orientable manifolds cannot
have arbitrarily small vanishing sets and apply this fact to show that some maps
cannot have arbitrarily small critical sets. For instance the zero dimensional subsets
of the non-orientable manifolds are neither vanishing sets of the top differentiable
forms, nor critical sets of any differentiable function with orientable regular set, for
the orientable option of the target manifold. Similar lower bounds for the size of the
branch locus arise due to Church and Timourian [5, 6] in the codimension cases 0,
−1 and −2. On the other hand, the critical set of a zero codimensional differentiable
map was treated before in [17], where the critical set is realised as the vanishing set
of the pull-back of a volume form on the oriented target manifold.

Note that the other extreme is well represented in the recent years, as quite some
effort oriented towards the maps with finite critical sets has been done, not only for
one dimensional, but also for higher dimensional target manifolds [1, 2, 3, 8, 9, 10].
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The paper is organized as follows: In the second and third sections we quickly
review the tools and emphasize the preparatory results needed to prove the main
results of the paper, which are also stated here. In the fourth section we prove the
main results of the paper, the first of which concerns the surjectivity of the group
homomorphism induced, at the level of fundamental groups, by the inclusion M \A ↪→
M , where Mm (m ≥ 2) is a manifold and A ⊂ M is a closed zero dimensional set.
As a consequence we observe that the dimension of the critical set of a zero or lower
codimensional map, whose target manifold is orientable and the source manifold is
non-orientable, is at least 1-dimensional. Relying, all over this paper, on the inductive
definition of the ’dimension’ [7, 13], we prove that the dimension of the critical set of a
zero or lower codimensional map, whose target manifold is compact orientable and the
source manifold Mn is compact non-orientable, is at least (n− 1)-dimensional. Recall
however that the small and large inductive dimensions are equal to each other and
both are equal with the covering dimension whenever the evaluated space is separable
[7, p. 65]. Since differential manifolds are metrizable metric spaces, it follows that the
inductive dimensions of a certain subset of a given manifold are equal to each other
and both are equal with the covering dimension of that subset.

2. Main results

In order to achieve such results we rely on the characterization of orientability
of a connected differential manifold M by means of the orientation character, i.e. the
group homomorphism w

M
: π1(M) −→ C2 := {−1, 1} defined by

w
M

([γ]) =

{
1 if γ̃(1) = x̃1
−1 if γ̃(1) = x̃−1,

where γ̃ : [0, 1] −→ M̂ is the lift of the loop γ : [0, 1] −→ M , γ(0) = γ(1) = x, with

γ̃(0) = x̃1, p : M̂ −→M is the orientable double cover of M and p−1(x) = {x̃1, x̃−1}.
Indeed, M is orientable if and only if the orientation character is trivial. Equivalently,
M is non-orientable if and only if w

M
is onto. Taking into account that the orientation

double cover of O is p
∣∣
p−1(O)

: p−1(O) −→ O, we deduce that the orientation character

of a connected open set O ⊆M can be decomposed as

ω
O

= w
M
◦ π1(i

O
), where π1(i

O
) : π1(O) −→ π1(M)

is the group homomorphism induced by the inclusion map i
O

: O ↪→M . Consequently
the open connected subset O of a non-orientable manifold M remains non-orientable
whenever π1(i

O
) is surjective. Note that the orientation character ω

M
of M coincides

with w1(M) ◦ ρ, where ρ : π1(M) −→ H1(M,Z) stands for the Hurewicz homomor-
phism and w1(M) for the first Stiefel-Whitney class regarded as a homomorphism via
the homomorphism of the universal coefficient Theorem

H1(M ;Z2) −→ Hom(H1(M ;Z),Z2)

and C2 is identified with Z2.

Remark 2.1. Let Mm is a connected non-orientable manifold.
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1. If the 1-skeletonM1 of a certain CW -decomposition ofM is a strong deformation
retract of some of its open neighbourhood U , then the complement M \U cannot
be the vanishing set of any top form on M , as the group homomorphism

π1(i
M\U ) : π1(M \ U) −→ π1(M)

is onto [11, p. 39].
2. The m− 2 and lower dimensional submanifolds of Mm cannot be the vanishing

sets of any top forms on M , as the group homomorphism

π1(i
M\X ) : π1(M \X) −→ π1(M)

is an isomorphism for m ≥ 3 and an epimorphism for m = 2, whenever X is
such a submanifold of M . In particular the discrete subsets of M cannot be the
vanishing sets of any top forms on M [16, Proposition 2.3]. By using the same
type of arguments one can actually show that no countable subset of M can
be the vanishing sets of any top form on M . In other words the vanishing set
of every top form on M is uncountable. In fact the zero dimensional subsets of
M cannot be the vanishing sets of any top forms on M , as we shall see in the
Theorem 2.1 and Corollary 2.2.

Theorem 2.1. If Mm is a smooth connected manifold (m ≥ 2) and A ⊆M is a closed
zero dimensional set, then M \A is also connected and the group homomorphism

π1(i) : π1(M \A) −→ π1(M),

induced by the inclusion i : M \A ↪→M , is onto, i.e. π1(M,M \A) = 0.

Corollary 2.2. If Mm is a non-orientable manifold, then dimV (ω) ≥ 1 for every
differentiable form ω ∈ Ωm(M).

Proof. Assume that dimV (ω) = 0 for some differentiable form ω ∈ Ωm(M). Accord-
ing to Theorem 2.1, the complement M \ V (θ) of the vanishing set is also connected
and the group homomorphism

π1(i) : π1(M \ V (θ)) −→ π1(M)

is onto. The non-orientability of M shows that the orientation character w
M

is onto.
Consequently the orientaion character ω

M\V (θ)
= w

M
◦π1(i

M\V (θ)
), of M \V (θ), is also

onto, due to Theorem 2.1.
On the other hand the restriction θ|M\V (θ) is a nowhere vanishing top form of

M \ V (θ), which shows that M \ V (θ) is an orientable open submanifold of M . In
other words, the orientation character ω

M\V (θ)
= w

M
◦ π1(i

M\V (θ)
) is trivial, which

implies that either the orientation character w
M

is not onto or the induced group
homomorphism π1(i

M\V (θ)
) : π1(M\V (θ)) −→ π1(M) is not onto, which is absurd. �

In the compact non-orientable case we can provide, by using some different type
of arguments, a much larger lower bound for the vanishing sets of all top forms.

Theorem 2.3. If Mm is a compact connected non-orientable manifold, then
dimV (ω) ≥ m− 1 for every differentiable form ω ∈ Ωm(M).
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Remark 2.2. The estimate, provided by Corollary 2.2 is sometimes sharp. Indeed, by
removing a suitable circle out of Klein bottle we obtain a cylinder, which is orientable.
Also by removing a suitable copy of the (2n − 1)-dimensional real projective space,
out of the 2n-dimensional real projective space we obtain a 2n-disc, which is also
orientable. In both casses the removed submanifolds have, due to Corollary 2.2 and
Theorem 2.3, the smallest possible dimension in order to get orientability on their
complements.

3. Preliminary results

3.1. Vanishing sets of differentiable forms

If ω is a k-differential on M , recall that the vanishing set V (ω) of ω is the
collection of points z ∈ U at which ω vanishes, i.e.

V (ω) := {z ∈M : ωz(v1, . . . , vk) = 0 for all vi ∈ Tz(M)}.

We shall only use in this paper the vanishing sets of the top differential forms of M .

In this subsection we investigate the size of critical sets of maps between two
manifolds with the same dimension via the vanishing set of the pull-back form of a
volume form on the target manifold.

Remark 3.1. If f : Mn → Nn is a local diffeomorphism and θ ∈ Ωk(N), then V (f∗θ) =
f−1 (V (θ)). If f is additionally surjective, then this equality can be rewritten as
f (V (f∗θ)) = V (θ), which shows, by means of Hodel [12],

dim (V (f∗θ)) = dimV (θ) (3.1)

whenever V (f∗θ) is compact.

Theorem 3.1. ([17]) If Mm, Nn,m ≥ n are differential manifolds with N orientable
and f : M −→ N is a differential map, then C(f) = V

(
f∗volN

)
, where volN is a

volume form on N .

Corollary 3.2. Let Mn, Nn be differential manifolds. If N is orientable and M is
non-orientable then dimC(f) ≥ 1 for every differentiable function f : M → N .

Proof. Let volN be a volume form on N . Combining Theorem 3.1 with Corollary 2.2
we deduce that dimC(f) = dimV (f∗volN ) ≥ 1. �

In addition to the usefulness of the vanishing sets of differentiable forms in
evaluating the size of the critical sets, they are also useful in evaluating the size of
the tangency sets [4].

3.2. Zero dimensional subsets of manifolds

Lemma 3.3. If C is a closed subset of a smooth manifold Mn, then there exists a
smooth nonnegative function f : M −→ R such that f−1(0) = C.



The size of some vanishing and critical sets 655

Proof. We first consider an embedding j : M ↪→ R2n+1, whose existence is ensured
by Whitney’s embedding theorem.
If K ⊆ R2n+1 is a closed subset such that j(C) = K ∩ j(M), i.e. j−1(K) = C,
then the required function is f = g ◦ j, where g : R2n+1 −→ R is a smooth positive
function such that g−1(0) = K, whose existence is ensured by the Whitney theorem
([18, Théorème 1, p. 17]). �

Proposition 3.4. If A is a closed zero dimensional subset of a smooth manifold Mn,
then for each x ∈M and every neighbourhood U of x, there exists an open neighbour-
hood V of x such that V ⊆ U, ∂V ∩A = ∅ and ∂V is smooth.

Proof. If x 6∈ A, then the existence of V is immediate. Assume now that a ∈ A and
consider an open and relatively compact neighbourhood V ′ of a such that V ′ ⊆ U and
∂V ′ ∩ A = ∅. We may assume that V ′ is actually connected, as otherwise we reduce
V ′ to its connected component containing a. If ϕ : M −→ R is a smooth nonnegative
function such that ϕ−1(0) = A, whose existence is ensured by Lemma 3.3, observe
that m := min{ϕ(x) |x ∈ ∂V ′} > 0, since the compact set A ∩ cl(V ′) = A ∩ V ′ has
no common points with the compact boundary ∂V ′. If y ∈ (0,m) is a regular value of

ϕ|V ′ : V ′ → R, then (ϕ|V ′)−1 (y) is a compact hypersurface in V ′, as (ϕ|V ′)−1 (y) =

ϕ−1(y) ∩ cl(V ′). Indeed, the inclusion (ϕ|V ′)−1 (y) ⊆ ϕ−1(y) ∩ cl(V ′) is obvious. If
x ∈ ϕ−1(y) ∩ cl(V ′), then ϕ(x) = y and x ∈ cl(V ′) = V ′ ∪ ∂V ′. But since y > 0, it

follows that x 6∈ ∂V ′, which shows that x ∈ V ′ and x ∈ (ϕ|V ′)−1 (y) as well. Because

y < m, it follows that (ϕ|V ′)−1 (y) ∩A = ∅.
Finally, we consider a regular value y ∈ (0,m) of ϕ|V ′ : V ′ → R and observe

that the inverse image
(
ϕ|

V ′

)−1
(−∞, y) ⊆ V ′ is an open neighbourhood of A and

∂
[(
ϕ|

V ′

)−1
(−∞, y)

]
=
(
ϕ|

V ′

)−1
(y),

which shows that ∂
[(
ϕ|

V ′

)−1
(−∞, y)

]
∩ A = ∅. If V is the connected component of

the inverse image
(
ϕ|

V ′

)−1
(−∞, y) containing a, then its boundary is a collection of

connected components of
(
ϕ|

V ′

)−1
(y) and therefore ∂V ∩A = ∅. �

Remark 3.2. If A is a closed zero dimensional subset of a smooth surface Σ, then
for each x ∈ Σ and every neighbourhood U of x, there exists an open disk D such
that x ∈ D ⊆ U, ∂D ∩ A = ∅ and ∂D is a smooth circle. Indeed, we consider, via
Proposition 3.4, a local chart (W,ψ) of Σ at x as well as a connected neighbourhood
V of x with smooth boundary such that x ∈ V , cl(V ) ⊆ W ⊆ U , ψ(W ) = D2

and ∂V ∩ A = ∅. Note that the boundary of ψ(V ) is a union of pairwise disjoint
circles, as the circle is the only compact boundaryless one dimensional manifold. One
of these circles, say C, is the boundary of the unbounded component of R2 \ ψ(V ).
The bounded component of R2 \C is completely contained in D2, contains ψ(V ) and
we may choose its inverse image through ψ to play the role of D.

3.3. Deformations of punctured manifolds

Since the deformations of the punctured Euclidean space and the punctured
manifolds [16] will be repeatedly used in what follows, we shall review them shortly.
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For r > 0 and n ∈ N∗ denote by Dn
r and Sn−1r the open disk and the sphere respec-

tively, both of them having the center at the origin of the space Rn and radius r. Dn
1

and Sn−11 will be simply denoted by Dn and Sn−1 respectively. For x ∈ Dn, consider
the map hx : Rn \ {x} −→ Rn \ {x} defined to be the identity outside the open disc
Dn and hx(y) = Sn−1∩]xy for every y ∈ Dn \ {x}, where ]xy stands for the half line
{(1− s)x+ sy : s > 0}. In particular hx(y) = y, ∀y ∈ Sn−1.

Let N be an n-dimensional manifold and c = (U,ϕ) be a local chart of N
such that cl(Dn) ⊆ ϕ(U). Denote by Dϕ and Sϕ the sets ϕ−1(Dn) and ϕ−1(Sn−1)
respectively. For x ∈ Dϕ we define the continuous map hc,x : N \ {x} −→ N \ {x} by

hc,x(y) =

{
y if y ∈M \Dϕ

ϕ−1
(
hϕ(x) (ϕ(y))

)
if y ∈ U \ {x}.

Note that hc,x(Dϕ\{x}) = Sϕ and hc,x(y) = y, ∀y ∈ Sϕ.

Remark 3.3. 1. hx(Dn\{x}) = Sn−1 and hx 'Hx idRn\{x}(relRn\Dn), where

Hx : Rn\{x} × [0, 1]→ Rn\{x}, Hx(y, t) = (1− t)y + thx(y).

2. hc,x 'Hc,x idM\{x}, where Hc,x : (M\{x})× [0, 1]→M \ {x},

Hc,x(y, t) =

{
y if y ∈M\Dϕ

ϕ−1
(
Hϕ(x)(ϕ(y), t)

)
if y ∈ U\{x}.

If P is a given manifold and f : P −→ M is a continuous map whose image avoids
the point x, then f ' hc,x ◦ f and a homotopy between f and hc,x ◦ f is Hc,x(·, t) ◦ f .
We shall refere to each hc,x ◦ f and Hc,x(·, t) ◦ f as the punctured deformation of f
from x onto Sϕ.

4. The proofs of theorems 2.1 and 2.3

Proof of Theorem 2.1. Consider a homotopy class of curves in π1(M,M \ A) repre-
sented by a continuous curve α : [0, 1] −→ M , α(0), α(1) ∈ M \ A and deform α
rel{0, 1} to some differentiable curve β with non vanishing tangent vector field. The
immersion β might actually be chosen to be a geodesic from α(0) to α(1) with respect
to some Riemannian metric on M (see e.g. [14, Theorem 1.4.6, p. 24]). Obviously
dim (A ∩ Im(β)) ≤ dim(A) = 0 and dim Im(β) = 1.

From this point we continue the proof by induction with respect to the dimension
m of the manifold M . First assume that m = 2 and observe that for each t ∈ β−1(A)
there exists, via Remark 3.2, a two dimensional disc Dt ⊆M with circular boundary,
neighbourhood of β(t), such that its circular boundary Ct has no common points
with A. Since β is locally an embedding, Dt might be chosen inside the domain
Ut of a coordinate chart ct = (Ut, ϕt) in such a way that Dt = Dϕt , Ct = Sϕt ,
α(0) = β(0), α(1) = β(1) ∈ M \ cl(Dt), Jt := β−1(Dt) is an open interval and
ϕt (Dt ∩ Im(β|Jt)) = ϕ(Dt) ∩ R. Since {Dt | t ∈ β−1(A)} is an open covering of the
compact set Im(β)∩A, we may extract a finite open cover, say Dt1 , . . . , Dts . We may
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assume that Dti \ cl(Dtj ) 6= ∅ whenever i 6= j. Since dim(Im(β) = 1 it follows that
Im(β) cannot fill the open set

Dti \
r⋃
j=1

j 6=i

cl(Dtj ).

For each i ∈ {1, . . . , r}, consider a point

xi ∈ Dti \
(

Im(β) ∪
r⋃
j=1

j 6=i

cl(Dtj )
)

and the maps gcti ,xi, : M \ {x1, . . . , xs} −→M \ {x1, . . . , xs} given by

gcti ,xi(y) = hcti ,xi(y).

Note that idM\{x1,...,xs} ' gct1 ,x1
◦· · ·◦gcts ,xs (rel M \ (Dt1 ∪ · · · ∪Dts)) as each of the

maps gct1 ,x1
, . . . , gcts ,xs is homotopic to idM\{x1,...,xs} relative to M \(Dt1 ∪· · ·∪Dts).

Thus
β ' (gct1 ,x1 ◦ · · · ◦ gcts ,xs ◦ β)(rel{0, 1})

and Im(gct1 ,x1
◦ · · · ◦ gcts ,xs ◦ β) ⊆M \A, as

(gct1 ,x1 ◦ · · · ◦ gcts ,xs) ((Dt1 ∪ · · · ∪Dts) \ {x1, . . . , xs}) ⊆ Ct1 ∪ · · · ∪ Cts ⊆M \A

and β−1 (M \ (Dt1 ∪ · · · ∪Dts)) ⊆ β−1(M \A).
We next assume that the statement holds for (m−1)-dimensional manifolds and

we shall prove it for the m-dimensional manifold M . In this respect we consider a
partition 0 = t0 < t1 < · · · < tr = 1 of the interval [0, 1] with small enough norm such
that:

1. β([t0, t1]) ∩A = β([tr−1, tr]) ∩A = ∅ and β(t1), . . . , β(tr−1) ∈M \A.
2. there are small enough open discs D1 = Dϕ1

, . . . , Dr−2 = Dϕr−2
with spherical

boundaries S1 = Sϕ1
, . . . , Sr−2 = Sϕr−2

, for some charts c1 = (U1, ϕ1), . . . , cr =
(Ur−2, ϕr−2), with the following properties:
(a) β−1(Di) is the open interval (ti, ti+1) and the restriction (ti, ti+1) −→ Di,

t 7→ β(t) is an embedding, for every i = 1, r − 2;
(b) cl(Di) ∩ Im(β) = Si ∩ Im(β) = {β(ti), β(ti+1)} and Di ∩ Di+1 = ∅ while

cl(Di) ∩ cl(Di+1) = Si ∩ Si+1 = {β(ti+1)}, for every i = 1, r − 3.

Note that Im(β)∩A ⊂ D1∪· · ·∪Dr−2. For every i ∈ {1, . . . , r−2}, consider xi ∈ Di \
Im(β) and observe that β|[xi,xi+1] ' hcti ,xi◦β|[xi,xi+1](rel({xi, xi+1})). By applying the

inductive hypothesis to the punctured deformation hcti ,xi ◦ β|[xi,xi+1](rel({xi, xi+1}))
of β|[xi,xi+1] from xi onto Si, whose image is contained in the (m − 1)-dimensional
sphere Si, one can conclude that hcti ,xi ◦ β|[xi,xi+1] is homotopic rel({xi, xi+1}) to

some continuous curve γi : [xi, xi+1] −→ Si whose image avoids the set A, i.e.
γi([xi, xi+1]) ⊆ Si \A. Thus hcti ,xi ◦β is homotopic rel({0, 1}) to the continuous curve

γ : [0, 1] −→ M \ A defined by γ|[x0,x1] = β|[x0,x1], γ|[xi,xi+1] = γi for 1 ≤ i ≤ r − 2
and γ|[xr−1,xr] = β|[xr−1,xr]. �
Proof of Theorem 2.3. We first observe that every top-form ω ∈ Ωm(M) is exact, as
the top de Rham cohomology group Hm

dR(M) is trivial [15, Th. 15.21, p. 405], i.e.
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ω = dθ for some θ ∈ Ωm−1(M). If p : M̃ −→ M is the orientable double cover, then

p∗ω = p∗(dθ) = d(p∗θ), which shows that

∫
M̃

p∗ω = 0 and that dim (V (p∗ω)) ≥ m−1

therefore. Thus

dim (V (ω)) = dim (p (V (p∗ω))) = dim (V (p∗ω)) ≥ m− 1,

as p (V (p∗ω)) = V (ω). �

Corollary 4.1. Let Mn, Nn be differential manifolds. If N is orientable and M is
compact and non-orientable then dimC(f) ≥ n − 1 for every differentiable function
f : M → N .

Proof. Let volN be a volume form on N . Combining Theorem 3.1 with Theorem 2.3
we deduce that dimC(f) = dimV (f∗volN ) ≥ n− 1, for every differentiable function
f : M −→ N . �

A proof of Corollary 4.1 of similar flavor appears in [17, Theorem 2.4.(b)].

Remark 4.1. Corollaries 3.2 and 4.1 rely on the orientability of the regular set
R(f) = M \ C(f) in the 0 = dim(N) − dim(M) codimension case which is a pri-
ori ensured by the nowhere vanishing restricted top form f∗volN

∣∣
R(f)

on R(f). In the

lower codimension case dim(M) > dim(N), the lack of orientability of the regular set
is obvious, even for the orientable option of the target manifold N . We stress this by
the example of the projection of a product M = N ×X on the first factor, when N
is orientable and X is non-orientable. The critical set of this projection is obviously
empty, but its regular set is the whole non-orientable product M = N ×X.

However, the orientability of the regular set R(f) ensure similar lower bounds
even in the lower codimensional context. More precisely, if Nn is orientable and Mm

(m > n) is connected non-orientable and f : M −→ N is a differentiable function
with orientable regular set R(f), then dim(C(f)) ≥ 1. The proof of this statement
works along the same lines with the one of Corollary 2.2, the role of the vanishing set
V (θ) is played here by the critical set C(f).

Acknowledgment. The author is grateful to the anonymous referee for his (or her)
useful comments, which have helped him to improve the presentation.

References

[1] Andrica, D., Funar, L., On smooth maps with finitely many critical points, J. London
Math. Soc., 69(2004), no. 2, 783-800.

[2] Andrica, D., Funar, L., Addendum: ”On smooth maps with finitely many critical points”
J. London Math. Soc., 73(2006), no. 1, 231-236.

[3] Andrica, D., Funar, L., Kudryavtseva, E., On the minimal number of critical points of
smooth maps between closed manifolds, Russ. J. Math. Phys., 16(2009), no. 3, 363-370.

[4] Balogh, Z.M., Pintea, C., Rohner, H., Size of tangencies to non-involutive distributions,
Indiana Univ. Math. J. 60 (2011), 2061-2092.

[5] Church, P.T., Timourian, J.G., Differentiable maps with 0-dimensional critical set, Pa-
cific J. Math., 41(1972), no. 3, 615-630.



The size of some vanishing and critical sets 659

[6] Church, P.T., Timourian, J.G., Maps with 0-dimensional critical set, Pacific J. Math.,
57(1975), no. 1, 59-66.

[7] Engelking, R., Dimension Theory, North-Holland, Amsterdam, 1978.

[8] Funar, L., Global classification of isolated singularities in dimensions (4, 3) and (8, 5),
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10(2011), 819-861.

[9] Funar, L., Pintea, C., Manifolds which admit maps with finitely many critical points into
spheres of small dimensions, Michigan Math. J., 67(2018), 585-615.

[10] Funar, L., Pintea, C., Zhang, P., Examples of smooth maps with finitely many critical
points in dimensions (4, 3), (8, 5) and (16, 9), Proc. Amer. Math. Soc., 138(2010), no. 1,
355-365.

[11] Hatcher, A., Algebraic Topology, Cambridge University Press, 2002.

[12] Hodel, R.E., Open functions and dimension, Duke Math. J., 30(1963), 46-468.

[13] Hurewicz, W., Wallman, H., Dimension theory, Princeton Mathematical Series, 4,
Princeton University Press, Princeton, NJ, 1941.

[14] Jost, J., Riemannian Geometry and Geometric Analysis, (Third Edition), Springer-
Verlag, 2002.

[15] Lee, J.M., Introduction to Smooth Manifolds, Springer, 2006.

[16] Pintea, C., Differentiable mappings with an infinite number of critical points, Proc.
Amer. Math. Soc., 128(2000), no. 11, 3435-3444.

[17] Pintea, C., Smooth mappings with higher dimensional critical sets, Canad. Math. Bull.,
53(2010), no. 3, 542-549.
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