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On the viscoelastic equation with Balakrishnan-
Taylor damping and nonlinear boundary/interior
sources with variable-exponent nonlinearities
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Abstract. This work is devoted to the study of a nonlinear viscoelastic Kirch-
hoff equation with Balakrishnan-Taylor damping and nonlinear boundary interior
sources with variable exponents. Under appropriate assumptions, we establish a
uniform decay rate of the solution energy in terms of the behavior of the nonlin-
ear feedback and the relaxation function, without setting any restrictive growth
assumptions on the damping at the origin and weakening the usual assumptions
on the relaxation function.
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1. Introduction

In this paper, we study the following viscoelastic problem with Balakrishnan-
Taylor damping and nonlinear boundary interior sources involving the variable-
exponent nonlinearities

∂2u

∂t2
−M

(
|∇u (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in Ω× (0,+∞) ,

(1.1)

u = 0 on Γ0 × (0,+∞) , (1.2)

M
(
|∇u (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+ h (ut) = |u|k(x)−1

u on Γ1 × (0,+∞) ,

(1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.4)
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where M (r) is a locally Lipschitz function in r, g > 0 is a memory kernel and Ω ⊂ Rn
(n ≥ 2), be a bounded domain with a smooth boundary Γ = ∂Ω = Γ0 ∪ Γ1. The
boundary Γ of Ω is assumed to be regular and is divided by two closed and disjoint
parts Γ0, Γ1, Here, Γ0 6= ∅. (.)

′
denotes the derivative with respect to time t thus

ut = ∂u
∂t , utt = ∂2u

∂t2 , ∆ stands for the Laplacian with respect to the spatial variables,
respectively. Let ν be the outward normal to Γ. The exponents k(.) and p(.) are given
measurable functions on Ω satisfying{

1 < p− ≤ p (x) ≤ p+ <∞,
1 < k− ≤ k (x) ≤ k+ <∞, (1.5)

where 
p+ = ess sup

x∈Ω
p (x) , p− = ess inf

x∈Ω
p (x) ,

k+ = ess sup
x∈Ω

k (x) , k− = ess inf
x∈Ω

k (x) .
(1.6)

We also assume that k satisfies the following Zhikov-Fan uniform local continuity
condition:

|k (x)− k (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0.

In recent years, many authors have paid attention to the study of nonlinear hyper-
bolic, parabolic and elliptic equations with nonstandard growth condition. For in-
stance, modeling of physical phenomena such as flows of electro-rheological fluids or
fluids with temperature-dependent viscosity, thermoelasticity, nonlinear viscoelastic-
ity, filtration processes through a porous media and image processing. More details
on these problems can be found in [5, 7, 1, 2, 3, 26, 34, 35] and references therein.
Constant exponent. In (1.1)-(1.4), when g ≥ 0 and k, p are constants, this equation
has its origin in the nonlinear vibration of an elastic string, were the source term
|u|p−2

u forces the negative-energy solutions to explode in finite time. While, the
dissipation term h (ut) assures the existence of global solutions for any initial data,
local, global existence and long-time behavior have been considered by many authors
(see for example [40, 31, 19, 41] and references therein). It is well known that Kirchhoff
first investigated the following nonlinear vibration of an elastic string for f = g = 0:

ρh
∂2u

∂t2
+ δ

∂u

∂t
+ g

(
∂u

∂t

)
=

{
p0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f (u)

for 0 < x < L, t ≥ 0, where u(x, t) is the lateral displacement, E the Young modulus,
ρ the mass density, h the cross-section area, L the length, p0 the initial axial tension,
δ the resistance modulus, and f and g the external forces. The above equation is
described by the second order hyperbolic equation (1.1) and it is seemed to be im-
portant and natural that the equation with external forces is considered for analyzing
phenomena in real world. The equations in (1.1)-(1.4) with M ≡ 1 form a class of
nonlinear viscoelastic equations used to investigate the motion of viscoelastic materi-
als. As these materials have a wide application in the natural sciences, their dynamics
are interesting and of great importance. Hence, questions related to the behavior of
the solutions for the wave equation with Dirichlet’s boundary condition has attracted
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considerable the attention of many authors. In particular, there are many results of
proving the nonexistence and blow-up of solutions with negative initial energy (see
[24, 25, 22, 38, 32, 9] and a list of references therein) also these results were obtained
with convexity method. However much less is known when the initial energy is positive
(cf. [8, 21, 33, 42]) and these results used several, for example, contradiction method,
decomposition method and so on. The equations in (1.1) with M (r) = a + br and
a > 0, b > 0 is the model to describe the motion of deformable solids as hereditary ef-
fect is incorporated, which was first studied by Torrejon and Yong [37]. They proved
the existence of weakly asymptotic stable solution for the large analytical datum.
Later, Rivera [30] showed the existence of global solutions for small datum and the
total energy decays to zero exponentially under some restrictions. Problem (1.1)-(1.4)
is the extension of the problems in which the variable-exponent are constants and
g ≥ 0. The main difficulty of this problem is related to the presence of the quasilin-
ear terms in (1.1)-(1.4) in the variable-exponent. In this paper a class of a weakly
damped wave equation of generalized Kirchhoff type with nonlinear damping and
source terms involving the variable-exponent nonlinearities were considered. Hence
by using the Faedo-Galerkin arguments and compactness method as in [27], together
with the Banach fixed point theorem, we will show the local existence of the problem
(1.1)-(1.4). The purpose of this paper is to generalize the existence and uniform decay
theorems of local solutions due to the constant-exponents. In other words we prove
the existence and uniform decay rate of local solutions to weakly damped degener-
ate wave equations of Kirchhoff type (1.1)-(1.4) with nonlinear damping and source
terms. This paper consists of 3 sections in addition to the introduction. In Section
2, we recall the definitions of the variable-exponent Lebesgue spaces Lp(.)(Ω), the
Sobolev spaces W 1,p(.)(Ω), and some of their properties. In Section 3, we state, with
the proof, existence and uniqueness result of weak solution for (1.1)-(1.4) by employ-
ing Faedo–Galerkin’s together with the Banach fixed point theorem and compactness
methods. In Section 4, the statement and the proof of our global existence and a
stability theorem for certain solutions with positive initial energy. To the best of our
knowledge, this problem has not been studied previously. In addition, our method of
determining these results, because the presence of the exponents m (.) and p (.), is
somewhat different.

2. Preliminaries. Function spaces

In this section, we list and recall some well-known results and facts from the
theory of the Sobolev spaces with variable exponent. (On the basic properties of the
spaces W 1,p(x)(Ω) and Lp(x)(Γ) we refer to [10, 11, 15, 17, 23]).

Throughout the rest of the paper we assume that Ω is a bounded domain of Rn,
n ≥ 1 with smooth boundary Γ and assume that p(.) is a measurable function on Ω
such that:

1 < p− ≤ p (x) ≤ p+ <∞, (2.1)

where

p+ = ess sup
x∈Ω

p (x) , p− = ess inf
x∈Ω

p (x) .
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We also assume that p satisfies the following Zhikov–Fan uniform local continuity
condition:

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0. (2.2)

Given a function p : Ω→ [p−, p+] ⊂ (1,∞) , p± = const, we define the set

Lp(.)(Ω) =

{
v : Ω→ R : v measurable functions on Ω,

%p(.), Ω (v) =
∫

Ω
|v (x)|p(x)

dx <∞.

}
The variable-exponent space Lp(.)(Ω) equipped with the Luxemburg norm

‖u‖p(.),Ω = ‖u‖p(.) = inf

{
λ > 0,

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

}
,

becomes a Banach space.
In general, variable-exponent Lebesgue spaces are similar to classical Lebesgue

spaces in many aspects, see the first discussed the Lp(x) spaces and W k,p(x) spaces by
Kovàcik and Rákosnik in [23].

Let us list some properties of the spaces Lp(.)(Ω) which will be used in the study
of the problem (1.1)-(1.4).

• If p(x) is measurable and 1 < p− ≤ p(x) ≤ p+ < ∞ in Ω, then Lp(.)(Ω) is a
reflexive and separable Banach space and C∞0 (Ω) is dense in Lp(.)(Ω).

• If condition (2.2) is fulfilled, and Ω has a finite measure and p, q are variable
exponents so that p(x) ≤ q(x) almost everywhere in Ω, the inclusion Lq(.)(Ω) ⊂
Lp(.)(Ω) is continuous and

∀v ∈ Lq(.)(Ω) ‖u‖p(.) ≤ C ‖u‖q(.) ; C = C
(
|Ω| , p±

)
(2.3)

• The variable Sobolev space W 1,p(.) (Ω) is defined as the closure of C∞0 (Ω) with
respect to the norm

‖u‖
W

1,p(.)
0 (Ω)

= ‖u‖p(.),Ω + ‖∇u‖p(.),Ω .

It is known that for the elements of W
1,p(.)
0 (Ω) the Poincar´e inequality holds,

‖u‖p(.),Ω ≤ C (n,Ω) ‖∇u‖p(.),Ω , (2.4)

and an equivalent norm of W
1,p(.)
0 (Ω) can be defined by

‖u‖
W

1,p(.)
0 (Ω)

= ‖∇u‖p(.),Ω .

According to (2.2) W
1,p(.)
0 (Ω) ⊂ W 1,p−

0 (Ω). If p− > 2n
n+2 , then the embedding

W 1,p−

0 (Ω) ⊂ L2(Ω) is compact.

• It is known that C∞0 (Ω) is dense in W
1,p(.)
0 (Ω) according to (2.2) if p(x) ∈

Clog(Ω), that is, the variable exponent p(x) is continuous in Ω with the logarith-
mic module of continuity.

• It follows directly from the definition of the norm that

min
(
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

)
≤ %p(.) (u) ≤ max

(
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

)
. (2.5)
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• The following generalized Hölder inequality∫
Ω

|u (x) v (x)|dx ≤
(

1

p−
+

1

(p−)
′

)
‖u‖p(x) ‖v‖p′(x) ≤ 2 ‖u‖p(x) ‖v‖p′(x)

holds, for all u ∈ Lp(.)(Ω), v ∈ Lp′(.)(Ω) with p (x) ∈ (1,∞) , p′ (x) = p(x)
p(x)−1 .

• If p : Ω → [p−, p+] ⊂ [1,+∞) is a measurable function and p∗ > ess sup
{x∈Ω}

p (x)

with p∗ ≤ 2n
n−2 , then the embedding H1

0 (Ω) = W 1,2
0 (Ω) ↪→ Lp(.)(Ω) is continuous

and compact.

Lemma 2.1. ([10]) Let Ω be a bounded domain of Rn, p(.) and m (.) satisfies (1.5) and
(2.2), then

B0 ‖∇u‖m(.) ≥ ‖u‖p(.) for all u ∈W 1,m(.)
0 (Ω). (2.6)

where the optimal constant of Sobolev embedding B0 is depends on p± and |Ω|.

Lemma 2.2 (Poincaré’s Inequality). ([10]) Let Ω be a bounded domain of Rn and p(.)
satisfies (2.2), then

D0 ‖∇u‖p(.) ≥ ‖u‖p(.) for all u ∈W 1,p(.)
0 (Ω). (2.7)

where the optimal constant of Sobolev embedding D0 is depends on p± and |Ω|.

Proposition 2.3. (See [16, 14, 15, 12, 13]) Let Ω be a bounded domain in Rn, p ∈
C0,1

(
Ω
)
, 1 < p− ≤ p (x) ≤ p+ < n. Then For any q ∈ C(Γ) with 1 ≤ q(x) ≤

(n−1)p(x)
n−p(x) , there is a continuous trace W 1,p(x)(Ω) → Lq(x)(Γ), when 1 ≤ q(x) <<

(n−1)p(x)
n−p(x) , the trace is compact, in particulary the continuous trace W 1,p(x)(Ω) →
Lp(x)(Γ) is compact.

There are many proprieties of the theory of Lebesgue and Sobolev spaces with
variable exponent, see the detailed exposition given in the monograph [4, Ch.1.].

Lemma 2.4 (Modified Gronwall inequality). Let φ and h be nonnegative functions on
[0,+∞) satisfying

0 ≤ φ ≤ K +

∫ t

0

h (s)φ (s)
r+1

ds,

with K > 0 and r > 0. Then

φ (t) ≤
(
K−r − r

∫ t

0

h (s) ds

)−1
r

.

as long as the right-hand side exists.
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2.1. Mathematical hypotheses

We begin this section by introducing some hypotheses and our main result.
Throughout this paper, we use standard functional spaces and denote that ‖.‖p(.) ,
‖.‖p(.),Γ1

are Lp(.)(Ω) norm and Lp(.)(Γ1) norm, respectively, such that:

‖u‖p(.),Γ1
=

∫
Γ1

|u (η)|p(η)
dη =

∫
Γ1

|u (x)|p(x)
dΓ;

‖.‖q,Γ1
=

∫
Γ1

|u (x)|q dΓ.

Also, we define (u, v) =
∫

Ω
u (x) v (x) dx and (u, v)Γ1

=
∫

Γ1
u (x) v (x) dΓ.

The inner products and norms in L2(Ω) and H1
0 (Ω) are represented by (., .), ‖.‖

respectively and they are given by:

(u, v) =

∫
Ω

u (x) v (x) dx and ‖u‖2L2(Ω) = |u|2 =

∫
Ω

u2dx;

‖u‖2H1
0 (Ω) = ‖u‖2 = |∇u|2 =

∫
Ω

|∇u|2 dx.

Next, we state the assumptions for problem (1.1)-(1.4).

(H1) Hypotheses on M . Let M ∈ C ([0,+∞) ,R+) be a nonnegative locally Lips-
chitz function and for positive constant m > 0, we have

M (s) ≥ m3 > 0, s ≥ 0 (2.8)

(H2) Hypotheses on g. g : [0,∞)→ (0,∞) is a bounded C1 function satisfying

g (0) > 0, m3 −
∫ ∞

0

g (s) ds = l > 0, (2.9)

and there exists a non-increasing positive differentiable function ζ such that

g′ (t) ≤ −ζ (t) g (t) for all t ≥ 0. (2.10)

(H3) Hypotheses on h. h : R→ R is a Lipschitz non-decreasing function with

h(s)s ≥ 0 for all s ∈ R (2.11)

(H4) Hypotheses on p(.), k(.). Let m(.) and p(.) are given measurable functions on
Ω satisfying the following conditions,

1 < p− ≤ p (x) ≤ p+ ≤ n
n−2 , n > 2 and 1 ≤ p− ≤ p+ <∞ if n = 2,

1 < k− ≤ k (x) ≤ k+ < n−1
n−2 , n > 2 and 1 ≤ k− ≤ k+ <∞ if n = 2

(2.12)

According to (2.12), we have

‖u‖p++1 ≤ B |∇u| ∀u ∈ H
1
Γ0 (Ω) . (2.13)

where

H1
Γ0

(Ω) =
{
u ∈ H1 (Ω) : u |Γ0

= 0
}

endow with the Hilbert structure induced by H1 (Ω), is a Hilbert space and

B > 0 be the optimal constant of Sobolev embedding H1
Γ0

(Ω) ↪→ Lp
++1(Ω)

which satisfies the inequality (2.13) and we use the trace-Sobolev imbedding:
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H1
Γ0

(Ω) ↪→ Lk
++1(Γ1), 1 < k+ < n−1

n−2 . In this case, the imbedding constant is
denoted by B∗, i.e.,

‖u‖k++1,Γ1
≤ B∗ |∇u| ∀u ∈ H1

Γ0
(Ω) . (2.14)

(H5) Assumptions on u0, u1. Assume that (u0, u1) ∈ H1
Γ0

(Ω) ∩H2 (Ω) ×H1
Γ0

(Ω)
satisfying the compatibility conditions

M
(
|∇u0|2

) ∂u0

∂ν
+ h (u1) = |u0|k(.)−1

u0 on Γ1. (2.15)

3. Main result

This section first presents the local existence and uniqueness of the solution for
problem (1.1)-(1.4) with a degenerated second order equation on Γ1. Our method of
proof by perturbing the boundary equation is based on the combination of the Faedo-
Galerkin approximation and the compactness method together with the Banach fixed
point theorem with the ones from [36].

3.1. Existence of local solutions

In this section, under the assumptions (H1)-(H5), we prove the existence of the
local solution to the wave equation of Kirchhoff type (1.1)-(1.4) for any initial value
(u0, u1) ∈ H1

Γ0
(Ω)∩H2 (Ω)×H1

Γ0
(Ω). First we need the local existence and uniqueness

of the solution to the following wave equation:

∂2u

∂t2
−M

(
|∇ϕ (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in Ω× (0,+∞) ,

u = 0 on Γ0 × (0,+∞) ,

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+ h (ut) = |u|k(x)−1

u on Γ1 × (0,+∞) ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (P4)

where ϕ : [0, T ] → H1
Γ0

(Ω) is a continuous function. So we first prove the existence
and uniqueness of the local solution to (P4). Let (wj) , j = 1, 2, ..., be a completely
orthonormal system in L2(Ω) having the following properties:
∗ ∀j;wj ∈ H1

Γ0
(Ω);

∗ The family {w1, w2, ..., wm} is linearly independent;
∗ Vm the space generated by {w1, w2, ..., wm} , ∪

m
Vm is dense in H1

Γ0
(Ω)∩H2 (Ω). We

construct approximate solutions, for each η ∈ (0, 1), uηm (m = 1, 2, 3, ...) in Vm in the
form:

uηm(t) =

m∑
i=1

Kjm(t)wi, m = 1, 2, ..., (3.1)
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where Kjm(t) are determined by the following ordinary differential perturbed equa-
tion:

(uηmtt (t), wj) +M
(
|∇ϕ (t)|2

)
(∇uηm,∇wj)−

(∫ t

0

g (t− s)∇uηm (s) ds,∇wj
)

+ (h (uηmt ) , wj)Γ1
+ η (uηmt (t), wj)Γ1

=
(
|uηm (t)|k(x)−1

uηm (t) , wj

)
Γ1

+
(
|uηm (t)|p(x)−1

uηm (t) , wj

)
, j = 1, 2, ...,

and will be completed by the following initial conditions uηm(0), uηmt (0) which satis-
fies:

uηm(0) = uηm0 =
m∑
i=1

αimwi −→ u0(x) when m −→∞ in H1
Γ0

(Ω) ∩H2 (Ω) ,

uηmt (0) = uηm1 =
m∑
i=1

βimwi −→ u1(x) when m −→∞ in H1
Γ0

(Ω) .

(3.2)
Then it holds that for any given v ∈ Span {w1, w2, ..., wm} ,

(uηmtt (t), v) +M
(
|∇ϕ (t)|2

)
(∇uηm,∇v)−

(∫ t

0

g (t− s)∇uηm (s) ds,∇v
)

+ (h (uηmt ) , v)Γ1
+ η (uηmt (t), v)Γ1

=
(
|uηm (t)|k(x)−1

uηm (t) , v
)

Γ1

+
(
|uηm (t)|p(x)−1

uηm (t) , v
)

. (3.3)

By virtue of the theory of ordinary differential equations, system (3.1), (3.2) and (3.3)
has a unique local solution which is extended to a maximal intervals [0, tm[ .

A solution u to the problem (1.1)-(1.4) on some interval [0, tm[ will be obtain as
the limit of uηm as m → ∞ and η → 0. Then, this solution can be extended to the
whole interval [0, T ], for all T > 0, as a consequence of the a priori estimates that shall
be proven in the next step. In this paper, ε, C (ε) , Cε, C, C (m3) , c, c∗ or c∗ denote
a various positive constant which changes from line to line and are independent of
natural number n and depends only (possibly) on the initial value.

Let us first recall a useful identity for the memory term who play an important
role in the sequel. By denoting

(g � ∇ (u)) (t) =

∫ t

0

g (t− s)
∫

Ω

|∇u (s)−∇u (t)|2 dxds,

it is easy, by differentiating the term (β � ∇ (u)) (t) with respect to t, to show that∫
Ω

∫ t

0

g (t− s)∇u (s)∇ut (t) dxds

= −1

2

d

dt

{
(g � ∇u) (t)− |∇(u (t))|2

∫ t

0

g (s) ds

}
(3.4)

+
1

2
(g′ � ∇u) (t)− 1

2
g (t) |∇u (t)|2 .

We prove by the Galerkin method the following lemma on the existence and unique-
ness of local solution to (P4) in time.
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Lemma 3.1. Let M(r) be a nonnegative locally Lipschitz function. Let

(u0, u1) ∈ H1
Γ0

(Ω) ∩H2 (Ω)×H1
Γ0

(Ω) .

Assume that the differentiable function ϕ(t) satisfies

ϕ(0) = u0, ϕ
′(0) = u1.

Assume that the following condition is satisfied

1 < k+ <
n− 1

n− 2
and 1 < p+ ≤ n

n− 2
if n ≥ 3,

1 ≤ k− ≤ k+ <∞ and 1 ≤ p− ≤ p+ <∞ if n = 2.

Then there exists a time T0 = T0(u0, u1,m1,m2,m3) > 0 such that if there exist
m1,m2,m3 > 0 and T > 0 satisfying

|∇ϕ (t)| ≤ m1, |∇ϕ′ (t)| ≤ m2, M
(
|∇ϕ (t)|2

)
≥ m3 > 0

for all t ∈ [0, T ], then there exists a unique local weak solution in time u(t) to (P4)
with the initial value (u0, u1) on [0, T0], where T0 ≤ T satisfying:

u (t) ∈ C([0, T0] : H1
Γ0

(Ω))),

ut (t) ∈ C([0, T0] : L2 (Ω)) ∩ C([0, T ] : H1
Γ0

(Ω)),

utt (t) ∈ C([0, T0] : L2 (Ω)).

Proof. The first estimate (Estimates on uηmt ):

By taking v = uηmt (t) in (3.3), we have that

(uηmtt (t), uηmt ) +M
(
|∇ϕ (t)|2

)
(∇uηm,∇uηmt )−

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmt
)

+η ||uηmt (t)||22,Γ1
+ (h (uηmt ) , uηmt )Γ1

=
(
|uηm (t)|k(x)−1

uηm (t) , uηmt

)
Γ1

+
(
|uηm (t)|p(x)−1

uηm (t) , uηmt

)
.

Since it holds that∫ t

0

M
(
|∇ϕ (t)|2

)
(∇uηm,∇uηmt ) ds =

1

2

∫ t

0

M
(
|∇ϕ (s)|2

) d

dt
|∇uηm (s)|2 ds

≥
[

1

2
M
(
|∇ϕ (s)|2

)
|∇uηm|2

]t
0

− 1

2

∫ t

0

[
d+

ds
M
(
|∇ϕ (s)|2

)]
|∇uηm|2 ds,

d+

ds
M
(
|∇ϕ (s)|2

)
≤ 2

(
d+

dr
M (r)

)
|∇ϕ (s)| |∇ϕ′ (s)| ≤ 2Lm1m2, s ∈ [0, T1] .
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where L = L(m1) is a local Lipschitz constant for M(r), we have for t ∈ (0, tm)

1

2
|uηmt |

2
+

1

2

(
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇uηm|2 + (g � ∇uηm) (t)

−1

2

∫ t

0

(g′ � ∇uηm) (s) ds+ η

∫ t

0

||uηmt (s)||22,Γ1
ds (3.5)

+
1

2

∫ t

0

g (s) |∇uηm|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds

≤ Lm1m2

∫ t

0

|∇uηm|2 ds+
1

2
M
(
|∇ϕ (0)|2

)
|∇u0|2 +

1

2
|u1|2

=

∫ t

0

(
|uηm (s)|k(x)−1

uηm (s) , uηmt

)
Γ1

ds

+

∫ t

0

(
|uηm (s)|p(x)−1

uηm (s) , uηmt

)
ds.

Young’s inequality gives

∣∣∣∣∫
Ω

|uηm (t)|p(x)−1
uηm (t)uηmt (t)dx

∣∣∣∣ ≤ ∫
Ω

|uηm (t)|p(x)−1 |uηm (t)| |uηmt (t)|dx (3.6)

≤ |uηm (t)|p(x)−1 |uηm (t)| |uηmt (t)|

≤ 1

2
Cε max

(∫
Ω

|uηm (t)|2p
+

dx,

∫
Ω

|uηm (t)|2p
−

dx

)
+

1

2
ε

∫
Ω

|uηmt (t)|2 dx

≤ 1

2
Cε

(
|∇uηm|2p

+

+ |∇uηm|2p
−)

+
1

2
ε |uηmt (t)|2

Also

∣∣∣∣∫
Γ1

|uηm (t)|k(x)−1
uηm (t)uηmt (t)dΓ

∣∣∣∣
≤ 1

2
Cε max

(
‖uηm‖2k

+

2k+,Γ1
, ‖uηm‖2k

−

2k−,Γ1

)
+

1

2
ε

∫
Γ1

|uηmt (t)|2 dΓ (3.7)

1

2
Cε

(
|∇uηm|2k

+

+ |∇uηm|2k
−)

+
1

2
ε ||uηmt (t)||22,Γ1

,

consequently, taking (2.8) and (2.9) into account

(
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
≥ m3 −

∞∫
0

g (s) ds = l > 0
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Combining above results, and observing that g > 0 and g′ ≤ 0, we deduce

1

2
|uηmt |

2
+

1

2
l |∇uηm|2 + (g � ∇uηm)− 1

2

∫ t

0

(g′ � ∇uηm) (s) ds

+η

∫ t

0

||uηmt (s)||22,Γ1
ds+

1

2

∫ t

0

g (s) |∇uηm|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds

≤ Lm1m2

∫ t

0

|∇uηm|2 ds+
1

2
M
(
|∇ϕ (0)|2

)
|∇u0|2 +

1

2
|u1|2

+Cε

∫ t

0

(
|∇uηm|2k

+

+ |∇uηm|2k
−

+ |∇uηm|2p
+

+ |∇uηm|2p
−)

ds

+
1

2
ε

∫ t

0

|uηmt (s)|2 ds+ ε

∫ t

0

||uηmt (s)||22,Γ1
ds,

Choosing ε = η
2 , we arrive at

1

2
|uηmt |

2
+

1

2
l |∇uηm|2 + (g � ∇uηm) (t)− 1

2

∫ t

0

(g′ � ∇uηm) (s) ds

+
η

2

∫ t

0

||uηmt (s)||22,Γ1
ds+

1

2

∫ t

0

g (s) |∇uηm (s)|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds

≤ η

2

∫ t

0

|uηmt (s)|2 ds+ Lm1m2

∫ t

0

|∇uηm|2 ds

+Cε

∫ t

0

(
|∇uηm|2k

+

+ |∇uηm|2k
−

+ |∇uηm|2p
+

+ |∇uηm|2p
−)

ds

+
1

2
Lm1 |∇u0|2 +

1

2
|u1|2 + Cε. (3.8)

Thus, there exist B > 0, β > 0 and r > 0 such that

|∇uηm|2 + |uηmt |
2 ≤ B + β

∫ t

0

[
1 +

(
|∇uηm (s)|2 + |uηmt (s)|2

)r+1
]

ds

where we note that B and β are independent of m and r. Since r > 0, there exists an
enough small time T0 := T0(u0, u1,m3) ∈ (0, T1) satisfying

(B + βT0)
−r − rβT0 > 0

Thus, we have by the modified Gronwall lemma 2.4

|∇uηm|2 + |uηmt |
2 ≤

(
(B + βT0)

−r − rβT0

)−1
r

Therefore, there exist constants ci = ci(u0, u1,m3) > 0 (i = 1, 2, 3) such that for any
t ∈ [0, T0]

|∇uηm|2 ≤ C1 and |uηmt |
2 ≤ C2. (3.9)
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Furthermore, by (3.8) it follows that

(g � ∇uηm) (t)− 1

2

∫ t

0

(g′ � ∇uηm) (s) ds+

∫ t

0

||uηmt (s)||22,Γ1
ds (3.10)

+

∫ t

0

g (s) |∇uηm (s)|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds ≤ C3

where Ci are a positive constants which are independent of m, η and t. Thus, the
solution can be extended to [0, T ) and, in addition, we have

(uηm) is bounded sequence in L∞
(
0, T ;H1

Γ0
(Ω)
)
,

(uηmt ) is bounded sequence in L∞
(
0, T ;L2(Ω)

)
,

(h (uηmt ) .uηmt ) is bounded sequence in L1
(
0, T ;L1(Γ1)

)
.

The second estimate (Estimates on uηmtt ):

First of all, we are going to estimate uηmtt (0). By taking t = 0 in (3.3), taking
(2.15) into account, we get

|uηmtt (0)|2 ≤ c
∣∣∣M (

|∇u0|2
)∣∣∣2 |∆u0|2 + c

∫
Ω

|u0|2p(x)
dx (3.11)

≤ cL |∇u0|4 |∆u0|2 + cmax
(
|∇u0|2p

+

, |∇u0|2p
−)
≤ c∗

Now, by differentiating (3.3) with respect to t and substituting wj = uηmtt (t), we have

1

2

d

dt
|uηmtt |

2
+ 2M ′

(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′) (∇uηm,∇uηmtt )

+M
(
|∇ϕ (t)|2

)
(∇uηmt ,∇uηmtt )

+ (h′ (uηmt )uηmtt , u
ηm
tt )Γ1

+ η ||uηmtt (s)||22,Γ1
=
(
k (x) |uηm (t)|k(x)−1

uηmt (t) , uηmtt

)
Γ1

+
(
p (x) |uηm (t)|p(x)−1

uηmt (t) , uηmtt

)
+ g (0)

d

dt
(∇uηm (t) ,∇uηmt )− g (0) |∇uηmt |

2

+
d

dt

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)
− g′ (0) (∇uηm,∇uηmt (t))

−
(∫ t

0

g′′ (t− s)∇uηm (s) ds,∇uηmt
)
. (3.12)

To analyze the term 2M ′
(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′) (∇uηm,∇uηmtt (t)), we multiplying

both sides of (3.3) by

f (t) =
2M ′

(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′)

M
(
|∇ϕ (t)|2

) (
≤ 2Lm1m2

m3

)
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and replacing v = uηmtt (t), we have

2M ′
(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′) (∇uηm,∇uηmtt ) = −f (t) |uηmtt |

2

+f (t)

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmtt
)

−f (t) (h (uηmt ) , uηmtt )Γ1
− ηf (t) (uηmt (t), uηmtt )Γ1

+f (t)
(
|uηm (t)|k(x)−1

uηm (t) , uηmtt

)
Γ1

+f (t)
(
|uηm (t)|p(x)−1

uηm (t) , uηmtt

)
By replacing above equality in (3.12), we have

1

2

d

dt
|uηmtt |

2
+ f (t)

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmtt
)

+f (t)
(
|uηm (t)|k(x)−1

uηm (t) , uηmtt

)
Γ1

+f (t)
(
|uηm (t)|p(x)−1

uηm (t) , uηmtt

)
+η ||uηmtt (s)||22,Γ1

+M
(
|∇ϕ (t)|2

)
(∇uηmt ,∇uηmtt ) + (h′ (uηmt )uηmtt , u

ηm
tt )Γ1

= f (t) |uηmtt |
2

+
(
k (x) |uηm (t)|k(x)−1

uηmt (t) , uηmtt

)
Γ1

(3.13)

+
(
p (x) |uηm (t)|p(x)−1

uηmt (t) , uηmtt

)
+ηf (t) (uηmt (t), uηmtt )Γ1

+ g (0)
d

dt
(∇uηm (t) ,∇uηmt )

−g (0) |∇uηmt |
2

+ f (t) (h (uηmt ) , uηmtt )Γ1

−
(∫ t

0

g′′ (t− s)∇uηm (s) ds,∇uηmt
)

+
d

dt

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)
− g′ (0) (∇uηm,∇uηmt (t)).

Next, we are going to analyze the term on the right-hand side of (3.13), taking in
mind the estimates (3.9) and (3.10).

Estimate for I1 :

|I1| =
∣∣f (t) (h (uηmt ) , uηmtt )Γ1

∣∣ ≤ η

8
||uηmtt (s)||22,Γ1

+
4Lm1m2

ηm3
Ch ||uηmt ||

2
2,Γ1

(3.14)

Estimate for I2 :

|I2| =
∣∣∣∣− ∫

Ω

h′ (uηmt )uηmt (t)uηmtt (t)dx

∣∣∣∣ ≤ ChC1

2
+
Ch
2
|uηmtt (t)|2 (3.15)
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Estimate for I3 : From the generalized Hölder’s inequality, Young’s inequality and the
conditions (2.14), we have

|I3| =
∣∣∣∣f (t)

(
|uηm (t)|k(x)−1

uηm (t) , uηmtt

)
Γ1

∣∣∣∣ (3.16)

≤
(

2Lm1m2

m3

)2

C (ε) max

(∫
Γ1

|uηm|2k
+

dΓ,

∫
Γ1

|uηm|2k
−

dΓ

)
+ ε ||uηmtt ||

2
2,Γ1

≤
(

2Lm1m2

m3

)2

C (ε) max
(
|∇uηm|2k

+

, |∇uηm|2k
−)

+ ε ||uηmtt (t)||22,Γ1

≤ Cε + ε ||uηmtt (t)||22,Γ1
.

Estimate for I4 : From the generalized Hölder’s inequality, it hold that

|I4| =
∣∣∣∣(k (x) |uηm (t)|k(x)−1

uηmt (t) , uηmtt

)
Γ1

∣∣∣∣ (3.17)

≤ k+ max

(∫
Γ1

|uηm|k
+−1 |uηmt | |u

ηm
tt (t)|dΓ,

∫
Γ1

|uηm|k
−−1 |uηmt | |u

ηm
tt (t)|dΓ

)
≤ k+ max

(
||uηm (t)||k

+−1
2k+,Γ1

||uηmt (t)||2k+,Γ1
||uηmtt (t)||2,Γ1

,

||uηm (t)||k
−−1

2k−,Γ1
||uηmt (t)||2k−,Γ1

||uηmtt (t)||2,Γ1

)
≤ k+ max

(
|∇uηm|k

+−1
, |∇uηm|k

−−1
)
|∇uηmt | ||u

ηm
tt (t)||2,Γ1

≤ C (ε) |∇uηmt |
2

+ ε ||uηmtt (t)||22,Γ1

Estimate for I5 :

|I5| =
∣∣∣(p (x) |uηm (t)|p(x)−1

uηmt (t) , uηmtt

)∣∣∣
≤ p+ max

(∫
Ω

|uηm|p
+−1 |uηmt | |u

ηm
tt (t)|dx,

∫
Ω

|uηm|p
−−1 |uηmt | |u

ηm
tt (t)|dx

)
≤ p+ max

(
||uηm (t)||p

+−1
2p+ ||uηmt (t)||2p+ |uηmtt (t)| ,

||uηm (t)||p
−−1

2p− ||uηmt (t)||2p− |u
ηm
tt (t)|

)
(3.18)

≤ p+ max
(
|∇uηm|p

+−1
, |∇uηm|p

−−1
)
|∇uηmt | |u

ηm
tt (t)|

≤ C (ε) |∇uηmt |
2

+ ε |uηmtt (t)|2 .

Estimate for I6 :

|I6| =
∣∣∣f (t)

(
|uηm (t)|p(x)−1

uηm (t) , uηmtt

)∣∣∣
≤ 2Lm1m2

m3
max

(∫
Ω

|uηm|p
+

|uηmtt (t)|dx,
∫

Ω

|uηm|p
−
|uηmtt (t)|dx

)
≤ max

(
|∇uηm|p

+

, |∇uηm|p
−)
|uηmtt (t)| ≤ Cε + ε |uηmtt (t)|2
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Estimate for I7 :

I7 =
∣∣ηf (t) (uηmt (t), uηmtt )Γ1

∣∣ ≤ η

8
||uηmtt (t)||22,Γ1

+ 2η

(
2Lm1m2

m3

)2

||uηmt (t)||22,Γ1

Estimate for I8 :

I8 = |−g′ (0) (∇uηm,∇uηmt (t))| ≤ Cε + C (ε) |∇uηmt |
2

Estimate for I9 :

I9 =

∣∣∣∣−(∫ t

0

g′′ (t− s)∇uηm (s) ds,∇uηmt
)∣∣∣∣ ≤ |∇uηmt |∫ t

0

g′′ (t− s) |∇uηm|ds

≤ C (ε) |∇umt |
2

+ ε ‖g′′‖L1

∫ t

0

|g′′ (t− s)| |∇uηm|2 ds

≤ C (ε) |∇uηmt |
2

+
(
ε ‖g′′‖2L1 + ε

)∫ t

0

|∇uηm|2 ds

≤ C (ε) |∇uηmt |
2

+ Cε sup
(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω)) .

Estimate for I10 :

I10 =

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)

≤ m3

8
|∇uηm|2 +

2ξ (0) ‖g‖L1 ‖g‖L∞
m3

|∇uηmt |
2

≤ m3

8
|∇uηmt |

2
+ C (m3) sup

(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω)) .

By replacing (3.14)-(3.17) in (3.13) and choosing ε = η
4 , we obtain

1

2

d

dt
|uηmtt |

2
+

1

2
M
(
|∇ϕ (t)|2

) d

dt
|∇uηmt (t)|2

+g (0) |∇uηmt |
2

+
η

2
||uηmtt (t)||22,Γ1

(3.19)

≤ −f (t)

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmtt
)

+ g (0)
d

dt
(∇uηm (t) ,∇uηmt )

+3Cε + f (t) |uηmtt |
2

+ 3C (ε) |∇uηmt |
2

+ 2ε |uηmtt (t)|2

+2η

(
2Lm1m2

m3

)2

||uηmt (t)||22,Γ1

+
2Lm1m2

m3
|uηmtt (t)|2 +

4Lm1m2

ηm3
Ch ||uηmt ||

2
2,Γ1

+
ChC1

2
+
Ch
2
|uηmtt (t)|2 +

d

dt

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)
.

Employing Hölder’s inequality, Young’s inequality, integrating by parts on (0, t), the
first and second terms on the right-hand side and the first term on the left-hand side
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of (3.19) can be estimated as follows, for∣∣∣∣∣
∫ t

0

−f (ζ)

(∫ ζ

0

g (ζ − s)∇uηm (s) ds,∇uηmtt

)
dζ

∣∣∣∣∣
≤ 2Lm1m2

m3

∣∣∣∣∣
∫ t

0

(∫ ζ

0

g (ζ − s)∇uηm (s) ds,∇uηmtt (ζ)

)
dζ

∣∣∣∣∣
≤ 2Lm1m2

m3

∣∣∣∣(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmt (t)

)∣∣∣∣
+

2Lm1m2

m3
g (0)

∣∣∣∣∫ t

0

(∇uηm (s) ,∇uηmt (s)) ds

∣∣∣∣
≤ C +

m3

8
|∇uηmt |

2
+
Lm1m2

m3
g (0)

(∫ t

0

|∇uηmt |
2

ds+

∫ t

0

|∇uηm|2 ds

)
≤ C +

m3

8
|∇uηmt |

2
+
Lm1m2

m3
g (0)

∫ t

0

|∇uηmt |
2

ds

+
Lm1m2

m3
g (0) sup

(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω))

because, from estimate (3.9) we have

2Lm1m2

m3

∫
Ω

∇uηmt (t)

∫ t

0

g (t− s)∇uηm (s) dsdx ≤ C |∇uηmt | ‖g‖L1(R+)

≤ C +
m3

8
|∇uηmt |

2
,

and

g (0)

∫ t

0

d

dt
(∇uηm (t) ,∇uηmt ) ds

≤ m3

8
|∇uηmt |

2
+

2

m3
g (0)

2 |∇uηm|2+g (0) |∇u0| |∇u1|

≤ m3

8
|∇uηmt |

2
+

2

m3
g (0)

2
sup
(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω)) + g (0) |∇u0| |∇u1|

and

1

2

∫ t

0

M
(
|∇ϕ (s)|2

) d

dt
|∇uηmt (s)|2 ds

≥
[

1

2
M
(
|∇ϕ (s)|2

)
|∇uηmt |

2

]t
0

− 1

2

∫ t

0

[
d+

ds
M
(
|∇ϕ (s)|2

)]
|∇uηmt |

2
ds

≥
[

1

2
M
(
|∇ϕ (s)|2

)
|∇uηmt |

2

]t
0

− Lm1m2

∫ t

0

|∇uηmt |
2

ds, s ∈ [0, T1] .
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Combining, we get

1

2
|uηmtt |

2
+
m3

8
|∇uηmt |

2
+ g (0)

∫ t

0

|∇uηmt |
2

ds+ η

∫ t

0

||uηmtt (s)||22,Γ1

≤
(

2Lm1m2

m3
+ 2ε+

Ch
2

)∫ t

0

|uηmtt (s)|2 ds

+

(
Lm1m2

m3
g (0) + Lm1m2 + 2C (ε)

)∫ t

0

|∇uηmt |
2

ds

+

(
2

m3
g (0)

2
+ C (m3) +

Lm1m2

m3
g (0) + Cε

)
sup
(0,T )

||uηm (t)||2
L∞

(
0,T ;H1

Γ0
(Ω)

)

+

(
4Lm1m2

ηm3
Ch + 2η

(
2Lm1m2

m3

)2
)∫ t

0

||uηmt (t)||22,Γ1
ds+ C5

where

C5 =

(
C,Ch, C1, u1, u0, Cε, T, g (0) ,

Lm1m2

m3

)
.

Choosing ε = η
4 , therefore, by using estimates (3.10), (3.5) and Gronwall’s lemma, we

arrive at

|uηmtt |
2

+ |∇uηmt |
2

+

∫ t

0

|∇uηmt |
2

ds+

∫ t

0

||uηmtt (s)||22,Γ1
ds ≤ C6 (3.20)

where C6 is a positive constant which is independent of m, η and t.
Thanks to (3.10) and (3.20), we obtain

(uηm) is a bounded sequence in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.21)

(uηmt ) is a bounded sequence in L∞
(
0, T0;H1

Γ0
(Ω)
)
∩ L2

(
0, T0;L2(Ω)

)
, (3.22)

(uηmtt ) is bounded in L∞
(
0, T0;L2(Ω

)
, (3.23)

(uηmt ) is a bounded sequence in L2
(
0, T0;L2(Γ1)

)
, (3.24)

(uηmtt ) is bounded in L2
(
0, T0;L2(Γ1)

)
,

By (2.11), (3.22) and (3.24), we have

h (uηmt ) is bounded in L2
(
0, T0;L2(Γ1)

)
. (3.25)

From (3.21)-(3.24), there exists a subsequence of (uηm) , still denote by (uηm), such
that such that

uηm −→ uη weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.26)

uηmt −→ uηt weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.27)

uηmtt −→ uηtt weak star in L∞
(
0, T0;L2(Ω

)
, (3.28)

uηmt −→ uηt weakly in L2
(
0, T0;L2(Γ1)

)
, (3.29)

uηmtt −→ uηtt weakly in L2
(
0, T0;L2(Γ1)

)
, (3.30)

uηmt −→ uηt weak star in L∞
(

0, T0;H
1
2 (Γ1)

)
, (3.31)
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Since H
1
2 (Γ1) ↪→ L2(Γ1) and H1(Γ0) ↪→ L2(Ω) are compact and from Aubin–Lions

theorem, we deduce that

uηm −→ uη strongly in L2
(
0, T0;L2(Ω)

)
,

uηm −→ uη strongly in L2
(
0, T0;L2(Γ1)

)
,

uηmt −→ uηt strongly in L2
(
0, T0;L2(Ω)

)
uηmt −→ uηt strongly in L2

(
0, T0;L2(Γ1)

)
,

Consequently, by making use of Lions’ Lemma [27, Lemma 1.3.], we have

|uηm (t)|p(.)−1
uηm (t) → |uη (t)|p(.)−1

uη (t) weakly in L2
(
0, T0;L2(Ω)

)
|uηm (t)|k(.)−1

uηm (t) → |uη (t)|k(.)−1
uη (t) weakly in L2

(
0, T0;L2(Γ1)

)
.

From (3.28) and (3.29) and since the injection of H
1
2 (Γ1) in L2(Γ1) is compact, there

exists a subsequence of (uηm) , still denote by (uηm), such that

uηmt −→ uηt a.e. in Q0,

where Q0 = Γ1 × ]0, T0[. Then by (2.11), we have

h (uηmt )→ h (uηt ) a.e. in Q0, (3.32)

From (3.25) and (3.32) and by using Lions’ lemma, we conclude that

h (uηmt )→ h (uηt ) weakly in L2
(
0, T0;L2(Γ1)

)
(3.33)

The convergences (3.26), (3.28), (3.31), (4.16) and (3.33) permit us to pass to the
limit in the (3.3). Since (wj) is a basis of H1

Γ0
(Ω) ∩ H2 (Ω) and Vm is dense in

H1
Γ0

(Ω) ∩H2 (Ω), after passing to the limit, we obtain∫ T0

0

(uηtt(t), v) θ (t) dt+

∫ T0

0

M
(
|∇ϕ (t)|2

)
(∇uη,∇v) θ (t) dt

−
∫ T0

0

(∫ t

0

g (t− s)∇uη (s) ds,∇v
)
θ (t) dt+

∫ T0

0

(h (uηt ) , v)Γ1
θ (t) dt

+η

∫ T0

0

(uηt (t), v)Γ1
θ (t) dt =

∫ T0

0

(
|uη (t)|k(x)−1

uη (t) , v
)

Γ1

θ (t) dt (3.34)

+

∫ T0

0

(
|uη (t)|p(x)−1

uη (t) , v
)
θ (t) dt,

for all θ ∈ D (0, T ), and for all v ∈ H1
Γ0

(Ω) ∩H2 (Ω) .

We can see that the estimates (3.10) and (3.21) are also independent of η. Therefore,
by the same argument used to obtain uη from uηm, we can pass to the limit when
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η → 0 in uη, obtaining a function u such that

uη −→ u weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.35)

uηt −→ ut weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)
,

uηtt −→ utt weak star in L∞
(
0, T0;L2(Ω

)
, (3.36)

uηt −→ ut weak star in L∞
(

0, T0;H
1
2 (Γ1)

)
,

h (uηt )→ h (ut) weakly in L2
(
0, T0;L2(Γ1)

)
, (3.37)

|uη (t)|p(.)−1
uη (t)→ |u (t)|p(.)−1

u (t) weakly in L2
(
0, T0;L2(Ω)

)
,

|uη (t)|k(.)−1
uη (t)→ |u (t)|k(.)−1

u (t) weakly in L2
(
0, T0;L2(Γ1)

)
From the above convergence in (3.10) and by observing that Vm is dense in H1

Γ0
(Ω)∩

H2 (Ω), we have∫ T0

0

(utt(t), v) θ (t) dt+

∫ T0

0

M
(
|∇ϕ (t)|2

)
(∇u,∇v) θ (t) dt

−
∫ T0

0

(∫ t

0

g (t− s)∇u (s) ds,∇v
)
θ (t) dt+

∫ T0

0

(h (ut) , v)Γ1
θ (t) dt

=

∫ T0

0

(
|u (t)|k(x)−1

u (t) , v
)

Γ1

θ (t) dt+

∫ T0

0

(
|u (t)|p(x)−1

u (t) , v
)
θ (t) dt, (3.38)

for all v ∈ H1
Γ0

(Ω) and for all θ ∈ D (0, T0) .

By taking v ∈ D (Ω), we get that

∂2u

∂t2
−M

(
|∇ϕ (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in D′ (Ω) .

Therefore, by (3.36) and (3.37), we obtain

∂2u

∂t2
−M

(
|∇ϕ (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in L2

(
0, T0;L2(Ω)

)
.

(3.39)
From the hypotheses of M, g and (3.35), we conclude that

g (t− s)u, M
(
|∇ϕ (t)|2

)
u ∈ L∞

(
0, T0;H1

Γ0
(Ω)
)
,

and by (3.39),

−∆

(
M
(
|∇ϕ (t)|2

)
u−

∫ t

0

g (t− s)u (s) ds

)
∈ L2

(
0, T0;L2(Ω)

)
Then

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds ∈ L2

(
0, T0;H−

1
2 (Γ1)

)



618 Abita Rahmoune and Benyattou Benabderrahmane

according to Miranda [29] is established. By taking (3.39) into account and making
use of the generalized Green formula, we deduce

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+ h (ut) = |u|k(x)−1

u

in D′
(

0, T0;H−
1
2 (Γ1)

)
, and as h (ut) , |u|k(.)−1

u ∈ L2
(
0, T0;L2(Γ1)

)
, we infer

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+h (ut) = |u|k(x)−1

u in L2
(
0, T0;L2(Γ1)

)
.

(3.40)
Prove the uniqueness of the local solution. To this end let u(t) and v(t) be two local
solutions to (3.3) with the same initial value. Let w(t) = u(t)− v(t). Then w(0) = 0,
wt(0) = 0 for all t ∈ [0, T0] and

(w′′(t), ψ) +M
(
|∇ϕ (t)|2

)
(∇w,∇ψ)−

(∫ t

0

g (t− s)∇w (s) ds,∇ψ
)

(3.41)

+ (h (ut)− h (vt) , ψ)Γ1
=
(
|u (t)|k(x)−1

u (t)− |v (t)|k(x)−1
v (t) , ψ

)
Γ1

+
(
|u (t)|p(x)−1

u (t)− |v (t)|p(x)−1
v (t) , ψ

)
for all ψ ∈ H1

Γ0
(Ω) . By replacing ψ = wt (t) in (3.41) and observing that

(h (ut)− h (vt) , ψ)Γ1
≥ 0, it hold that

1

2

d

dt
|wt(t)|2 +

1

2

d+

dt

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇w (t)|2

)
(3.42)

+
1

2

d

dt
(g � ∇w) (t)− 1

2
(g′ � ∇w) (t) +

1

2
g (t) |∇w (t)|2

≤ 1

2

(
d+

dt
M
(
|∇ϕ (t)|2

))
|∇w|2 +

(
|u (t)|k(x)−1

u (t)− |v (t)|k(x)−1
v (t) , wt (t)

)
Γ1

+
(
|u (t)|p(x)−1

u (t)− |v (t)|p(x)−1
v (t) , wt (t)

)
From the generalized Hölder’s and Young’s inequalities and estimates (3.21)-(3.24),
it hold that ∣∣∣(|u (t)|k(x)−1

u (t)− |v (t)|k(x)−1
v (t) , wt

)∣∣∣
≤ cmax

 (
||u (t)||k

−−1
2k− + ||v (t)||k

−−1
2k−

)
||u (t)− v (t)||2k− ‖wt‖2 ,(

||u (t)||k
+−1

2k+ + ||v (t)||k
+−1

2k+

)
||u (t)− v (t)||2k+ ‖wt‖2


≤ cc∗max

 (
|∇u (t)|k

−−1
+ |∇v (t)|k

−−1
)
,(

|∇u (t)|k
+−1

+ |∇v (t)|k
+−1

)  |∇w| |wt|
≤ c |∇w|2 + c |wt|2 .
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By the same manner∣∣∣(|u (t)|p(x)−1
u (t)− |v (t)|p(x)−1

v (t) , wt

)∣∣∣
≤ cmax

 (
||u (t)||p

−−1
2p− + ||v (t)||p

−−1
2p−

)
||u (t)− v (t)||2p− ‖wt‖2 ,(

||u (t)||p
+−1

2p+ + ||v (t)||p
+−1

2p+

)
||u (t)− v (t)||2p+ ‖wt‖2


≤ cc∗max

 (
|∇u (t)|p

−−1
+ |∇v (t)|p

−−1
)
,(

|∇u (t)|p
+−1

+ |∇v (t)|p
+−1

)  |∇w| |wt|
≤ c |∇w|2 + c |wt|2 .

Substituting the last two inequalities in (3.42) and integrating the results over (0, t),
it holds

1

2
|wt(t)|2 +

1

2
l |∇w (t)|2 ≤ C

∫ t

0

(
|∇w|2 + |wt|2

)
ds

Thus, employing Gronwall’s lemma, we conclude that |wt(t)|2 = |∇w (t)|2 = 0.
Consequently this completes the proof of the lemma. �

We are concerned with the existence and uniqueness of local solution in time to
degenerate wave equation (1.1)-(1.4). So by using Lemma 3.1 we prove the existence
and uniqueness of local solution in time to (1.1)-(1.4) by the Banach fixed point
theorem.

Theorem 3.2. Assume that M(r) > 0 is a locally Lipschitz function and assume that
the following condition is satisfied

1 < k+ <
n− 1

n− 2
and 1 < p+ ≤ n

n− 2
if n ≥ 3,

1 ≤ k− ≤ k+ <∞ and 1 ≤ p− ≤ p+ <∞ if n = 2.

Let (u0, u1) ∈ H1
Γ0

(Ω)∩H2 (Ω)×H1
Γ0

(Ω) with |∇u1| 6= 0 or |∇u0| 6= 0. Assume that

M
(
|∇u0|2

)
> 0. Then there exists a time T0 > 0 and a unique local weak solution

u(t) to (1.1)-(1.4) with the initial value (u0, u1) satisfying

u (t) ∈ C([0, T0] : H1
Γ0

(Ω)),

ut (t) ∈ C([0, T0] : L2 (Ω)) ∩ C([0, T0] : H1
Γ0

(Ω)),

utt (t) ∈ C([0, T0] : L2 (Ω)).

Proof. Since M
(
|∇u0|2

)
> 0, there exists a positive real number m3 such that 0 <

m3 < M
(
|∇u0|2

)
. Assume that

0 < m3 −
∫ +∞

0

g (t) dt < 1.
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Let R0 be a positive real number such that

R0 =

√
2

l

(
|∇u1|2 +M

(
|∇u0|2

)
|∇u0|2

)
Since M

(
|∇u0|2

)
> 0, for sufficiently small time T > 0, we define the space BT (R0)

by

BT (R0) =



φ (t) ∈ C([0, T ] : H1
Γ0

(Ω)) ∩ C([0, T ] : H1
Γ0

(Ω)),
φ′ (t) ∈ C([0, T ] : L2 (Ω)) ∩ C([0, T ] : H1

Γ0
(Ω)),

φ′′ (t) ∈ C([0, T ] : L2 (Ω)),

M
(
|∇φ (t)|2

)
≥ m3, |∇φ′ (t)|2 + |∇φ (t)|2 ≤ R2

0 on [0, T ] ,

φ (0) = u0, φ
′ (0) = u1.


We introduce the metric d on the space BT (R0) by

d (u, v) = sup
0≤t≤T

(
|ut (t)− vt (t)|2 + |∇u (t)−∇v (t)|2

)
for u, v ∈ BT (R0).

Then the space BT (R0) is the complete metric space. Let φ ∈ BT (R0).

Then |∇φ(t)| ≤ R0, |∇φ′(t)| ≤ R0 and M
(
|∇φ (t)|2

)
≥ m3 for all t ∈ [0, T ]. Thus

thanks to Lemma 3.1 we obtain a unique local weak solution u(t) on [0, T1] with
T1 ≤ T to the following wave equation:

(utt(t), v) +M
(
|∇ϕ (t)|2

)
(∇u,∇v)−

(∫ t

0

g (t− s)∇u (s) ds,∇v
)

+ (h (ut) , v)Γ1

(3.43)

=
(
|u (t)|k(x)−1

u (t) , v
)

Γ1

+
(
|u (t)|p(x)−1

u (t) , v
)

in L2
(
0, T1;H−1 (Ω)

)
∩ L2

(
0, T1;H−

1
2 (Γ1)

)
.

Let T = T1 without loss of generality. Define the mapping Φ by

Φ (ϕ) = u

Then we have that

Φ (ϕ) = u ∈ BT (R0) for ϕ ∈ BT (R0), (3.44)

Φ : BT (R0)→ BT (R0) is a contractive mapping. (3.45)

For showing (3.44), posing v = ut in (3.43) and taking

(h (ut) , ut)Γ1
− 1

2
(g′ � ∇u) (t) +

1

2
g (t) |∇u (t)|2 ≥ 0,
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into account we have that:

1

2

d+

dt

(
|ut(t)|2 +

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇u (t)|2

)
+

1

2
(g � ∇u) (t)

)
≤ 1

2

(
d+

dt
M
(
|∇ϕ (t)|2

))
|∇u|2

+
(
|u (t)|k(x)−1

u (t) , ut

)
Γ1

+
(
|u (t)|p(x)−1

u (t) , ut

)
= I1 + I2 + I3.

And so we estimates I1 and I2 as follows

I1 =
1

2

(
d+

dt
M
(
|∇ϕ (t)|2

))
|∇u|2 ≤ L |∇ϕ (t)| |∇ϕ′ (t)| |∇u|2 ≤ LR2

0

l
ψϕu (t)

Taking estimates (4.9) into account

|I2| =
∣∣∣∣(k (x) |u (t)|k(x)−1

u (t) , ut

)
Γ1

∣∣∣∣
≤ k+ max

(∫
Γ1

|u|k
+

|ut(t)|dΓ,

∫
Γ1

|u|k
−
|ut|dΓ

)
≤ k+ max

(
||u (t)||k

+

2k+,Γ1
, ||u (t)||k

−

2k−,Γ1

)
||ut (t)||2,Γ1

≤ k+ max
(
Bk

+

∗ |∇u|
k+

, Bk
−

∗ |∇u|
k−
)
||ut (t)||2,Γ1

≤ k+ max
(

(B∗R0)
k+

, (B∗R0)
k−
)
||ut (t)||2,Γ1

≤ C2

similarly

|I3| =
∣∣∣(p (x) |u (t)|p(x)−1

u (t) , uηmtt

)∣∣∣
≤ p+ max

(∫
Ω

|u|p
+

|ut(t)|dx,
∫

Ω

|u|p
−
|ut(t)|dx

)
≤ p+ max

(
||u (t)||p

+

2p+ , ||u (t)||p2p−
)
|ut(t)|

≤ p+ max
(
Bp

+

|∇u|p
+

, Bp
−
|∇u|p

−)
|ut(t)|

≤ p+ max
(

(BR0)
p+

, (BR0)
p−
)
|ut(t)| ≤ C3ψϕu (t)

1
2

because ||ut (t)||2,Γ1
≤ C |∇ut (t)| is bounded on [0, T ] by Lemma 3.1. Thus

d+

dt
ψϕu (t) ≤ 2C2 + 2C1ψϕu (t) + 2C3ψϕu (t)

1
2

where

ψϕu (t) = |ut(t)|2 +

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇u (t)|2

)
+ (g � ∇u) (t) ,
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and C1 =
LR2

0

l . Gronwall inequality yields

ψϕu (t) ≤ (ψϕu (0) + 2C2T2) e(2C1+2C3)T2

< lR2
0, 0 ≤ t ≤ T2,

for sufficiently small 0 < T2 ≤ T1. Thus

lR2
0 > |ut(t)|

2
+

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇u (t)|2

)
+ (g � ∇u) (t)

> |ut(t)|2 + l |∇u (t)|2 , (l < 1)

We have that

R2
0 > |ut(t)|

2
+ |∇u (t)|2 , 0 ≤ t ≤ T2,

Let T = T2 be modified. Thus (3.44) is satisfied. Rest to show (3.45). Let w = u1−u2,
where u1 = Φ (ϕ1) , u2 = Φ (ϕ2) with ϕ1, ϕ2 ∈ BT (R0). Then we have that

(wtt(t), v) +M
(
|∇ϕ1 (t)|2

)
(∇w,∇v) + (h (u1t)− h (u2t) , v)Γ1

(3.46)

=
(
M
(
|∇ϕ2 (t)|2

)
−M

(
|∇ϕ1 (t)|2

))
(∇u2,∇v)

+

(∫ t

0

g (t− s)∇w (s) ds,∇v
)

=
(
|u1 (t)|k(x)−1

u1 (t)− |u2 (t)|k(x)−1
u2 (t) , v

)
Γ1

+
(
|u1 (t)|p(x)−1

u1 (t)− |u2 (t)|p(x)−1
u2 (t) , v

)
in L2

(
0, T1;H−1 (Ω)

)
.

Set

βϕ1
(w) (t) = |wt(t)|2 +

((
M
(
|∇ϕ1 (t)|2

)
−
∫ t

0

g (s) ds

)
|∇w (t)|2

)
Since 0 < l = m3 −

∫∞
0
g (s) ds < 1, we have that

βϕ1
(w) (t) ≥ l

(
|wt(t)|2 + |∇w (t)|2

)
By replacing v in (3.46) by wt we have that

1

2

d+

dt

(
|wt(t)|2 +

((
M
(
|∇ϕ1 (t)|2

)
−
∫ t

0

g (s) ds

)
|∇w (t)|2

))
+

1

2

d

dt
(g � ∇w) (t)− 1

2
(g′ � ∇w) (t) +

1

2
g (t) |∇u (t)|2

≤ 1

2

(
d+

dt
M
(
|∇ϕ1 (t)|2

))
|∇w|2

+
(
M
(
|∇ϕ2 (t)|2

)
−M

(
|∇ϕ1 (t)|2

))
(∇u2,∇wt)

+
(
|u1 (t)|k(x)−1

u1 (t)− |u2 (t)|k(x)−1
u2 (t) , wt

)
Γ1

+
(
|u1 (t)|p(x)−1

u1 (t)− |u2 (t)|p(x)−1
u2 (t) , wt

)
= I4 + I5 + I6 + I7
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Then

|I4| =
∣∣∣∣12
(

d+

dt
M
(
|∇ϕ1 (t)|2

))
|∇w|2

∣∣∣∣ ≤ LR2
0 |∇w|

2

≤ LR2
0

l
βϕ1 (w) (t) := ξ4βϕ1 (w) (t)

and

|I5| =
∣∣∣(M (

|∇ϕ2 (t)|2
)
−M

(
|∇ϕ1 (t)|2

))
(∇u2,∇wt)

∣∣∣
≤ LR2

0d (ϕ1, ϕ2)
1
2 |∇u2| |∇wt| ≤

2LR2
0√
l

d (ϕ1, ϕ2)
1
2 βϕ1

(w) (t)
1
2

:= ξ5d (ϕ1, ϕ2)
1
2 βϕ1 (w) (t)

1
2 .

Since

|I6| =
∣∣∣∣(|u1 (t)|k(x)−1

u1 (t)− |u2 (t)|k(x)−1
u2 (t) , wt

)
Γ1

∣∣∣∣
≤ cmax

 (
||u1 (t)||k

−−1
2k− + ||u2 (t)||k

−−1
2k−

)
||u1 (t)− u2 (t)||2k− ‖wt‖2 ,(

||u1 (t)||k
+−1

2k+ + ||u2 (t)||k
+−1

2k+

)
||u1 (t)− u2 (t)||2k+ ‖wt‖2


≤ cc∗max

 (
|∇u1 (t)|k

−−1
+ |∇u2 (t)|k

−−1
)
,(

|∇u1 (t)|k
+−1

+ |∇u2 (t)|k
+−1

)  |∇w| |wt|
≤ 2cc∗

(√
Ck
−−1

1 +

√
Ck

+−1
1

)
|∇w| |wt|

≤ cc∗
1

l

(√
Ck
−−1

1 +

√
Ck

+−1
1

)
βϕ1

(w) (t) := ζ6βϕ1
(w) (t)

and

|I7| =
∣∣∣(|u1 (t)|p(x)−1

u1 (t)− |u2 (t)|p(x)−1
u2 (t) , wt

)∣∣∣
≤ cmax

 (
||u1 (t)||p

−−1
2p− + ||u2 (t)||p

−−1
2p−

)
||u1 (t)− u2 (t)||2p− ‖wt‖2 ,(

||u1 (t)||p
+−1

2p+ + ||u2 (t)||k
+−1

2p+

)
||u1 (t)− u2 (t)||2p+ ‖wt‖2


≤ cc∗max

 (
|∇u1 (t)|p

−−1
+ |∇u2 (t)|p

−−1
)
,(

|∇u1 (t)|p
+−1

+ |∇u2 (t)|p
+−1

)  |∇w| |wt|
≤ 2cc∗

(√
Cp
−−1

1 +

√
Cp

+−1
1

)
|∇w| |wt|

≤ cc∗
1

l

(√
Cp
−−1

1 +

√
Cp

+−1
1

)
βϕ1

(w) (t) := ζ7βϕ1
(w) (t)

It follows that

βϕ1
(w) (t) ≤ (ξ4 + ζ6 + ζ7)

∫ t

0

βϕ1
(w) (s) ds+ ξ5

∫ t

0

d (ϕ1, ϕ2)
1
2 βϕ1

(w) (s)
1
2 ds
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Gronwall’s lemma gives

d (u1, u2) ≤ ξ2
5T

l
d (ϕ1, ϕ2) e(1+ξ4+ζ6+ζ7)T .

Choose a 0 < T3 ≤ T small enough which satisfies that

ξ2
5

l
T3e

(1+ξ4+ζ6+ζ7)T3 < 1.

Thus by the Banach contraction mapping theorem there exists a fixed point

u = Φ(u) ∈ BT3
(R0),

which is a unique local weak solution in time to (1.1)-(1.4). This completes the proof
of the theorem. �

4. Uniform decay rates

In this section, we shall prove the general decay rates of solution for system
(1.1)-(1.4).

In this section we assume that

M
(
|∇u|2

)
= m3 + b |∇u|2 + σ

∫
Ω

∇u∇utdx,

m3 > 0, b > 0, σ : positive and small enough.
(4.1)

and providing that h satisfies:

(H′3) Hypotheses on h. h : R → R is a non-decreasing function with h(s)s ≥ 0
for all s ∈ R and there exists a convex and increasing function H : R+ → R+

of class C1(R+) ∩ C2((0,∞)) satisfying H(0) = 0 and H is linear on [0, r] or
H ′(0) = 0 and H ′′ > 0 on (0, r] (r > 0) such that

m1 |s| ≤ |h (s)| ≤M1 |s| if |s| ≥ r,
h2 (s) ≤ H−1 (sh (s)) if |s| ≤ r, (4.2)

where r, m1 and M1 are positive constants.

For formulate our results it is convenient to introduce the energy of the system

E (t) =
1

2
|ut(t)|2 + J (u (t)) for u ∈ H1

Γ0
(Ω) (4.3)

where

J (u (t)) =
1

2

(
m3 −

∫ t

0

g (s) ds

)
‖∇u(t)‖22 +

b

4
‖∇u‖42 +

1

2
(g ◦ ∇ (u)) (t) (4.4)

−
∫

Ω

1

p (x) + 1
|u|p(x)+1

dx−
∫

Γ1

1

k (x) + 1
|u|k(x)+1

dΓ,
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so, we have

J (u (t)) ≥ 1

2

(
m3 −

∫ t

0

g (s) ds

)
‖∇u(t)‖22 +

b

4
‖∇u‖42 +

1

2
(g ◦ ∇ (u)) (t)

− 1

p− + 1
max

(∫
Ω

|u|p
++1

dx,

∫
Ω

|u|p
−+1

dx

)
− 1

k− + 1
max

(∫
Γ1

|u|k
++1

dΓ,

∫
Γ1

|u|k
−+1

dΓ

)
≥ 1

2
l ‖∇u(t)‖22 +

b

4
‖∇u‖42 +

1

2
(g ◦ ∇ (u)) (t) (4.5)

−
(

1

p− + 1

∫
Ω

|u|p
++1

dx+
1

k− + 1

∫
Γ1

|u|k
++1

dΓ

)
−
(

1

p− + 1

∫
Ω

|u|p
−+1

dx+
1

k− + 1

∫
Γ1

|u|k
−+1

dΓ

)
,

then

E′ (t)=−σ
(

1

2

d

dt
‖∇u(t)‖22

)2

−
∫

Γ1

uth (ut) dΓ+
1

2
(g′ ◦ ∇ (u)) (t)−1

2
g (t) ‖∇u(t)‖22≤0,

(4.6)
so the energy E(t) is nonincreasing function.

Next, with some modifications, we define a functionals F1,2 introduced by Cav-
alcanti et al. [28], which helps in establishing desired results. Setting

F1 (x) =
1

4
x2 −

Kp−+1
−,Ω

p− + 1
xp
−+1 −

Kk−+1
−,Γ

k− + 1
xk
−+1, x > 0 (4.7)

F2 (x) =
1

4
x2 −

Kp++1
+,Ω

p− + 1
xp

++1 −
Kk++1

+,Γ

k− + 1
xk

++1, x > 0, (4.8)

where

0 < K+,Ω = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖p++1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞, (4.9)

0 < K−,Ω = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖p−+1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞. (4.10)

and

0 < K+,Γ = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖k++1,Γ1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞, (4.11)

K−,Γ = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖k−+1,Γ1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞. (4.12)
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Remark 4.1. (i). As in [28], we can verify that the functional F1 is increasing in
(0, λ1), decreasing in (λ1,∞), and F1 has a maximum at λ1 with the maximum
value

d1 = F1 (λ1) =
1

4
λ2

1 −
Kp−+1
−,Ω

p− + 1
λp
−+1

1 −
Kk−+1
−,Γ

k− + 1
λk
−+1

1 , (4.13)

also, for F2 is increasing in (0, λ2), decreasing in (λ2,∞), and F2 has a maximum
at λ2 with the maximum value

d2 = F2 (λ2) =
1

4
λ2

2 −
Kp++1

+,Ω

p− + 1
λp

++1
2 −

Kk++1
+,Γ

k− + 1
λk

++1
2 , (4.14)

λ1 and λ2 are the first positive zero of the derivative functions F ′1(x) and F ′2(x),
respectively.

(ii). From (4.3), (4.5), (2.9), (2.12) and the definition of F1 and F2 we have

E (t) ≥ J (t) ≥ 1

4
γ (t)

2 −
Kp−+1
−,Ω

p− + 1
γ (t)

p−+1 −
Kk−+1
−,Γ

k− + 1
γ (t)

k−+1

+
1

4
γ (t)

2 −
Kp++1

+,Ω

p− + 1
γ (t)

p++1 −
Kk++1

+,Γ

k− + 1
γ (t)

k++1
= F1 (γ (t)) + F2 (γ (t)) , t ≥ 0,

(4.15)

where

γ (t) =

√
l ‖∇u‖22 +

b

2
‖∇u‖42 + (g ◦ ∇ (u)) (t)

Now, if one considers γ (t) < λ0 = min (λ1, λ2) , then, from (4.15), we get

E (t) ≥ F1 (γ (t)) + F2 (γ (t))

> γ (t)
2

1

4
−
Kp−+1
−,Ω

p− + 1
γ (t)

p−−1 −
Kk−+1
−,Γ

k− + 1
γ (t)

k−−1


+γ (t)

2

1

4
−
Kp++1

+,Ω

p− + 1
γ (t)

p+−1 −
Kk++1

+,Γ

k− + 1
γ (t)

k+−1

 , t ≥ 0,

which together with the identities

1

2
−Kp−+1

−,Ω γ (t)
p−−1 −Kk−+1

−,Γ γ (t)
k−−1

= 0, and (4.16)

1

2
− p+ + 1

p− + 1
Kp++1

+,Ω γ (t)
p+−1 − k+ + 1

k− + 1
Kk++1

+,Γ γ (t)
k+−1

= 0 (4.17)

give

F1 (γ (t)) > c0γ (t)
2
, c0 =

{
p−−1

4(p−+1) if k− ≥ p−
k−−1

4(k−+1) if p− ≥ k−
,
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also, since p++1
p−+1 > 1 and k++1

k−+1 > 1 and from (4.17) we deduce that

0 =
1

2
− p+ + 1

p− + 1
Kp++1

+,Ω γ (t)
p+−1 − k+ + 1

k− + 1
Kk++1

+,Γ γ (t)
k+−1

≤ 1

2
−Kp++1

+,Ω γ (t)
p+−1 −Kk++1

+,Γ γ (t)
k+−1

,

therefore

−Kp++1
+,Ω γ (t)

p+−1 −Kk++1
+,Γ γ (t)

k+−1 ≥ −1

2
,

and consequently,

F2 (t) > γ (t)
2

1

4
−
Kp++1

+,Ω

p− + 1
γ (t)

p+−1 −
Kk++1

+,Γ

k− + 1
γ (t)

k+−1


> c0γ (t)

2
, c0 =

{
p−−1

4(p−+1) if k− ≥ p−
k−−1

4(k−+1) if p− ≥ k−
,

consequently

E (t) ≥ F1 (γ (t)) + F2 (γ (t)) = F (γ (t)) ≥ 2c0γ (t)
2

(4.18)

and identities (4.16), (4.17) are derived because λ1 and λ2 are the first positive
zero of the derivative function F ′1(x) and F ′2(x) respectively.

Lemma 4.2. Let (u0, u1) ∈ H1
Γ0

(Ω)×H1
Γ0

(Ω) and hypotheses (H1)-(H3) hold. Assume

further that γ (0) =
√
l ‖∇u0‖22 + b

2 ‖∇u0‖42 < λ0 and E (0) < d = min (d1,d2). Then

γ (t) =

√
l ‖∇u‖22 +

b

2
‖∇u‖42 + (g ◦ ∇ (u)) (t) < λ0, (4.19)

for all t ∈ [0, T ) .

Proof. Using (4.15) and considering E(t) is a non-increasing function, we obtain

F (γ (t)) = F1 (γ (t)) + F2 (γ (t)) ≤ E (t) ≤ E (0) < d, t ∈ [0, T ) (4.20)

In addition, from Remark 4.1 (i), we see that F is increasing in (0, λ0), decreasing
in (max (λ1, λ2) ,∞), and F → −∞ as max (λ1, λ2) → ∞. Thus, as E(0) < d, there
exist 0 ≤ λ′3 ≤ λ0 ≤ λ3 such that F (λ′3) = F (λ3) = E (0). Besides, through the
assumption γ (0) < λ0, we observe for t = 0 that

F (γ (0)) ≤ E (0) = F (λ′3) .

This implies that γ (0) ≤ λ′3. Next, we will prove that

γ (t) ≤ λ′3, t ∈ [0, T ) . (4.21)

To establish (4.21), we reason by absurd. Suppose that (4.21) does not hold, then
there exists t∗ ∈ (0, T ) such that γ(t∗) > λ′3.
Case 1. If λ′3 < γ(t∗) < λ0, then

F (γ(t∗)) > F (λ′3) = E (0) ≥ E (t∗) .

This contradicts (4.20).
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Case 2. If γ(t∗) ≥ λ0, then by continuity of γ(t), there exists 0 < t1 < t∗ such that

λ′3 < γ(t1) < λ0,

then

F (γ(t1)) > F (λ′3) = E (0) ≥ E (t1) .

This is also a contradiction of (4.20). Thus, we have proved (4.21). �

Theorem 4.3. Under the hypotheses of Lemma 4.2 the problem (1.1)-(1.4) have a
global solution.

Proof. It follows from (4.19), (4.18) and (4.15) that

1

2
|ut|2 + 2c0γ (t)

2 ≤ 1

2
|ut|2 + F (γ (t)) ≤ 1

2
|ut|2 + J (t) = E (t) < E (0) < d. (4.22)

Thus, we establish the boundedness of ut in L2(Ω) and the boundedness of u in H1
Γ0

.
Moreover, from (2.13), (2.14) and (4.22), we also obtain∫

Ω

1

p (x) + 1
|u|p(x)+1

dx+

∫
Γ1

1

k (x) + 1
|u|k(x)+1

dΓ

≤ 1

p− + 1
max

(∫
Ω

|u|p
++1

dx,

∫
Ω

|u|p
−+1

dx

)
+

1

k− + 1
max

(∫
Γ1

|u|k
++1

dΓ,

∫
Γ1

|u|k
−+1

dΓ

)
≤ 1

p− + 1
max

(
Bp

++1 |∇u|p
+−1

, Bp
−+1 |∇u|p

−−1
)
|∇u|2

+
1

k− + 1
max

(
Bk

++1
∗ |∇|k

+−1
, Bk

−+1
∗ |∇u|k

−−1
)
|∇u|2

≤ Ll |∇|2 ≤ L

2c0
E (t) <

L

2c0
E (0) <

L

2c0
d

which implies that the boundedness of u in Lp(.)+1(Ω) and in Lk(.)+1(Γ1) with

L =
1

l

(
1

p− + 1
max

(
Bp

++1

(
E (0)

2lc0

)p+−1

, Bp
−+1

(
E (0)

2lc0

)p−−1
))

+
1

l

(
1

k− + 1
max

(
Bk

++1
∗

(
E (0)

2lc0

)k+−1

, Bk
−+1
∗

(
E (0)

2lc0

)k−−1
))

.

Hence, it must have T =∞. �

Now, we shall investigate the asymptotic behavior of the energy function E(t).
First, let us define the perturbed modified energy by

G (t) = ME (t) + εΦ (t) + Ψ (t) (4.23)

where

Φ (t) =

∫
Ω

utudx+
σ

4
‖∇u(t)‖42 , (4.24)
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Ψ (t) =

∫
Ω

ut

∫ t

0

g (t− s) (u (s)− u (t)) dsdx, (4.25)

and M , ε are some positive constants to be specified later.
In order to prove the main theorem, we recall the following lemmas.

Lemma 4.4. There exist two positive constants β1 and β2 such that

β1E (t) ≤ G (t) ≤ β2E (t) (4.26)

relation holds, for ε > 0 small enough while M > 0 is large enough.

Proof. By Hölder’s and Young’s inequalities, (2.9) and (2.12), we deduce that

|G (t)−ME (t)| ≤ ε |Φ (t)|+ |Ψ (t)|

≤ ε+ 1

2
|ut|2 +

εB2

2
|∇u|2 +

σε

4
|∇u|4 +

1

2

∫
Ω

(∫ t

0

g (t− s) (u (s)− u (t)) ds

)2

dx

≤ ε+ 1

2
|ut|2 +

εB2

2
|∇u|2 +

σε

4
|∇u|4 +

B2 (m3 − l)
2

(g � ∇u) (t)

≤ c1
(

1

2
|ut|2 + 2c0

(
l |∇u|2 + (g � ∇u) (t) +

b

2
|∇u|4

))
,

where

c1 = max

(
ε+ 1,

εB2

8c0l
,
B2 (m3 − l)

8c0l
,
σε

8bc0

)
.

Employing (4.22) and choosing ε > 0 small enough and M sufficiently large, there
exist two positive constants β1 and β2 such that

β1E (t) ≤ G (t) ≤ β2E (t) . �

Lemma 4.5. Assume that the hypotheses of Lemma 4.2 be fulfilled. Furthermore, if
E(0) is small enough, then, for any t0 > 0, the functional G(t) verifies, along solution
of (1.1)-(1.4) and for t ≥ t0,

G′ (t) ≤ −α1E (t) + α2 (g � ∇u) (t) + α3

∫
Γ1

h2 (ut) dΓ− α4E (0)E′ (t) (4.27)

where αi, i = 1, ..., 4 are some positive constants.

Proof. In the following, we estimate the derivative of G(t). From (4.24) and (1.1)-
(1.4), we have

Φ′ (t) = |ut|2 −
(
m3 + b |∇u|2

)
+

∫
Ω

∇u (t)

∫ t

0

g (t− s)∇u (s) dsdx−
∫

Γ1

uh (ut) dΓ

+

∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ. (4.28)

Employing Hölder’s inequality, Young’s inequality, (2.14) and (2.9), the third and
fourth terms on the right-hand side of (4.28) can be estimated as follows, for η, δ > 0,∣∣∣∣∫

Ω

∇u (t)

∫ t

0

g (t− s)∇u (s) dsdx

∣∣∣∣ ≤ (η +m3 − l) |∇u|2 +
(m3 − l)

4η
(g � ∇u) (t) ,

(4.29)
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and ∣∣∣∣∫
Γ1

uh (ut) dΓ

∣∣∣∣ ≤ δB2
∗ |∇u|

2
+

1

4δ

∫
Γ1

h2 (ut) dΓ. (4.30)

A substitution of (4.29)-(4.30) into (4.28) yields

Φ′ (t) = |ut|2 −
(
−η + l − δB2

∗
)
|∇u|2 +

(m3 − l)
4η

(g � ∇u) (t)−
∫

Γ1

uh (ut) dΓ

+
1

4δ

∫
Γ1

h2 (ut) dΓ +

∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ.

Letting η = l
2 > 0 and δ = l

4B2
∗

in above inequality, we obtain

Φ′ (t) ≤ |ut|2 −
l

4
|∇u|2 +

(m3 − l)
2l

(g � ∇u) (t)−
∫

Γ1

uh (ut) dΓ (4.31)

+
B2
∗
l

∫
Γ1

h2 (ut) dΓ +

∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ.

For estimate Ψ′(t), taking the derivative of Ψ(t) in (4.25) and using (1.1)-(1.4), we
obtain

Ψ′ (t) =

∫
Ω

(
m3 + b |∇u|2

)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

+

∫
Ω

(
σ

∫
Ω

∇u∇utdx
)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

−
∫

Ω

(∫ t

0

g (t− s)∇u (s) ds

)(∫ t

0

g (t− s) (∇u (t)−∇u (s)) ds

)
dx

+

∫
Γ1

h (ut)

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

−
∫

Γ1

|u|k(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

−
∫

Ω

|u|p(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdx

−
∫

Ω

ut

∫ t

0

g′ (t− s) (u (t)− u (s)) dsdx−
(∫ t

0

g (s) ds

)
|ut|2 . (4.32)

Similar to deriving (4.31), in what follows we will estimate the right-hand side of
(4.32). Using Young’s inequality, Hölder’s inequality,

|∇u|2 ≤ E (0)

2lc0
by (4.22),

E′ (t) ≤ −σ
(

1

2

d

dt
‖∇u(t)‖22

)2

by (4.6),
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and applying (2.14) and (2.9), we have, for δ > 0,∣∣∣∣∫
Ω

(
m3 + b |∇u|2

)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

∣∣∣∣
≤

∣∣∣∣∫
Ω

(
m3 +

b

2c0
E (0)

)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

∣∣∣∣
≤ δ |∇u|2 +

m3 − l
4δ

(
m3 +

b

2c0
E (0)

)2

(g � ∇u) (t) , (4.33)

∣∣∣∣∫
Ω

(
σ

∫
Ω

∇u∇utdx
)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

∣∣∣∣
≤ σ2

(∫
Ω

∇u∇utdx
)2

l |∇u|2 +
1

4l

∫
Ω

(∫ t

0

g (t− s) (∇u (t)−∇u (s)) ds

)2

dx

≤ −σ
2c0

E (0)E′ (t) +
m3 − l

4δ
(g � ∇u) (t) , (4.34)

∣∣∣∣∫
Ω

(∫ t

0

g (t− s)∇u (s) ds

)(∫ t

0

g (t− s) (∇u (t)−∇u (s)) ds

)
dx

∣∣∣∣
≤ 2δ (m3 − l)2 |∇u|2 +

(
2δ +

1

4δ

)
(m3 − l) (g � ∇u) (t) , (4.35)

and ∣∣∣∣∫
Γ1

h (ut)

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

∣∣∣∣ (4.36)

≤ 1

2

∫
Γ1

h2 (ut) dΓ +
(m3 − l)B2

∗
2

(g � ∇u) (t) .

As for the the fifth and sixth terms on the right-hand side of (4.32), utilizing Hölder’s
inequality, Young’s inequality, (2.9), (2.13), (2.14) and (4.22), we obtain,∣∣∣∣∫

Γ1

|u|k(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

∣∣∣∣
≤ δmax

(
‖u‖2k

+

2k+,Γ1
, ‖u‖2k

−

2k−,Γ1

)
+

(m3 − l)B2
∗

4δ
(g � ∇u) (t)

≤ δmax
(
B2k+

∗ |∇u|2k
+

, B2k−

∗ |∇u|2k
−)

+
(m3 − l)B2

∗
4δ

(g � ∇u) (t) (4.37)

≤δmax

(
B2k+

∗

(
E (0)

2lc0

)k+−1

, B2k−

∗

(
E (0)

2lc0

)k−−1
)
|∇u|2 +

(m3 − l)B2
∗

4δ
(g � ∇u) (t)
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and ∣∣∣∣∫
Ω

|u|p(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdx

∣∣∣∣ (4.38)

≤ δmax
(
B2p+

|∇u|2p
+

, B2p− |∇u|2p
−)

+
(m3 − l)B2

4δ
(g � ∇u) (t)

≤δmax

(
B2p+

(
E (0)

2lc0

)p+−1

, B2p−
(
E (0)

2lc0

)p−−1
)
|∇u|2 +

(m3 − l)B2

4δ
(g � ∇u) (t) .

Exploiting Hölder’s inequality, Young’s inequality and (H1) to estimate the seventh
term, we have∣∣∣∣∫

Ω

ut

∫ t

0

g′ (t− s) (u (t)− u (s)) dsdx−
(∫ t

0

g (s) ds

)
|ut|2

∣∣∣∣ (4.39)

≤ δ |ut|2 −
g (0)B2

4δ
(g′ � ∇u) (t) .

Then, combining these estimates (4.33)-(4.39), (4.32) becomes

Ψ′ (t) ≤ −
(∫ t

0

g (s) ds− δ
)
|ut|2 + c2δ |∇u|2 + c3 (g � ∇u) (t) (4.40)

−g (0)B2

4δ
(g′ � ∇u) (t) +

1

2

∫
Γ1

h2 (ut) dΓ− σ

2c0
E (0)E′ (t) ,

where

c2 = 1 + 2 (m3 − l)2
+ max

(
B2k+

∗

(
E (0)

2lc0

)k+−1

, B2k−

∗

(
E (0)

2lc0

)k−−1
)

+ max

(
B2p+

(
E (0)

2lc0

)p+−1

, B2p−
(
E (0)

2lc0

)p−−1
)
,

and

c3 = (m3 − l)

1 +
(
m3 + bE(0)

2lc0

)2

4δ
+ 2δ +

1

4l
+
B2
∗

2
+
B2 +B2

∗
4δ

 .

Since g is continuous and g(0) > 0, then there exists t0 > 0 such that,

∫ t

0

g (s) ds ≥
∫ t0

0

g (s) ds = g0, ∀t ≥ t0.
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Hence, we conclude from (4.23), (4.6), (4.31), and (4.40) that

G′ (t) = ME′ (t) + εΦ′ (t) + Ψ′ (t)

≤ −
(
M

2
− g (0)B2

4δ

)
(− (g′ � ∇u) (t))− (g0 − δ − ε) |ut|2 (4.41)

+

(
c2δ −

εl

4

)
|∇u|2 +

(
c3 +

(m3 − l) ε
2l

)
(g � ∇u) (t)

+

(
1

2
+

2B2
∗ε

l

)∫
Γ1

h2 (ut) dΓ− σ

2c0
E (0)E′ (t)

+ε

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
.

At this point, we choose ε > 0 small enough so that Lemma4.4 holds and ε < g0

2 .
Once ε is fixed, we choose δ to satisfy

δ < min

(
g0

4
,
εl

8c2

)
and then pick M sufficiently large such that M > g(0)B2

2δ . Thus, for all t ≥ t0, we
arrive at

G′ (t) ≤ −εl
8
|∇u|2 − g0

4
|ut|2 + c4 (g � ∇u) (t) + c5

∫
Γ1

h2 (ut) dΓ

−c6E (0)E′ (t) + ε

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
≤ − εl

4 (m3 − g0)

1

2

(
m3 −

∫ t

0

g (s) ds

)
|∇u|2 − g0

4
|ut|2

+c4 (g � ∇u) (t) + c5

∫
Γ1

h2 (ut) dΓ− c6E (0)E′ (t)

+ε

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
.

with some positive constants ci, i = 4, 5, 6. Additionally, observing the fact that
εl

4(m3−g0) < g0 due to ε < g0 and l
(m3−g0) < 1 and employing the definition of E(t) by

(4.3) and using |∇u|2 ≤ E(0)
2lc0

by (4.22), we deduce that

G′ (t) ≤ −c7E (t) +
c7b

4
|∇u|4 +

(
c4 +

c7
2

)
(g � ∇u) (t)

+c5

∫
Γ1

h2 (ut) dΓ− c6E (0)E′ (t) + εc8

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
≤ −α1E (t) +

(
c4 +

c7
2

)
(g � ∇u) (t) + c5

∫
Γ1

h2 (ut) dΓ− c6E (0)E′ (t) ,

where

c7 =
εl

4 (m3 − g0)
,
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c8 = max

(
1− l

4 (p− + 1) (m3 − g0)
, 1− l

4 (k− + 1) (m3 − g0)

)
> 0

and

α1 =c7−

 c7b

8l2c0
E (0) + ε

c8
2lc0


max

(
Bp

++1
(
E(0)
2lc0

) p+−1

2

, Bp
−+1

(
E(0)
2lc0

) p−−1

2

)
,

max

(
Bk

++1
∗

(
E(0)
2lc0

) k+−1

2

, Bk
−+1
∗

(
E(0)
2lc0

) k−−1

2

)

 .

Hence, if E(0) is small enough, then not only the condition E(0) < d is satisfied, but
also α1 > 0 is assured. Therefore, we have, for t ≥ t0,

G′ (t) ≤ −α1E (t) + α2 (g � ∇u) (t) + α3

∫
Γ1

h2 (ut) dΓ− α4E (0)E′ (t) , (4.42)

where αi, i = 1, ..., 4 are all positive constants. This completes the proof. �

Before stating our main result, we need to recall that if ϕ is a proper convex
function from R to R ∪ {∞}, then its convex conjugate ϕ∗ is defined as

ϕ∗ (y) = sup
x∈R
{xy − ϕ (x)} (4.43)

Now, we are in a position to state our main result by adopting and modifying the
arguments in [18, 39, 20]. We consider the following partition of Γ1

Γ+
1 = {x ∈ Γ1 | |ut| > r} , Γ−1 = {x ∈ Γ1 | |ut| ≤ r} .

Theorem 4.6. Assume that the conditions of 4.5 are valid, then, for each t0 > 0 and
k1, k2 and ε0 are positive constants, the solution energy of (1.1)-(1.4) satisfies

E (t) ≤ k2H
−1
1

(
k1

∫ t

0

ζ (s) ds

)
, t ≥ t0 (4.44)

where

H1 (t) =

∫ 1

t

1

H2 (s)
ds (4.45)

and

H2 (t) =

{
t, if H is linear on [0, r] ,

tH ′ (ε0t) , if H ′ (0) = 0 and H ′′ > 0 on (0, r] .
(4.46)

Proof. The global existence of solution u of (1.1)-(1.4) is guaranteed directly by Theo-
rem 4.3. Next, we consider the following two cases: (i) H is linear on [0, r] and (ii)
H ′(0) = 0 and H ′′ > 0 on (0, r].
Case 1. H is linear on [0, r]. In this case, there exists α′1 > 0 such that |h(s)| ≤ α′1|s|,
for all s ∈ R. By (4.6), we have∫

Γ1

h2 (ut) dΓ ≤ α′1
∫

Γ1

uth (ut) dΓ ≤ −α′1E′ (t) ,

which together with (4.42) implies that

(G (t) + c9E (t))
′ ≤ −α1H2 (E (t)) + α2 (g � ∇u) (t) , (4.47)
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where H2(s) = s and c9 = α′1α3 + α4E(0).
Case 2. H ′(0) = 0 and H ′′ > 0 on (0, r]. In this case, we first estimate

∫
Γ1
h2 (ut) dΓ on

the right-hand side of (4.42). Given (4.2), noting that H−1 is concave and increasing
and using the well-known Jensen’s inequality and (4.6), we deduce that∫

Γ1

h2 (ut) dΓ =

∫
Γ1

h2 (ut) dΓ +

∫
Γ1

h2 (ut) dΓ

≤ M1

∫
Γ+

1

uth (ut) dΓ +

∫
Γ−1

h2 (ut) dΓ

≤ −M1E
′ (t) +

∫
Γ−1

H−1 (uth (ut)) dΓ

≤ −M1E
′ (t) +

1

c10
H−1

c10

∫
Γ−1

(uth (ut)) dΓ


≤ −M1E

′ (t) +
1

c10
H−1 (−c10E

′ (t)) ,

where c10 = 1

|Γ−1 |
. Hence, (4.42) becomes

G′1 (t) ≤ −α1E (t) + α3

∣∣Γ−1 ∣∣H−1 (−c10E
′ (t)) + α2 (g � ∇u) (t) , ∀t ≥ t0, (4.48)

where

G1 (t) = G (t) + (M1α3 + α4E (0))E (t) . (4.49)

Now, we define

G2 (t) = H ′ (ε0E (t))G1 (t) + βE (t) , (4.50)

where ε0 > 0 and β > 0 to be determined later. Then, using E′(t) ≤ 0, H ′′(t) ≥ 0,
and (4.48), we obtain

G′2 (t) = ε0E
′ (t)H ′′ (ε0E (t))G1 (t) +H ′ (ε0E (t))G′1 (t) + βE′ (t) (4.51)

≤ −α1H
′ (ε0E (t))E (t) + α2H

′ (ε0E (t)) (g � ∇u) (t)

+c11H
′ (ε0E (t))H−1 (−c10E

′ (t)) + βE′ (t) .

To estimate the fourth term in the right hand side of (4.51), let H∗ be the conjugate
function of the convex function H defined by (4.43), then

ab ≤ H∗ (a) +H (b) for a, b ≥ 0. (4.52)

Moreover, due to the argument given in [6], it holds that

H∗ (s) = s (H ′)
−1

(s)−H
(

(H ′)
−1

(s)
)

for s ≥ 0. (4.53)

Further, using (4.53) and noting that H ′(0) = 0, (H ′)
−1

is increasing and H is also
increasing yield

H∗ (s) ≤ s (H ′)
−1

(s) , s ≥ 0. (4.54)
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Taking H ′ (ε0E (t)) = a and H−1 (−c10E
′ (t)) = b in (4.51), applying (4.54) and

(4.52), and noting that 0 ≤ H ′ (ε0E (t)) ≤ H ′ (ε0E (0)) due to H ′ is increasing, to
obtain

G′2 (t) ≤ −α1H
′ (ε0E (t))E (t) + c11H

∗ (H ′ (ε0E (t)))

+c13 (g � ∇u) (t) + (β − c12)E′ (t)

≤ − (α1 − c11ε0)H ′ (ε0E (t))E (t) + c13 (g � ∇u) (t) + (β − c12)E′ (t)

with c12 = c10c11 and c13 = α2H
′ (ε0E (0)) > 0. Thus, choosing 0 < c11ε0 < α1,

β > c12 and using E′(t) ≤ 0 by (4.6), we have

G′2 (t) ≤ −c14H
′ (ε0E (t))E (t) + c13 (g � ∇u) (t) = −c14H2 (E (t)) + c13 (g � ∇u) (t) ,

(4.55)
where H2(s) = sH ′(ε0s) and c14 is a positive constant.

Let

F1 (t) =

{
G(t) + c9E(t), if H is linear on [0, r],
G2(t), if H ′(0) = 0 and H ′′ > 0 on (0, r].

Then, by Lemma 4.4 and the definition of G2 by (4.49)-(4.50), there exist β′1, β′2 > 0
such that

β′2E (t) ≤ F1 (t) ≤ β′1E (t) , (4.56)

which is equivalent to E(t), and from (4.47) and (4.55), we have

F ′1 (t) ≤ −c15H2 (E (t)) + c16 (g � ∇u) (t) , t ≥ t0, (4.57)

where c15 and c16 denote some positive constants. In addition, using (4.56) and ξ(t) ≤
ξ(0) by (H2) and for l1 = β′1ξ(0) +2c16 > 0, we see that

ξ(t)F1 (t) + 2c16E (t) ≤ l1E (t) , t ≥ t0, (4.58)

Now, we define

G3 (t) = ε1 [ξ(t)F1 (t) + 2c16E (t)] , 0 < l1ε1 < r, (4.59)

which is equivalent to E(t) by (4.56). Thanks to (4.57), (2.10) and (4.6), we arrive at

G′3 (t) = ε1 [ξ′(t)F1 (t) + ξ(t)F ′1 (t) + 2c16E
′ (t)]

≤ −c15ε1H2 (E (t)) ξ(t) + c16ε1ξ(t) (g � ∇u) (t) + 2c16ε1E
′ (t)

≤ −c15ε1H2 (E (t)) ξ(t)− c16ε1 (g′ � ∇u) (t) + 2c16ε1E
′ (t)

≤ −c15ε1H2 (E (t)) ξ(t).

Exploiting the fact that H2 is increasing, using (4.58) and using the fact that 0 <
l1ε1 < r by (4.59), we obtain

G′3 (t) ≤ −c15ε1ξ(t)H2

(
1

l1
(ξ(t)F1 (t) + 2c16E (t))

)
≤ −c15ε1ξ(t)H2 (ε1 (ξ(t)F1 (t) + 2c16E (t))) = −c15ε1ξ(t)H2 (G3 (t)) .

Using that H ′1 (t)H2 (t) = −1 (see (4.45)), we see that

G′3 (t)H ′1 (G3 (t)) ≥ c15ε1ξ(t), t ≥ t0.
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Integrating this over (t0, t) which implies, having in mind that H−1
1 is decreasing on

(0, r], that

G3 (t) ≤ H−1
1

(
H1 (G3 (0)) + c15ε1

∫ t

0

ξ(s)ds− c15ε1

∫ t0

0

ξ(s)ds

)
≤ H−1

1

(
c15ε1

∫ t

0

ξ(s)ds

)
,

where we need ε1 > 0 sufficiently small so that H1 (G3 (0))− c15ε1

∫ t0
0
ξ(s)ds > 0.

Consequently, from the equivalent relation of G3 and E yields

E (t) ≤ k2H
−1
1

(
k1

∫ t

0

ξ (s) ds

)
, t ≥ t0,

where k1 and k2 are positive constants. Hence, this completes the proof. �

Remark 4.7. Because lim
t→0

H1(t) =∞ (see (4.46)), thus, if
∫∞

0
ξ (s) ds =∞, we get the

stability of system (1.1)-(1.4), in the other words, lim
t→+∞

E(t) = 0.
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