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Perturbations of local C-cosine functions

Chung-Cheng Kuo

Abstract. We show that A+B is a closed subgenerator of a local C-cosine function
T (·) on a complex Banach space X defined by

T (t)x =

∞∑
n=0

Bn

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)xds

for all x ∈ X and 0 ≤ t < T0, if A is a closed subgenerator of a local C-cosine
function C(·) on X and one of the following cases holds: (i) C(·) is exponentially

bounded, and B is a bounded linear operator on D(A) so that BC = CB on D(A)

and BA ⊂ AB; (ii) B is a bounded linear operator on D(A) which commutes

with C(·) on D(A) and BA ⊂ AB; (iii) B is a bounded linear operator on X

which commutes with C(·) on X. Here jn(t) = tn

n!
for all t ∈ R, and∫ t

0

j−1(s)j0(t− s)C(|t− 2s|)xds = C(t)x

for all x ∈ X and 0 ≤ t < T0.
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1. Introduction

Let X be a complex Banach space with norm ‖ · ‖, and let L(X) denote the
set of all bounded linear operators on X. For each 0 < T0 ≤ ∞ and each injection
C ∈ L(X), a family C(·) (= {C(t) | 0 ≤ t < T0}) in L(X) is called a local C-cosine
function on X if it is strongly continuous, C(0) = C on X and satisfies

2C(t)C(s) = C(t+ s)C + C(|t− s|)C (1.1)

on X for all 0 ≤ t, s, t+ s < T0 (see [5], [7], [14], [15], [21], [23], [25]). In this case, the
generator of C(·) is a closed linear operator A in X defined by

D(A) = {x ∈ X | lim
h→0+

2(C(h)x− Cx)/h2 ∈ R(C)}



586 Chung-Cheng Kuo

and Ax = C−1 lim
h→0+

2(C(h)x − Cx)/h2 for x ∈ D(A). Moreover, we say that C(·) is

locally Lipschitz continuous, if for each 0 < t0 < T0 there exists a Kt0 > 0 such that

‖C(t+ h)− C(t)‖ ≤ Kt0h (1.2)

for all 0 ≤ t, h, t+ h ≤ t0; exponentially bounded, if T0 =∞and there exist K,ω ≥ 0
such that

‖C(t)‖ ≤ Keωt (1.3)

for all t ≥ 0; exponentially Lipschitz continuous, if T0 =∞ and there exist K,ω ≥ 0
such that

‖C(t+ h)− C(t)‖ ≤ Kheω(t+h) (1.4)

for all t, h ≥ 0. In general, a local C-cosine function is also called a C-cosine function
if T0 = ∞ (see [2], [12], [14], [16]) or a cosine function if C = I (identity operator
on X) (see [1], [4], [6]), and a C-cosine function may not be exponentially bounded
(see [16]). Moreover, a local C-cosine function is not necessarily extendable to the
half line [0,∞) (see [21]) except for C = I (see [1], [4], [6]) and the generator of a C-
cosine function may not be densely defined (see [2]). Perturbations of local C-cosine
functions have been extensively studied by many authors appearing in [1], [2], [4],
[9], [11], [17], [18], [19]. Some interesting applications of this topic are also illustrated
there. In particular, a classical perturbation result of cosine functions shows that if A
is the generator of a C-cosine function C(·) on X, and B a bounded linear operator
on X, then A+B is the generator of a C-cosine function on X when C = I, but the
conclusion may not be true when C is arbitrary, and is still unknown until now even
though B and C(·) are commutable, which can be completely solved in this paper
and several new additive perturbation theorems concerning local C-cosine functions
are also established as results in [20] for the case of C-semigroup and in [8], [13] for
the case of local C-semigroup. A new representation of the perturbation of a local
C-cosine function is given in (1.5) below. We show that if C(·) is an exponentially
bounded C-cosine function on X with closed subgenerator A and B a bounded linear
operator on D(A) such that BC = CB on D(A) and BA ⊂ AB, then A + B is a
closed subgenerator of an exponentially bounded C-cosine function T (·) on X defined
by

T (t)x =

∞∑
n=0

Bn
∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)xds (1.5)

for all x ∈ X and 0 ≤ t < T0 (see Theorem 2.6 below). Here jn(t) = tn

n! for all t ∈ R,
and ∫ t

0

j−1(s)j0(t− s)C(|t− 2s|)xds = C(t)x

for all x ∈ X and 0 ≤ t < T0. Moreover, T (·) is also exponentially Lipschitz continuous
or norm continuous if C(·) is. We then show that the exponential boundedness of T (·)
can be deleted and C-cosine functions can be extended to the context of local C-cosine
functions when the assumption of BC(·) = C(·)B on D(A) is added (see Theorem
2.7 below). Moreover, T (·) is locally Lipschitz continuous or norm continuous if C(·)
is. We also show that A + B is a closed subgenerator of a local C-cosine function
T (·) on X if A is a closed subgenerator of a local C-cosine function C(·) on X and
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B a bounded linear operator on X such that BC(·) = C(·)B on X (see Theorem 2.8
below). A simple illustrative example of these results is presented in the final part of
this paper.

2. Perturbation theorems

In this section, we first note some basic properties of a local C-cosine function
with its subgenerator and generator.

Definition 2.1. (see [10], [14]) Let C(·) be a strongly continuous family in L(X). A
linear operator A in X is called a subgenerator of C(·) if

C(t)x− Cx =

∫ t

0

∫ s

0

C(r)Axdrds

for all x ∈ D(A) and 0 ≤ t < T0, and∫ t

0

∫ s

0

C(r)xdrds ∈ D(A) and A

∫ t

0

∫ s

0

C(r)xdrds = C(t)x− Cx

for all x ∈ X and 0 ≤ t < T0. A subgenerator A of C(·) is called the maximal
subgenerator of C(·) if it is an extension of each subgenerator of C(·) to D(A).

Proposition 2.2. (see [4], [5], [10], [14], [21]) Let A be the generator of a local C-cosine
function C(·) on X. Then

C(t)x ∈ D(A) and C(t)Ax = AC(t)x (2.1)

for all x ∈ D(A) and 0 ≤ t < T0;

C−1AC = A and R(C(t)) ⊂ D(A) (2.2)

for all 0 ≤ t < T0;

x ∈ D(A) and Ax = yx if and only if C(t)x− Cx =

∫ t

0

∫ s

0

C(r)yxdrds (2.3)

for all 0 ≤ t < T0;

A0 is closable and C−1A0C = A (2.4)

for each subgenerator A0 of C(·);

A is the maximal subgenerator of C(·). (2.5)

From now on, we always assume that A : D(A) ⊂ X → X is a closed linear operator
so that CA ⊂ AC.

Theorem 2.3. (see [10], [16]) A strongly continuous family C(·) in L(X) satisfying
(1.3) is a C-cosine function on X with subgenerator A if and only if CC(·) = C(·)C,
λ2 ∈ ρC(A), and λ(λ2 −A)−1C = Lλ on X for all λ > ω. Here

Lλx =

∫ ∞
0

e−λtC(t)xdt for x ∈ X.
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Lemma 2.4. (see [1]) Let C(·)(= {C(t) | 0 ≤ t < T0}) be a strongly continuous family in
L(X). We set C(−t) = C(t) for 0 ≤ t < T0. Then C(·) is a local C-cosine function on
X if and only if 2C(t)C(s)=C(t+s)C+C(t−s)C on X for all |t|, |s|, |t−s|, |t+s| < T0.
In this case,

S(−t) = −S(t) (2.6)

for all 0 ≤ t < T0;

S(t+ s)C = S(t)C(s) + C(t)S(s) on X (2.7)

for all |t|, |s|, |t+ s| < T0. Here S(t) = j0 ∗ C(t) for all |t| < T0.

By slightly modifying the proof of [3, Lemma 2], the next lemma is also attained.

Lemma 2.5. Let C(·)(= {C(t) | 0 ≤ t < T0}) be a local C-cosine function on X, and
C(−t) = C(t) for 0 ≤ t < T0. Assume that S∗n+1 denotes the (n+1)-fold convolution
of S for n ∈ N ∪ {0}, that is

S∗2(t)x =

∫ t

0

S(t− s)S(s)xds

and

S∗n+1(t)x =

∫ t

0

S∗n(t− s)S(s)xds.

Then

S∗n+1(t) =

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)Cnds =

∫ t

0

jn(s)jn(t− s)C(t− 2s)Cnds

on X for all |t| < T0. Here S(t) = j0 ∗ C(t) and∫ t

0

j−1(s)j0(t− s)S(t− 2s)C0ds = S(t) = S∗1(t)

for all |t| < T0.

Proof. It is easy to see that

S∗n+1(t) =

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)Cnds

=

∫ t

0

jn(s)jn(t− s)C(t− 2s)Cnds
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on X for n = 0. By induction, we have

S∗n+1(t)x =

∫ t

0

S∗n(s)S(t− s)xds

=

∫ t

0

∫ s

0

jn−1(r)jn−1(s− r)C(s− 2r)Cn−1S(t− s)xdrds

=
1

2

∫ t

0

∫ s

0

jn−1(r)jn−1(s− r)
[
S(t− 2r) + S(t+ 2r − 2s)

]
Cnxdrds

=

∫ t

0

∫ s

0

jn−1(r)jn−1(s− r)S(t− 2r)Cnxdrds

=

∫ t

0

∫ t

r

jn−1(r)jn−1(s− r)S(t− 2r)Cnxdsdr

=

∫ t

0

jn−1(r)jn(t− r)S(t− 2r)Cnxdr

=
1

2

∫ t

0

[
jn−1(r)jn(t− r)− jn(r)jn−1(t− r)

]
S(t− 2r)Cnxdr

=
1

2

∫ t

0

d

dr
[jn(r)jn(t− r)]S(t− 2r)Cnxdr

=

∫ t

0

jn(r)jn(t− r)C(t− 2r)Cnxdr

for all n ∈ N, x ∈ X and |t| < T0. �

Applying Theorem 2.3 we can obtain the next perturbation theorem concerning
exponentially bounded C-cosine functions just as a corollary of [11, Corollary 2.6.6].

Theorem 2.6. Let A be a subgenerator of an exponentially bounded C-cosine function
C(·) on X. Assume that B ∈ L(D(A)), BC = CB on D(A) and BA ⊂ AB. Then
A + B is a closed subgenerator of an exponentially bounded C-cosine function T (·)
on X given as in (1.5). Moreover, T (·) is also exponentially Lipschitz continuous or
norm continuous if C(·) is.

Proof. It is easy to see that

(λ2 −A−B)−1C =

∞∑
n=0

Bn(λ2 −A)−n−1C

for λ > ω, and the boundedness of {‖C(t)‖ | 0 ≤ t ≤ t0} for each t0 > 0 and the
strong continuity of C(·) imply that the right-hand side of (1.5) converges uniformly
on compact subsets of [0,∞). In particular, T (·) is a strongly continuous family in
L(X). For simplicity, we may assume that ‖C(t)‖ ≤ Keωt for all t ≥ 0 and for some
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fixed K,ω ≥ 0. Then ‖T (t)‖ ≤ Ke(ω+
√
‖B‖)t for all t ≥ 0, and

(λ2 −A−B)−1Cx =

∞∑
n=0

Bn
∫ ∞
0

e−λt
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∫ ∞
0

∞∑
n=0

Bne−λt
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∫ ∞
0

e−λtj0 ∗ T (t)xdt

for λ > ω and x ∈ X or equivalently,

λ(λ2 −A−B)−1Cx =

∫ ∞
0

e−λtT (t)xdt

for λ > ω and x ∈ X. Here∫ t

0

j−1(s)j0(t− s)S(t− 2s)xds = S(t)x for t ≥ 0.

Applying Theorem 2.3, we get that T (·) is an exponentially bounded C-cosine function
on X with closed subgenerator A+B. Since∫ t

0

jn−1(r)jn(t− r)C(t− 2r)xdr

−
∫ s

0

jn−1(r)jn(s− r)C(s− 2r)xdr

=

∫ t

s

jn−1(r)jn(t− r)C(t− 2r)xdr

+

∫ s

0

jn−1(r)[jn(t− r)C(t− 2r)− jn(s− r)C(s− 2r)]xdr

(2.8)

and ∫ s

0

jn−1(r)[jn(t− r)C(t− 2r)− jn(s− r)C(s− 2r)]xdr

=

∫ s

0

jn−1(r)jn(s− r)[C(t− 2r)− C(s− 2r)]xdr

+

∫ s

0

jn−1(r)[jn(t− r)− jn(s− r)]C(t− 2r)xdr

=

∫ s

0

jn−1(r)jn(s− r)[C(|t− 2r|)− C(|s− 2r|)]xdr

+

∫ s

0

jn−1(r)[jn(t− r)− jn(s− r)]C(|t− 2r|)xdr

(2.9)

for all n ∈ N, x ∈ X and t ≥ s ≥ 0, we observe from (1.5) that T (·) is also exponen-
tially Lipschitz continuous or norm continuous if C(·) is. �
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Next we deduce a new perturbation theorem concerning local C-cosine functions.
In particular, the exponential boundedness of T (·) in Theorem 2.6 can be deleted when

the assumption of BC(·) = C(·)B on D(A) is added.

Theorem 2.7. Let A be a subgenerator of a local C-cosine function C(·) on X. Assume

that B is a bounded linear operator on D(A) such that BC(·) = C(·)B on D(A) and
BA ⊂ AB. Then A + B is a closed subgenerator of a local C-cosine function T (·)
on X given as in (1.5). Moreover, T (·) is also locally Lipschitz continuous or norm
continuous if C(·) is.

Proof. Just as in the proof of Theorem 2.6, we observe from (2.8)-(2.9) and (1.5) that
T (·) is also locally Lipschitz continuous or norm continuous if C(·) is. Since

R(C(t)) ⊂ D(A) and BC(·) = C(·)B on D(A),

we have
CT (·) = T (·)C on X.

Let x ∈ X and 0 ≤ t ≤ r < T0 be fixed. Then∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds =
1

2
[j1(t)S̃(t)−

∫ t

0

S̃(t− 2s)xds]

for n = 1, and ∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds

=
1

2

∫ t

0

[jn−2(s)jn(t− s)− jn−1(s)jn−1(t− s)]S̃(t− 2s)xds

for all n ≥ 2. Here
S̃(·) = j0 ∗ S(·).

Since BA ⊂ AB and

S̃(r)x =

∫ r

0

∫ t

0

C(s)xdsdt ∈ D(A),

we have

AB

∫ r

0

[
j1(t)S̃(t)x−

∫ t

0

S̃(t− 2s)xds
]
dt

= BA

∫ r

0

[
j1(t)S̃(t)x−

∫ t

0

S̃(t− 2s)xds
]
dt

= B

∫ r

0

(
j1(t)[C(t)x− Cx]−

∫ t

0

[C(t− 2s)x− Cx]ds
)
dt

= B

∫ r

0

j1(t)C(t)xdt−B
∫ r

0

∫ t

0

C(t− 2s)xdsdt

= B

∫ r

0

j1(t)C(t)xdt−B
∫ r

0

S(t)xdt.

Since ∫ r

0

j1(t)C(t)xdt = xj1(r)S(r)x− S̃(r)x
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and

j1(r)S(r)x = 2

∫ r

0

j1(r − s)C(r − 2s)xds,

we also have

AB

∫ r

0

[
j1(t)S̃(t)x−

∫ t

0

S̃(t− 2s)xds
]
dt

= 2B

∫ r

0

j1(r − s)C(r − 2s)xds− 2B

∫ r

0

∫ t

0

C(s)xdsdt.

(2.10)

Let n ≥ 2 be fixed.

Using integration by parts, we have

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds

=
1

2

∫ t

0

[
jn−2(s)jn(t− s)− jn−1(s)jn−1(t− s)

]
S̃(t− 2s)xds.

Since ∫ r

0

∫ t

0

jn−2(s)jn(t− s)Cxdsdt =

∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)Cxdsdt,

we have

A

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=
1

2

[∫ r

0

∫ t

0

jn−2(s)jn(t− s)AS̃(t− 2s)xdsdt

−
∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)AS̃(t− 2s)xdsdt

]
=

1

2

[∫ r

0

∫ t

0

jn−2(s)jn(t− s)(C(t− 2s)x− Cx)dsdt

−
∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)(C(t− 2s)x− Cx)dsdt

]
=

1

2

∫ r

0

∫ t

0

jn−2(s)jn(t− s)C(t− 2s)xdsdt

− 1

2

∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)C(t− 2s)xdsdt.

(2.11)
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Since ∫ r

0

∫ t

0

jn−2(s)jn(t− s)C(t− 2s)xdsdt

=

∫ r

0

∫ r

s

jn−2(s)jn(t− s)C(t− 2s)xdtds

=

∫ r

0

jn−2(s)
[
jn(r − s)S(r − 2s)x

−
∫ r

s

jn−1(t− s)S(t− 2s)xdt
]
ds

=

∫ r

0

jn−2(s)jn(r − s)S(r − 2s)xds

−
∫ r

0

jn−2(s)

∫ r

s

jn−1(t− s)S(t− 2s)xdtds,

(2.12)

∫ r

0

jn−2(s)jn(r − s)S(r − 2s)xds

=

∫ r

0

jn−1(s)jn−1(r − s)S(r − 2s)xds

+2

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

=2

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

(2.13)

and ∫ r

0

∫ r

s

jn−2(s)jn−1(t− s)S(t− 2s)xdtds

=

∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt,

we have ∫ r

0

∫ t

0

jn−2(s)jn(t− s)C(t− 2s)xdsdt

= 2

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

−
∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt.

(2.14)

By Lemma 2.5, we have∫ r

0

∫ t

0

jn(s)jn(t− s)C(t− 2s)xdsdt

=

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt.

(2.15)
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Combining (1.11) with (2.14) and (2.15), we have

A

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

−
∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt.

(2.16)

It follows from (2.10)and (2.16) that we have

A

∫ r

0

∞∑
n=0

Bn
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

= A

∞∑
n=0

Bn
∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∞∑
n=0

ABn
∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

= A

∫ r

0

∫ t

0

C(s)xdsdt+AB

∫ r

0

∫ t

0

j1(t− s)S(t− 2s)xdsdt

+

∞∑
n=2

BnA

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=
[
C(r)x− Cx

]
+B

[∫ r

0

j1(r − s)C(r − 2s)xds−
∫ r

0

∫ t

0

C(s)xdsdt

]
+

∞∑
n=2

Bn
[∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

−
∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt

]
=

∞∑
n=0

Bn
∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds− Cx− B

∫ r

0

∫ t

0

C(s)xdsdt

−
∫ r

0

∞∑
n=1

Bn+1

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∞∑
n=0

Bn
∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds− Cx

− B

∫ r

0

∞∑
n=0

Bn
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

(2.17)

for all x ∈ X and 0 ≤ r < T0 or equivalently,

(A+B)

∫ r

0

∫ t

0

T (s)xdsdt = T (r)x− Cx
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for all x ∈ X and 0 ≤ r < T0. Since ABn = BnA and BnC(t) = C(t)Bn on D(A),
we have∫ r

0

∫ t

0

T (s)(A+B)xdsdt = (A+B)

∫ r

0

∫ t

0

T (s)xdsdt = T (r)x− Cx

for all x ∈ D(A) and 0 ≤ r < T0. It follows from [14, Theorem 2.5] that T (·) is a local
C-cosine function on X with closed subgenerator A+B, and is also locally Lipschitz
continuous or norm continuous if C(·) is. �

By slightly modifying the proof of Theorem 2.7 we also obtain the next perturbation
theorem concerning local C-cosine functions which is still new even though T0 =∞.

Theorem 2.8. Let A be a subgenerator of a local C-cosine function C(·) on X. Assume
that B is a bounded linear operator on X such that BC(·) = C(·)B on X. Then A+B
is a closed subgenerator of a local C-cosine function T (·) on X satisfying

T (t)x =

∞∑
n=0

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)Bnxds (2.18)

for all x ∈ X and 0 ≤ t < T0. Moreover, T (·) is also locally Lipschitz continuous or
norm continuous if C(·) is.

Proof. Suppose that B is a bounded linear operator on X which commutes with C(·)
on X. Then

T (t)x =

∞∑
n=0

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)Bnxds

for all x ∈ X and 0 ≤ t < T0. Since the assumption of BA ⊂ AB in the proof of Theo-
rem 2.7 is only used to show that (2.10) and (2.17) hold, but both are automatically
satisfied if BA ⊂ AB is replaced by assuming that B is a bounded linear operator
on X which commutes with C(·) on X. Therefore, the conclusion of this theorem is
true. �

We end this paper with a simple illustrative example.

Example 2.9. Let C(·) (= {C(t)|0 ≤ t < 1}) be a family of bounded linear operators
on c0 (family of all convergent sequences in C with limit 0), defined by

C(t)x = {xne−n coshnt}∞n=1

for all x = {xn}∞n=1 ∈ c0 and 0 ≤ t < 1, then C(·) is a local C-cosine function on
c0 with generator A defined by Ax = {n2xn}∞n=1 for all x = {xn}∞n=1 ∈ c0 with
{n2xn}∞n=1 ∈ c0. Here C = C(0). Let B be a bounded linear operator on c0 defined
by Bx = {xne−n coshn}∞n=1 for all x = {xn}∞n=1 ∈ D(A), then C(·)B = BC(·) on c0.
Applying Theorem 2.8, we get that A+B generates a local C-cosine function T (·) on
c0 satisfying (1.5).
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