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Exponential decay of the viscoelastic wave
equation of Kirchhoff type with a nonlocal
dissipation
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Abstract. The following viscoelastic wave equation of Kirchhoff type with non-
linear and nonlocal damping

Utt — P (HVu”i) Au — aAus + /Ot g(t — T)Au(r)dr + M (HVuHi) ut = f(u),

where M(r) is a C'([0,00)) -function satisfying M(r) > mq > 0 for r > 0, is
considered in a bounded domain Q of RY. The existence of global solutions and
decay rates of the energy are proved.
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1. Introduction

In this paper, we shall consider the initial boundary value problem for the fol-
lowing integro-differential problem

¢
Ut — P (HVqu) Au — aAuy + / g(t — 7)Au(r)dr
0

M (||vu|y§) w = f(u), in Qx(0,T), (1.1)
u(z,0) = up(z), wue(z,0) =ui(z), =€,
u(z,t) =0, x€d, t>0,

where Q is a bounded domain in RY (N > 1) with smooth boundary 9 so that
the divergence theorem can be applied. 1 (r) is a positive locally Lipschitz function
satisfying ¥(r) > mg > 0, for r > 0 like ¥(r) = mo + br?, b > 0 and v > 1. M(r)
is a C1]0, 00) -function satisfying M(r) > my > 0 for r > 0, the scalar function g(s)
(so-called relaxation kernel) is assumed to satisfy (2.1) and f is a non-linear function



430 Mohamed Mellah and Ali Hakem

as similar to |u|P~2u, p > 2. Here a > 0. The motivation for this problem comes from
the following original equation ,

0%u ou Eh [* [ou 0%u
where 0 < 2 < L, t > 0 and u = u(x,t) is the lateral displacement at the space
coordinate x and the time ¢, p the mass density, h the cross-section area, L the
length, F the Youngs modulus, pg the initial axial tension, § the resistance modulus
and f the external force. When 6 = f = 0, the equation (1.2) was first introduced by
Kirchhoff [2].

In the absence of the term M(HVuH;)uf Wu and Tsai [7] studied (1.1) with o = 1.

The authors established the global existence and energy decay under the assumption
g (t) < —rg(t), ¥Vt > 0 for some r > 0. Recently, this decay estimate of the energy
function was improved by Wu in [6] under a weaker condition on g i.e. ¢'(t) < 0,
vt > 0.

If we consider (1.1) with [) = 1, f = a = 0] and the bi-harmonic instead of Laplace
operator one we get the model

t
U + A%u — / g(t — 7)A%u(r)dr + M (HVUHE) up = 0. (1.3)
0

Cavalcanti et al. [1] investigated the global existence, uniqueness and stabilization of
energy. By taking a bounded or unbounded open set €2, the authors showed that the
energy goes to zero exponentially provided that g goes to zero at the same form.

The main interest of the present paper is to examine whether there exists a global solu-
tion w to (1.3) under the presence of the nonlinear and nonlocal dissipation represented

by M (/ |Vu(x,t)|2d$c) us and the real-value function M : [0,+00) — [mq, +00),
Q

where m; > 0 will be considered of class C!.
This kind of damping effect was firstly introduced by H. Lange and G. Perla Menzala
[3] for the beam equation where the following model was considered

ugs + A%u+ M (/ |Vu(x,t)|2dx) uy=0 in RY xRT. (1.4)
0

The nonlocal nonlinearity M < / |Vu(z,t) 2da7> uy is indeed a damping term. It mod-

els a frictional mechanism acting on the body that depends on the average of u itself.
Moreover, if such u does exist, we intend to investigate its asymptotic behavior as
t — o0.

In this paper we show that under some conditions the solution is global in time and
the energy decays exponentially. We first use Faedo-Galerkin method to study the ex-
istence of the simpler problem (3.1). Then, we obtain the local existence Theorem 3.2
by using contraction mapping principle. We obtain global existence of the solutions
of (1.1) given in Theorem 4.4. Our technique of proof is similar to the one in [7] with
some necessary modifications due to the nature of the problem treated here. Moreover,
the asymptotic behavior of global solutions is investigated under some assumptions
on the initial data.
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2. Preliminaries

In this section we present some assumptions, notations and Lemmas. We first
make the following hypotheses.
(A1) g : RT — R* is a bounded C! function satisfying

/ g(r)dr =1, >0, g¢g(0)— Kl/ g(r)dr =1 > 0,
0 0

—Kig(t) < ¢'(t) < —Kag(t),

here K, and K> are positive constants.
(A2) f(0) = 0 and there is a positive constant K3 such that

|f(u) = f(v)] < Ks|lu—v| (|u‘p_2 + Mp_Q) for wu,veR, (2.2)
and
2<p<oo if N=1,2 and 2<p§% if N>3 (23
(A3) The function M (r) for r > 0 belongs to the class C'1[0, 00) and satisfies
M(r)>my >0 for r>0. (2.4)

For functions u(z,t), v(x,t) defined on €, we introduce

(u,v) = / wvdz, |lull2 = (/ |u|2dx) , lullee = esssup |u(x)|,
Q Q

€N

2

pr—<lﬂuﬂm>, lallzm = | > ID7II3

[B]<m
Lemma 2.1. (Sobolev-Poincaré inequality [5]) If 2 < p < 22 then

[ullpy < Bil|Vull2, (2.5)
for uw € H} () holds with some constant By.

3. Local existence of solution

In this section, we shall discuss the local existence of solutions for (1.1) by using
contraction mapping principle. An important step in the proof of local existence
Theorem 3.2 below is the study of the following simpler problem:

t
ugr — p(t)Au — aAuy + / g(t — 7)Au(r)dr

x(Ou = file,t), i Qx (0,7), (3.1)
u(z,0) =up(x), wu(x,0)=ui(x), zx€Q,
u(z,t) =0, x€09Q, t>0.
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Here, T > 0, « > 1, f1 is a fixed forcing term in Q x (0,7T), u(t) is a positive locally
Lipschitz function on [0, 00) with u(t) > mg > 0 for t > 0 and x(¢) is C*-function on
[0, 00) such that x(¢) > 0 for ¢ > 0.

Lemma 3.1. Suppose that (A1) holds, and that ug € H?(Q) N HL(Q), uy € HY(Q) and
f1 € L*([0,T); L*(Q)) be given. Then the problem (3.1) admits a unique solution u
such that

we C([0,T]; H*(Q) N Hy(Q)), w € C([0,T]; L*(2)) N L*([0, T; Hy (),
uy € L2([0,T]; L*(Q)).

Proof. Let (wy)nen be a basis in H2(Q) N H(2) and V™ be the space generated by
W1y ey Wy, 1= 1,2, --. Let us consider

u™(t) = Zdﬁ(t)wk,
k=1
be the weak solution of the following approximate problem corresponding to (3.1)
ugy (Hwdx + p(t) / Vu'(t) - Vwdz

_Q /O tg(t—T) /Q Vu"sz)'dexdT—l—a /Q Vul(t) - Vwdz (3.2)

—|—X(t)/ u?(t)wdxz/fl(z,t)wdx for we V™,
Q Q

with initial conditions

(0 =up =3 / wowpdzwy — up in H2(Q) N HL(Q), (3.3)
k=17
ug (0) = ulf = / uywpdrwy, — uy in H(Q). (3.4)
k=17

By standard methods in differential equations, we prove the existence of solutions to
(3.2) — (3.4) on some interval [0,t,), 0 < ¢, < T. In order to extend the solution of
(3.2) — (3.4) to the whole interval [0, T, we need the following a priori estimate.
Step 1. (The first priori estimate) Replacing w by 2u}(¢) in (3.2), we have

i [t @13 + IV @3] + 200 Ve O + 2x(@)luf (D)3

=/ (t)||Vur(t)]]3 + 2/0 gt —71) /Q Vu' (1) - Vuy (t)dzdr

12 / fr(@s up (Hda < i @Vun (1)|2 + [ Tup (0)]12

t
+llgllLs /O g(t = DIV (7)lI3dr + [l £ 113 + llug (B)]I5.

(3.5)
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Then, integrating (3.5) from 0 to ¢, we get
t

[uf (D113 + n@®)Vur @©)]3 + (20 - 1)/0 IVuZ(r)ll3dr < 1

¢ 1 / 2 n 2 n 2
- [1 4 (W + ng)] () + () [Var (7)]2] dr

(3.6)

where ,
e = g2 + u(0)|Vug |3 + / 12t

Taking into account (3.3) and (3.4), we obtain from Gronwall’s Lemma the first priori
estimate

t
luf ()13 + u()IVu" ()13 +/0 IVug (r)l3dr < L, 3.7)

for all ¢ € [0, T]. Here L, is a positive constant independent of n € N and ¢ € [0, T].
Step 2. (The second priori estimate) Replacing w by w},(¢) in (3.2), we have

) [ Vo) Ve + SIvao + 52 o

Hup ()15 = w'(1) /Q Vu' (t) - Vui (t)da + p(t)]| Vi (¢)]]3

—&-&Hu?(t)ﬂg % (/0 gt —71) A Vu(7) - Vuf(t)da:ch‘) (3.8)
/wL vwmm+4ﬁ@mwmm

; "t — 7’)/ Vu' (1) - Vui (t)dzdr.

v (A1), Holder’s inequality and Young’s inequality, one has than we have

1
/ (t—71) / Vu" (1) - Vui (t)dedr < iHVU?(t)Hg

(3.9
&gl / o(t — ) |[Vu" () 3
Since p(t) > mg and from (3.7) we obtain
~0) | v Ve < GIvoIE+ Sl
< 319 (0)13 + “Sanl-
Since x(t) is C'-function on [0, 00) and using (3.7) we infer that
X/(t) Al n Al
lu @113 < —-luy (O3 < =L (3.11)
2 2 2
Moreover,
(0) [ T () Vg ()d| < §IVar @)1 + HENT0 013 512)
n M?L '
< 5lIVur @13 + Zc
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where M; = sup {|u'(t)|} and A; = O%zszﬂx’(tﬂ}. Then, by using (3.9) — (3.12),

we obtain from

Tt / V() Vupds + SOl + Xl 1]

RO < o+ Dt [ - v olar
+4 /t gt — T)/ Vu" (1) - Vuf(t)dxdr)
(35 0) [T 013

where ¢y = (W) Li+4]1 /113 and My = OEI;ET{W@)H. Thus, integrating

(3.13) over (0,t), we obtain
t
SV @1+ 3 [ e+ X1 ol
/Vu” -Vuy (t)dz /Vug -Vuldx
+(My+ 3 / [Vl (7)|3dT —|—/ (t—r / Vu"(7) - Vui (t)dzdr,
0

where (c3 = ¢z + §1||g|| L) T+ 2| Vup|3 + X(O) |u]|3. We note that using the in-
equality ab < 7 a + nb?, where n > 0 is a1rb1t1ra1ry7 it follows that

< ez + p(t) + 1(0) (3.14)

t
/ gt —7) [ Vur(r) - Vup(t)dedr < |V (1)]2
0 Q

t

2 llgll 22 0,00 1911 2= (0,00) / IV (7)[3dr < 0|V (t))12 (3.15)
||g||L1 Ooo)”gHL (0, oo)L T
4dnmy
and
v -V < Vul ()| M"? Vu 2
u uf(t)dz| < nl|Vug @)z + || "3
M
< (IO 1 —— T S 1
< 77||Vut()||2+477mO 1 (3.16)

By plugging (3.15) and (3.16) into (3.14) with 0 < n < £, we obtain from x(t) > 0
that

(5 —2n) Vup(®)]3 +2/ u (7)]|3dt < ¢4

(3.17)
+ () [ IVl
where
M2 oo
e = 5+ n0) [V ol Vs + o Lw”“’”j ol ;7. (3.18)
mo nmo
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Taking into account (3.3) — (3.4), we obtain from Gronwall’s Lemma the second priori
estimate

IV ()2 + / lur (7)|3dr < Lo, (3.19)

for all ¢ € [0, T]. Here Ly is a positive constant independent of n € N and ¢ € [0, T].
Step 3. (The third priori estimate) Replacing w by —Aw™(¢) in (3.2), we have

4 [- [uroaro+ Slac o+ X v ol
—[[Vup ()|I5 + pult )||AU @13
= X0 7yn(t)|2 + / (t—7) /Au () dadr (3.20)
/ fi(z, 1) (—Au™(t))dz < *||VU )3 + 2nllAau™(1)]3

t
loll A L
s [y - s oldr + 1Al

where 0 < 7 < 2 is some positive constant. From pu(t) > mg > 0, we deduce by
integration

$l18w (1)1} +(mo—277)/ 8w (olr + X2 [9ur o)
< [ Ivurega+ 3 [ v+
2w Ods| + & [ 115 .21

+a llgllZs
S5+ 2V g+ L2 [ o) ar

[ wtawr o] + 2 [ suropan
Q
where

o = o Augll + G183 15 + 1= [ 111dr+ XV + (S22 + 12 T

ut( JAuU" (t)da

+/ut
Q

<ecs+

We note that using the inequality ab < iaQ + b2, it follows that

n n 1 n n
/Q up (A" (1) < 8" (O3 + uf ()] (3.22)
Plugging (3.22) into (3.21), we obtain from x(t) > my > 0 that
(2 — 1) JAun()|3 + (mo — 20) / | Au”(r) | 3dr
| H (3.23)
X0 un ()3 < e+ 1200 / | Ay, ()2,

where
cg =c5+ L.
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Taking into account (3.3) — (3.4), we obtain from Gronwall’s Lemma the third priori
estimate,

t
1Au™ ()13 +/ |Aw" ()|[3dT < L, (3.24)
0

for all ¢ € [0, T] and Lg is a positive constant independent of n € N and ¢t € [0, T].
Step 4. Let p > n be two natural numbers, and consider 2™ = uP —u”™. Then, applying
the same way as in the estimate step 1 and step 3 and observing that {uj} and {u]}
are Cauchy sequence in H{(Q) N H?(Q) and Hg (), respectively, we deduce for all
te[0,T]

t
Iz ()13 + u@®IV"@)]13 + / IV22(r)[3dr — 0, (3.25)
and . ’
182" (0)]2 +/ 1A (7Y [2dr — 0, as n - oo. (3.26)
Therefore, (3.7), (3.19), (3.24), (03.25) and (3.26), we see that
u™ — u strongly in  C(0,T; Hy(Q)), (3.27)
uf — u; strongly in - C(0,T; L*(Q)). (3.28)
ul — u; strongly in - L?(0,T; Hy(Q)), (3.29)
ul — uge weakly in - L?(0,T; L*(Q)). (3.30)

Then (3.27) — (3.30) are sufficient to pass the limit in (3.2) to obtain in
12(0,7: H-\(2)

ugy — p(t)Au + /0 g(t — T)Au(r)dT — alAuy + x(H)ur = fi(x,t). (3.31)

Next, we want to show the uniqueness of (3.1). Let ™ and ©® be two solutions of
(3.1). Then y = u") — u?) satisfies for w € H}(Q)

wu(t) /Q Vy(t) - Vwdx — /Ot g(t — T)/ y(7) - Vwdzdr

+/ ytt(t)wdx—I—oz/ Vye(t) - Vwdx + x(t /yt t)wdx = 0, (3.32)
Q

Q Q
y(IE,O)ZO, yt(x,O)ZQ z €,
y(z,t) =0, ze€0Q, t>0.

Setting w = 2y;(t) in (3.32), then as in deriving (3.7), we see that
t

(O + m(OIVyO)13 + (20— 1) [ 1997 3dr )

t
1
S/O [1 Les) (I (m)| + ||9||2L1)} [y (D13 + w(n)[Vy(r)I3] dr
Thus employing Gronwall’s Lemma, we conclude that
lye@)ll2 = IVy(t)|l2 =0 forall te€ 0,77 (3.34)
Therefore, we have the uniqueness. This finishes the proof of Lemma 3.1. O

Now, let us prove the local existence of the problem (1.1).
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Theorem 3.2. Assume that (Al), (A2) and (A3) are fulfilled. Suppose that uy €
H2(Q) N HI(Q), up € HF(Q) be given. Then there exists a unique solution u of (1.1)
satisfying u € C([0,T]; H*(2) N H(Q)) and u, € C([0,T]; L*(Q)) N L0, T; HA(2)),
and at least one of the following statements is valid:

(i) T=os,

. 3.35
(i) e(u(t)) = [|ue@®)3 + [|[Au@®)]|3 - 00 as t—T". (3.35)
Proof. Define the following two-parameter space:
v e C([0,T]; HE (2) N H2(Q))
Xrr, =9 v € C([0,T]; L*(R)) N L*(0,T; Hy()) : ;
e(v(t)) <RE t€[0,T], with v(0)=up, v(0)=1uy
for T'> 0, Ry > 0. Then X1 g, is a complete metric space with the distance
1
d(y,z) = sup e(y(t) — (1)), (3.36)

0<t<T

where y, 2z € X1 g,. Given v € Xr g,, we consider the following problem

Uy — (HV’UH;) Au — alAu + / g(t — 7)Au(r)dr
0

+M (|[Vo]3) w = f0), in @ x (0,7), (3.37)
u(z,0) =uo(z), w(z,0)=ui(z), =€,
u(z,t) =0, x€0Q, t>0.

By (A2), we see that f(v) € L?*(0,T;L?(Q)). Thus, by Lemma 3.1, we derive that
problem (3.37) admits a unique solution u € C([0,T]; H*(Q) N HL(Q)) and u; €
C([0,T); L?(Q)) N L(0,T; H} (). Then, we define the nonlinear mapping Sv = u,
and we would like to show that there exist T" > 0 and Ry > 0 such that S is a
contraction mapping from Xt g, into itself. For this, we multiply the first equation
of (3.37) by 2u; and integrate it over {2 to get

4 [(w(15013) = [ atrvar) Ivuto3 + (g vy 0]

+2 [l (®)113] + 20 Fue(®)3 + 20 (| Vo3 e (8) 3 (3.38)
(g 0 Vu) (1) + g (0] Vu(t) 3

(
2
= (@0 (Ivol)) IvuoI3 +2 | f@uda.
The equality in (3.38) is obtained, because
t
—2/ / g(t — 7)Vu(r) - Vu(t)dzdr = — (g’ o Vu)(t)
0o Ja

t (3.39)
o(t) | Vult) |3+ £ [(go Vu) () / g<r>||w<t>|§df] ,

where

(goVu)(t):/ (t—7) /|vu u(t)|?dzdr.
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Next, multiplying the first equation of (3.37) by —2Au, and integrating it over 2, we
have

4 [a”Au(t)%2/QutAudx+M(||VUH )IIVU )3}
+20 (|| Voll3) 1Au®l - 20| Vud ()3 10
- (EM<HVUH2)> V() —2/f ) Audz 40

+2/0 g(t — 7)Au(r) - Au(t)dzdr.

Multiplying (3.40) by €, 0 < € < 1, adding (3.38) together and taking into account
(A1) and (A3), we obtain

L et (u(t)) + 2(a — )| Vue (B)]|2 + 261/)(HV1)|| )||Au OIZ< L+ +15, (341)

dt
where .
e* (u(®)) = Jue (I3 + (w(ww%) -/ g(T)dT> IVu(li
0
+(g 0 Vu) (t) + ea| Au(t) |3 — 26/ ur Audz (3.42)

e (|| Vol[3) IFu()l3.

L = 2/ f()(uy — eAu)da,
Q
L= (jtw(nwug) " eth(nwn;)) IV,

I3 = 26/0 g(t — 7)Au(r) - Au(t)dzdr.

Estimate for Iy = 2 [, f(v)(u; — eAu)dz. From (A2) and making use of Holder’s
inequality and Lemma 2.1, we have

and

I :2/Qf(v)(utfeAu)d:c

§2/ ‘f(v)ut‘dx—l—%/ ‘f(v)Au‘dac

Q Q

§2K3/ |vyp-1|ut\dx+zef<3/ o] ™" | A de (3.43)
Q Q

< 28387 Avll§™ luelo + 26K BTV Av ] Al

< 2K B TVRE e (u(t)) + 2eKa BTV RE e(u(t))

= 2K;5(1 + ) B2V RE e (u(t))?.

Estimate for Iy = (E¢(||v”||2> + 6%M(HV’UHZ)> |[Vu(t)||3. First of all, we observe
that

ae(Ivel) =20 (19l [ vo- Vv o
< 2Ms||Av]s[|ve ][> < 2Ms Rg,
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where M3 = sup {|¢’(s)]; 0 < s < B{R3}, and

Ay (|[vef2) = 2eh(|[v0f) / Vo Vouda
Q
S 26A2||A’U||2HU¢||2 S 2€A2R%,
where Ay = max {|M’(s)|; 0 < s < BfR3}. Then, from (3.44) ,(3.45) and using (3.35)

we arrive at

(3.45)

I, <2BIR (M3 + eAs)e(u(t)). (3.46)
Estimate for I3 = 2¢ fot g(t—7)Au(71)-Au(t)dzdr. Using the inequality ab < ﬁaQ—H]bQ,
where n > 0 is arbitrary, we get

L =2 /0 Calt— ) / Au(r) - Aut)dzdr

) (3.47)
< 2en|Aut) | + 14 | gt~ )l Au(r)ar.
0
Combining these inequalities with 0 < n < lg HLl , we get
e (u®) +2(a = )| VurI + 2¢ (v (IVell3) = n) 1 Au(®) I3
< 2B2R3(Ms + eAy)e(u(t)) + 2K3(1 + €) BiP "V RE e (u(t)) (3.48)
t
vl [ gt =) (o) ar
When we take € = 0 in (3.48), we see that
t
&1 (o(1ve1g) = [ atrar) I9uol + (g 7))
0 (3.49)

+ i [l (D13] + 20| Vue (8) 13 1
< 2B2R2Mye(u(t)) + 2K3B; "V RE e (u(t))®.
By Young’s inequality, we get
26/ wAudzr < 2€||ug|2 + §||Au(t)||§.
Q

Hence

e*(u(t)) > (1 —2¢) w3 + ¢ (a — 3) HAu(tt)H%—i-(govu)(t)
e (|| Vo) IVu(e)]3 + (w(wwg) - g(T)dT> IVu(t)|2. (3.50)

0
Choosing € = 2 and taking into account (A1) and (A3), we have
e (u(t) > ze(u(t). (3.51)
and
(o) < (14 26)ur 3 + € (o + ) 1A 3 + ¢ (IVwol13) Vol
+eM(HvuoH§) IVuol3 < 2[ur]3 + (e + 3) [[Auol3 (3.52)

2 *
0 (190 13) IV ol + M (|| o 13 7003 = ¢
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Integrating (3.48) over (0,t), we get
) t
e (u) + & (mo —n— 245 ) [ ()]s
¢ 0 ) (3.53)
<e* (uo) +/ [C’le* (u(T)) + Cye* (U(T))E] dr,
0

where Cy = 10BR3(Ms + 2A;) and C; = %Kle(pfl)Rg_l. Taking n = % in
(3.53), then from (A1), we deduce

e (u(t)) < * (ug) + /0 t [Cre* (u(r) + Coe* (u(r)) ] ar

: ) (3.54)
<c* +/ [Cle* (u()) + Cae* (u(r)) 2} dr.
0
Hence, by Gronwall’s inequality, we have
C 2
e*(u(t)) < <\/c7+ ;T> e, (3.55)
Then, by (3.51), we obtain
C 2
e(u(t)) <5 (ﬁ + ;T) et (3.56)
for any ¢ € (0,T]. Therefore, we see that for the parameters T and Ry satisfy
c 2
5 <\/c7+ ;T> AT < R2. (3.57)

That means S maps Xt g, into itself. Moreover, by Lemma 3.1,
w e CO(0,T); HA () N HE(Q) N CH(0,T]; L2(2)).
On the other hand, it follows from (3.49) and (3.56) that
ug € L*(0,T; HY ().

Next, we shall verify that S is a contraction mapping with respect to the metric d(-, -).
We take vq,v2 € X7 R,, and denote uM = Sv; and u® = Sv,. Hereafter we suppose
that (3.57) is valid, thus u),u® € X7 g,. Putting w(t) = (uV) —u?) (¢), then w

satisfies
t

Wiy — P (||VU1||%) Aw + / g(t — 7)Aw(T)dT — aAw;

M ([Vor]3) we = fl0n) — F(2)
+ [0 (IVor]3) — ¢ (IVo2]j2)] Au® (3.58)
+ [M ([ Vuall3) — M ([Vol|3)] wf®,

w(0) =0, w(0)=0,

w(z,t) =0, z€dQ, t>0.
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We multiply the first equation of (3.58) by 2w; and integrate it over Q to get

t

4| (o(1ventz) = [ owrar) w15 + @0 vu)e) .
4 [wn()18) + 20 Vur ()3 < L+ Is + I + In.

We now estimate I4-I7 (defined as below), respectively.

I = (iw (Vm%)) IVw(®)|3 < 2Ms B} Rie(w(t)), (3.60)

I5 = 2/Q [f(vl) — f(vg)}wtdx

< 2K (v p_2+vp_2)v—v wydx
3/Q|1\ 02777 )01 — v wy (3.61)
< 2K llor |5 a ) + lelBea [ lor = w2l sl

< 4K3BiP YR e (v — vz)%e(w(t))%’

To =2 [¢ (IVor[2) — v (I Vea]12)] / Au®w,ds

é 2L<||V1)1||2 + ||va||2) ||Vv1 — V'UQHQ HAU(Q)HQ Hth2 (362)
< 4LBQR%e(v1 — vg)%e(w(t))%,
where L = L(R) is the Lipschitz constant of ¢(s) in [0, Ro].
Estimate for I7 = 2 [M ([[Vv2|3) — M ([[Vv13)] [, uiz)wtdx. Assumption (A3) gives
) ) Vv2ll3 ,
M (Tesld) = M (9] = |
v1l3
Voallz
< [, W@l < C. IVl — [9nl (3:65)
[[Vv1]3
C. (IVerllz + [ Fo1ll2 ) V03 = Voulle,
where C is a positive constant. From (3.63) and (3.35), we have
b =2 [M (I902]B) = M (I90alB)] [ afPuwndo
Q
< 2. (IVonllz + Vil )11V (w2 = o)l ™| el (3.64)
< 2C.BiR3e(v) —v2)? 2 e(w(t))%.
Inserting (3.60) — (3.64) in (3.59), we get
4 [( o(1vul) - [ otrar ) 1wl + oo v
(3.65)

& [lwe(t) 3]+2a\|th I3

S C3€( ) —|—046(’Ul —1}2)26(11}(75))%,

-
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where Cy = 2M3B2R2 and Cy = 4K3B?P" Y RE™2 4 41 B2R? + 2C, B2R2.
On the other hand, multiplying the first equation in (3.58) by —2Aw, and integrating
it over ), we get

% {a”Aw(t)% — 2/thAwdx + M(HVleZ) |Vw(t)||§} (3.66)
+20([|[Vor[3) I1Aw(®) I3 = 2/ Vwnll§ = Is + Iy + ho + Tt + Tz

We now estimate Is-I7; (defined as below), respectively.
Applying the similar arguments as in estimating I;, i = 2, 3,5, 6,7, we observe that

= (M (V) ) IVeIf < 24053 B2 (w10), (3.67)
Iy = —2/Q [f(vl) - f(%)} AU’dT (3.68)
< 4K BTV RE e (v — v) e (w(t))?,
_ B Vo u? Awdz
o =2 [0 (1901 18) = (17w )] [, Al s 3.69)
< ALBIRZe(vy — v) e (w(t))?,
L =2 [M ([Ves|3) - (\Wlu ]1/ Au® Awdr (3.70)
< 2C.B}R3e(vy —v2)? 6(10(15))5
and
Iy = 2/ gt —7) | Aw(r) - Aw(t)dzdr
0 Q (3.71)

¢
< 21| Aw(t)[3 + Lol / g(t — )| Aw(r)||3dr,
0
where 77 > 0 is arbitrary. Combining these inequalities with 0 < n < %, we get
2
al|Aw(t)||3 - 2/thAwdx + M(HV@lH2) Vw(t)||§}
2
2 (w<HVv1H2) — 277) |Aw(t)||3 < C4e(v1 — 1)2) e(w(t))
¢
il [ g - )| Aw(r) [ + 2wl + Cre(w(t).
0

Nl
D=

(3.72)

where C5 = 245 BZ R?. Multiplying (3.72) by €, 0 < € < 1, and adding (3.65) together,

we obtain
) = 20) 8wl
1
2

e(w(t)* (3.73)

e (w(t)) +2( a—e)||th||2+2e( (}Vm“i
<(Cs+ 66225)6( w(t)) + (1 + €)Cye(vy — v2)
vl [ g - r)|Au(r) ar

0
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where
e wit) = 13+ (0(19013) - [ o(rar ) 170
+(g o Vw)(t) + eal| Aw(t)||3 — 26/ wiAwdz (3.74)
)
e ([[Vor ;) IV ()3

By using Young’s inequality on the fifth term of right hand side of (3.74), we get
e (w(t) > (1 - 26)Hw15(i)||§ +e(a—3)|Aw)3
+(w(1ventz) - [ owar) 19wt (3.75)
(g0 Vw)(t) + eM(HVmHz) IVw(t)|2.
Choosing € = 2 and by (2.1), (2.4), we have

1
e (w(t)) > ge(w(t)). (3.76)
Then, applying the some way as in obtained (3.53) and taking n = H92”nL1 , we deduce
i 2
e** (w(t)) < / |:5 (03 + 505) et* (w(t))
0 (3.77)

+ 15 Che(vr — vo) 2 e (w(t)) ﬂ dr + e** (w(0)).

Thus, applying Gronwall’s Lemma and noting that e** (w(O)) =0, we have

e (w(t)) < g6‘42’17265(03%C5)T sup e(vy — v2). (3.78)
20 0<t<T
By (3.36) and (3.76), we have
d(uV,u®) < C(T, Ro) 2 d(v1,v2), (3.79)
where
C(T, R)? = %oﬁ#é(cﬁ%%)? (3.80)

Hence, under inequality (3.57), S is a contraction mapping if C(T, Rg) < 1. Indeed,
we choose Ry sufficient large and T sufficient small so that (3.57) and (3.79) are sat-
isfied at the same time. By applying Banach fixed point theorem, we obtain the local
existence result.

The second statement of the theorem is proved by a standard continuation argu-
ment. Indeed, let [0,7) be a maximal existence interval on which the solution of
(1.1) exists. Suppose that T' < oo and tlirjr} (Jlue()]13 + |Au(t)||3) < oo. Then, there

T

are a sequence {t,} and a constant K > 0 such that ¢, — T~ as n — oo and
llue(tn)||3 + |Au(t,) |3 < K, n = 1,2,... Since for all n € N, there exists a unique
solution of (1.1) with initial data (u(t,), u:(tn)) on [tn,tnyp], p > 0 depending on K
and independent of n € N. Thus, we can get T < t,, + p for n € N large enough. It
contradicts to the maximality of T. The proof of Theorem 3.2 is now completed. [
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4. Global existence and energy decay

In this section, we consider the global existence and energy decay of solutions
for a kind of the problem (1.1):

t
Uy — (HVuHZ) Au — aluy + / g(t — 7)Au(r)dr
0

+M (HVUH;) up = |ulP~2u, xe€Q, t>0, (4.1)
u(z,0) = uo(x), w(x,0)=ui(z), z=€Q,
u(z,t) =0, x€d, t>0,

Wher62<p§%,0421andw(r)zl—kbﬂ,bZO,yZ1andr20.

To obtain the results of this section, we now define some functionals as follows:

I(t) = I (u(t)) = (1 —/0 g(T)dT> IVu)ll3 + (g0 Vu)() = [lu®)ll},  (4.2)

Iy(t) = I (u(t)) = L (t) + b Vu(t) 57, (4.3)
t
50 =30 =5 (1= [ atnar) T+ d@o v
+aei g IVe® 157 = Lu) 2.
We define the energy of the solution w of (4.1) by
B(t) = B(u(t) = 3llue(Dl3 + 7 (u(t)) = 5]lua(t)]3
T (1 -/ g(f)df) [Fu(®)3 + (g0 Vu)(t (45)
0
+ ot V@) = Lju(h)|z.
Lemma 4.1. E(t) is a non-increasing function for t > 0, that is
B(0) < = (015 + 2T u0)]3 + 5 (50 V) 1)
(4.6)

+ég(t)||Vu(t)||%] <0, forall t>0.

Proof. Multiplying the differential equation in (4.1) by w;, integrating by parts over
Q and using (A3), we obtain

& [l (13 + SIVu®I3 + 522 IVu@ 130 = L)
— —al|Vuy(t)[3 ~ M ([ Zullf) lus (1) I3

+/0 /Qg(t —7)Vu(r) - Vut(tt)dxdT
< —a|[ V(D)3 — ma e (8)[3 + / /Q ot - 7)Vu(r) - Vg (t)dadr.

Exploiting (3.39) on the third term on the right hand side of the above inequality and
using (A1), we have the result. O
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Lemma 4.2. Let u be the solution of (4.1). Assume the conditions of Theorem 3.2
hold. If I,(0) > 0 and

p—2

_BI(_ 2 7
o= L (ll(p—Q)E(0)> <1, (4.7)

then Iy(t) > 0, for allt > 0.
Proof. Since I1(0) > 0, it follows from the continuity of u(t) that
Li(t) >0, (4.8)

for some interval near ¢t = 0. Let ¢4, > 0 be a maximal time (possibly tmae = T),
when (4.8) holds on [0,¢,,4,). From (4.2) and (4.4), we have

502 3 (1= [ oar ) V0l + oo Vo) - Hlul
2 [(1- [ o) Ivulg+ govae] < bney @

0
t
(1 [ atrar) 19ulg > (552 nvuls

%
|

%
i

Using (4.9), (4.5) and E(t) is non-increasing by (4.6), we get

2p 2p
mE(t) < mE(O) (4.10)

Exploiting Lemma 2.1 and (4.7), we obtain from (4.10) on [0, t;n4z)
—2
lellp < BYIIVully = BY[IVulls™ | Vull3

p—

< E (5Z5EO) T LlVul} = ol Vul3

2p
Vaul2 < = <
WVl < S50 <

=T \Lh(-2)

<<(1—1Atmfﬁh)HVuﬁ.

Thus on [0, tyaz), we have

¢
L(t) = <1 —/ g(T)dT) IVu@®)l3 + (g0 Vu) () = [u@®)]; > 0. (4.11)
0
This implies that we can take tp,q,; = T But, from (4.2) and (4.3), we see that
L(t) > L(t) >0, te[0,T]. (4.12)

Therefore, we have I(t) > 0, t € [0, 7).
Next, we want to show that 7' = co. Multiplying the first equation in (4.1) by —2Au,
and integrating it over €2, we get

% {a||Au||§ -2 /Q w Audx + M(HVqu) ||Vu||§}

+(2¢(||vu||j) —2n) |Au|2 < 2[| V|2 —2/Q|u|p_2uAudx (4.13)

t
H HLI d 2
#le [ = rldu(r) e+ (e (194l) ) 19l
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where 0 < n < %. On the other hand, multiplying the first equation in (4.1) by
2us, and integrating it over 2, we get

i QE(1) + 20| V|3 = (9" 0 Vu) (t) = ()| Vu(t) |13

4.14
2 (|| 2) 3 1

Multiplying (4.13) by €, 0 < € < 1, and adding (4.14) together, we obtain
« 2
LB () +2(a— Va3 + 2 (w([[Vuly) - 20) | Aul
d 2
< —26/ u|*2uludr + € (M Vu ) | Vul|3
! S ([[vully) ) vl (4.15)

s2ele gt — m)laur)

E*(t) =2E(t) — 26/ us Audz + earl| Aul3 + eM(HVqu) | Vul|3. (4.16)
Q

By young’s inequality, we get

2¢ / ui Audzx
Q

Hence, choosing € = % and by (4.11), we see that

€
< 2efusl} + S| Aul. (417)

E*(t) 2 < (uell3 + [ Aull3) - (4.18)

| =

Let us estimate I3 = (%M(HVUH
and (4.18) we infer that

nis = ($M([[Val3) ) 1903
= 2M’(y|vu||§) </ Vu~Vutdx> V2 (4.19)
Q
< 245 | Aulla e 2| Vul3 < 1045 (255 ) BO)E*(t) = crE* (1),

NN

)) |Vul|3. Since M € C* ([0, 00), using (4.10)

where ¢; = 10A3(ll(§7’i2))E(0) and Az = max{M'(r), 0 <r < (ll(f%m)E(O)} More-
over, we note that

2 ‘/ |u|p_2uAud$c’ <2(p-— 1)/ |ulP~2|Vu|*dz
Q Q

-2
< 2(p— D)lull?; %5, 1Vuly,.

where é+é = 1, so that, we put §; = 1 and 0 = 0o, if N = 1; 8 = 1+ ¢ (for
arbitrary small ¢, > 0), if N = 2; and 0y = %, if N > 3. Then, by Lemma 2.1,
(4.10) and (4.18), we have

(4.20)

2 ’/ luP~2uludz| < 2B (p — 1)||Vully 2| Aul|2 < s E*(t), (4.21)
)
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p—2

where ¢s = 1087 (p—1) (lléig)E(O)) ® " Inserting (4.19) and (4.21) into (4.15), and

then integrating it over (0,t), we obtain

B(t) +4 (mo—n - 120ix) / | Au(r) [Bar
(4.22)
< E*(0) +/ coE*()dr
0
where cg = c7 + cg. Taking n = % in (4.22), and by Gronwall’s Lemma, we deduce
E*(t) < E*(0)e", (4.23)
for any t > 0. Therefore by Theorem 3.2, we have T = oc. g

Lemma 4.3. If u satisfies the assumptions of Lemma 4.2, then there exists B > 0 such
that
lullr < BE(t). (1.24)

Proof. Using Lemma 2.1 and (4.10), we have
lullp < BY(IVulf = BY[Vull5~?|[Vull3

p—2

By 2p =
o B l - .
Tk (Zl(p—Q) (O)> 1|Vullz = ol1|[Vull3
2p
s O <p — 2) (t)
Let B=o (pzp ) then we have (4.24). .

Theorem 4.4. (Global existence and Energy decay) Suppose that (A1) and (A3) hold.
Assume I1(ug) > 0 and (4.7) holds, then the problem (4.1) admits a global solution
w if ug € H*(Q) N HY(Q) and uy € HE(). Moreover, we have the following decay
estimates

E(t)<ce "™ Vt>0 and < (0,¢],

where ¢, Kk and €1 are positive constants.

Proof. Defining the perturbed energy by
Ed(t) = B(t) + ep(t), (4.25)
where

o) = [ ultyu(t)ds, (4.26)

we can show that for e small enough, there exist two positive constants 5; and S5
such that

BLE(t) < Ed(t) < B E(1). (4.27)
In fact
BE(t) + §lluell3 + luld < (1+ ) E@) + §BF|Vul3

< )
< (14 QB0 + 5B (17 ) E(1) < BoE(D) (429)
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and
€ €
Ec(t) 2 B(t) = fsllwll3 — edllull3 > B(t) = = lulz — cdBY|[Vull3. (4.29)
By choosing § small enough, we have
€ 1 €
B0 2 B0) - 5wl = Jw0) + (5 - 5 ) lulk (4.30)
Once ¢ is chosen, we take € so small that
B(0) 2 7(u(t) + 2l > 515, (4.31)

where % < 1 — 4. Now taking the derivative of ¢(t) defined in (4.26) and substituting

t
Uy = 1/)<HVu||§)Vu + alAus — / g(t — 7)Au(r)dr
0

2 (4.32)
—M (||Vully)ue + 2,
in the obtained expression, it results that
2(y+1
@(1) = uell3 — 1Vl — b Vull37
+/ g(t—1) / Vu(r) - Vu(t)dzdr — a(Vug, Vu) (4.33)
0 Q

~M (|[Vull3) (wr, w) + .

Adding and subtracting 2E(t), and taking (4.5) into account, from (4.33) we infer

o) =280 + 2wy - ( [ tg(r)df) Vu(t)2
(g0 Vu) () = b (1= ) IVul57 Y
+ (lt— %) ullp — a(Vug, Vu) — M(HVuH;) (g, w)

+/0 g(t — T)/QVU(T) - Vu(t)dxdr.

(4.34)

Estimate for J; = oz(Vut, Vu). Considering Cauchy-Schwartz inequality, we have
o’ 2 1 2
| 1] < 7||Vut(t)||2 + §||Vu(t)||2. (4.35)

Let us estimate Jo = M(HVuHZ) (uy,u). Noting that | Vu(t)|3 < ll(?%Q)E(O) = [
for all t > 0, we have that

M(|vuly) <& wezo, (4.36)

where £ = max {M(r); r € [0, B3]}. From (4.36) we conclude that

& 1 & 1
ol < S @l + 5l 3 < Sl @I + 5B V@3 (437
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t
Estimate J3 = / g(t— T)/ Vu(r) - Vu(t)dzdr. From assumption (A1) and making

use of the Cauchy-Schwarz inequality, we have
t
J3 / (t—1) / Vu(r) - Vu(t)dzdr

/ (t—7) / u(r) — Va(t) + Vu(t)]  Vu(t)dwdr
/

¢
gt—1) ’Vu u(T)HVu(t)’dxdT
0

([ stna ) I7u(o)I3 "

<|v ()Hz/ g(t = 7)IVu(t) — Vu(r)|3dr

+(/Og i) 19913

< 5lIVu®)3 + 519l 0,00 (9 0 Vo) () + (/O g(T)dT>||Vu(t)||§

t
Va0l + oo Tu) e+ [ atryir ) Ivutolz
Utilizing Lemma 4.3 and inserting (4.35), (4.38) and (4.37) in (4.34), we have
dt) < (5 +2) lulg+ (1+50) Ivul3
+[(1-2) B-2] B@) - b (1- ) Va3 (4.39)
+ 5 Vs (8)]3+ 3 (9.0 V) (-

Then, from (4.6), (4.25), (4.26) and (4.39) we arrive at

IN

_|_

IA

BU(t) = E'(t) + e () < —(m1 = Aae) Juellf + doel| V3

— (5% -39 (9o vu) () - (a = 5e) Va3 (4.40)
—e(=20) E(t) — be (1= 551 ) [Vl 37D = Lg(0)Vu(t) 3,
where
A1 £—2+2>0 Ay = 37%+1>0
and

D p) \p—2

On the other hand, since

/O ¢ (r)dr = g(t) — 9(0),
then

—g)IVu®)3 = —g0)IVu(®)lz - (/0 g'(T)dT> IVu(t)lf3.



450 Mohamed Mellah and Ali Hakem

From (A1) the last inequality yields

—SIDIVuO)B < ~ Lo IVu)3 + S Mgl 0o V@3 (@)
Combining (4.40) and (4.41) we conclude that
E(t) < —(m1 = ue) el = (52 = 3¢) (90 Vu) ()
(o= Fe) IVu@®IB —be (1= ) Va0 — (-2 Bty (442)
1 [90) = Kallgllza 0.00) — 2ae] [ Vu(t)3
From (2.1) we have Iy = g(0) — K1||g||£1(0,00) > 0. Defining

. mi KQ 2 lQ
_ o122 2 4.4
€1 mln{)\l, 370172)\2}7 ( 3)
we conclude by taking € € (0,¢1] in (4.42) that
EL(t) < —e(—Xs)E(h). (4.44)
Thus, we see that V¢t > 0 and € € (0, €]
—A
El(t) < —e(—X3)E(t) < —B—?’eEe(t). (4.45)
2
By the Gronwall inequality, we see that
E.(t) < E(0)e™ " Vt>0 and €€ (0,¢], (4.46)
where k = _ﬁ’\; Combining with (4.27), we obtain
BE(@) <E(t) <E(0)e ", Vvt>0 and €€ (0,¢], (4.47)
and
E@t) <ce ™, Vt>0 and €€ (0,¢], (4.48)
where ¢ = E;a(lo). Thus, the proof of the theorem is completed. O
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