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Abstract. In this paper we study some approximation properties of a sequence of
positive linear operators defined by means of the squared Szász-Mirakyan basis
and prove that these operators behave better than the classical Szász-Mirakyan
operators.
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1. Introduction

The operators defined by

Sn(f, x) =

∞∑
k=0

sn,k(x)f

(
k

n

)
, x ∈ [0,∞), n = 1, 2, . . . ,

where sn,k are

sn,k(x) = e−nx
(nx)k

k!
,

were introduced and studied independently by Mirakyan [14], Favard [3] and Szász
[17]. They usually are referred to as Szász-Mirakyan operators and the functions sn,k
form the Szász-Mirakyan basis or the Poisson distribution.

Motivated by the article of Gavrea and Ivan [4] we study the following operators

An(f, x) =

∞∑
k=0

s2n,k(x)f

(
k

n

)
∞∑
k=0

s2n,k(x)

, x ≥ 0, n = 1, 2, . . . (1.1)
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Herzog [5] introduced and studied the following sequence of positive linear operators

Aνn(f, x) =


1

Iν(nx)

∞∑
k=0

(nx
2

)2k+ν
Γ(k + 1)Γ(k + 1 + ν)

· f
(

2k

n

)
, x > 0

f(0), x = 0

where Iν is the modified Bessel function defined by

Iν(t) =

∞∑
k=0

(
nt

2

)2k+ν

Γ(k + 1)Γ(k + 1 + ν)
.

For ν = 0 the operators Aνn can be written in terms of the operators (1.1) by

A0
n(f, x) = An(f ◦ g−1, g(x)),

where g is the function defined by g(x) = x/2, x ≥ 0.

The author of [5] studied the operators Aνn in polynomial and exponential weight
spaces (see also [6]), but did not point out how well behave these operators compared
to the Szász-Mirakyan operators.

In this paper, we show that An are King-type operators [12] preserving the
functions e0 and e2 and so extending the class of Szász-Mirakyan type operators
which preserve some polynomial functions [2, 18]. We also prove that the error of
approximation of a function f by Anf is smaller than the error of approximation
by the classical Szász-Mirakyan operators. In the final part of the paper, we present
some approximation properties of (An), showing what functions can be uniformly
approximated by these operators and what is the order of the convergence by giving
a quantitative Voronovskaya theorem. A similar study for Bernstein operators was
done recently in [4, 9] and for Baskakov operators in [10].

2. Some properties of the operators

Let us notice first that the operators An preserve the functions e0 and e2 (we
denote as usual ek(x) = xk). From the relation (1.1) we can easily see that

An(e0, x) = e0(x) = 1.

From the following relation

∞∑
k=0

s2n,k(x) · k
2

n2
= e−2nx

∞∑
k=0

(nx)2k

(k!)2
· k

2

n2
= x2e−2nx

∞∑
k=1

(nx)2k−2

[(k − 1)!]2

= x2e−2nx
∞∑
i=0

(nx)2i

(i!)2
= x2

∞∑
i=0

s2n,i(x).

we deduce that An(e2, x) = e2(x) = x2, for every x ≥ 0. In fact, only for ν = 0, the
general operators Aνn do preserve the function e2. This can be seen from the following
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relation obtained in [5]

Aνn(e2, x) = x2 · Iν+2(nx)

Iν(nx)
+

2x

n
· Iν+1(nx)

Iν(nx)

and the recurrence relation (9.6.26) of [1]

Iν−1(t)− Iν+1(t) =
2ν

t
Iν(t).

We have

Aνn(e2, x) = x2 − 2xν

n
· Iν+1(nx)

Iν(nx)
.

So, Aνn(e2) = e2 if and only if ν = 0.

Let us denote

µn,k(x) = An((e1 − x)k, x), k = 0, 1, 2, . . .

the central moments of the operators An, which will be very important in our study.

Next let us observe that

µn,2(x) = −2xµn,1(x). (2.1)

Indeed,

µn,2(x) = An(e2, x)− 2xAn(e1, x) + x2An(e0, x) = 2x2 − 2xAn(e1, x) = −2xµn,1(x).

Lemma 2.1. For every x ∈ (0,∞) we have

lim
n→∞

4n · µn,1(x) = −1 (2.2)

lim
n→∞

2n · µn,2(x) = x. (2.3)

Proof. Because of the relation (2.1) it suffices to prove (2.2).
Let us denote

Kn(x) =

∞∑
k=0

s2n,k(x). (2.4)

The function Kn was expressed [15] in terms of the modified Bessel function I0 by

Kn(x) = e−2nxI0(2nx). (2.5)

Using the well-known relation

s′n,k(x) = sn,k(x) · k − nx
x
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we have

2n · µn,1(x) = 2n


∞∑
k=0

s2n,k(x) · k
n

Kn(x)
− x

 =

2

∞∑
k=0

s2n,k(x)(k − nx)

Kn(x)

=

2x

∞∑
k=0

sn,k(x)s′n,k(x)

Kn(x)
=
xK ′n(x)

Kn(x)
=

2nx[I ′0(2nx)− I0(2nx)]

I0(2nx)
.

We have obtained a formula expressing the central moment of order 1 in terms of the
modified Bessel function I0:

µn,1(x) = x

(
I ′0(2nx)

I0(2nx)
− 1

)
. (2.6)

For every x ∈ (0,∞) the quantity t = 2nx grows to infinity when n tends to infinity.
Using the asymptotic relations (9.7.1) and (9.7.3) from Abramowitz and Stegun [1]

I0(t) ∼ et√
2πt

(
1 +

1

8t
+

9

2(8t)2
+ . . .

)
(t→∞) (2.7)

I ′0(t) ∼ et√
2πt

(
1− 3

8t
− 15

2(8t)2
− . . .

)
(t→∞)

we obtain

µn,1(x) ∼ − 1

4n
− 1

32n2x
− 15

1024n3x2
− . . . (n→∞)

which proves (2.2). �

Lemma 2.2. The sequence (n · µ′n,1(x)) converges to zero for every x > 0.

Proof. Computing the derivative of µn,1 we obtain

µ′n,1(x) =
I ′0(2nx)

I0(2nx)
− 1 + 2nx · I

′′
0 (2nx)I0(2nx)− [I ′0(2nx)]2

[I0(2nx)]2
.

Using the relation tI ′′0 (t) + I ′0(t)− tI0(t) = 0 (see (9.6.1) from [1]), we have

µ′n,1(x) = 2nx− 1− 2nx
[I ′0(2nx)]2

[I0(2nx)]2
.

The asymptotic relations (2.7) show that

µ′n,1(x) ∼ − 29

128(2nx)2
+

31

1024(2nx)3
+ . . . (n→∞)

and this proves the assertion stated in the lemma. �

Lemma 2.3. For every x ≥ 0 we have

µn,2(x) ≤ S · x
n
, (2.8)
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where S is defined by

S = sup
x>0

x− x2

1

2
+

√
x2 +

9

4

 = 0.67038 . . .

Proof. Using (2.6) and (2.1) the central moment of order 2 can be expressed by

µn,2(x) = 2x2
(

1− I ′0(2nx)

I0(2nx)

)
.

To prove (2.8) it is enough to prove that

t

(
1− I ′0(t)

I0(t)

)
< S, t > 0.

Using inequality (73) of [16] we have

tI ′0(t)

I0(t)
>

t2

1

2
+

√
9

4
+ t2

.

But this proves that

t

(
1− I ′0(t)

I0(t)

)
< t− t2

1

2
+

√
9

4
+ t2

≤ S. �

Remark 2.4. Because the second central moment of the usual Szász-Mirakyan opera-

tors is
x

n
, inequality (2.8) proves that the central moment of order 2 of the operators

(1.1) is smaller than the classical Szász-Mirakyan operators. In addition, we use the
estimation

|Ln(f, x)− f(x)| ≤ (1 + nµn,2(x)) · ω
(
f,

1√
n

)
,

which is valid for every sequence of positive linear operators (Ln) preserving constants
functions and for every uniformly continuous function f . This estimation proves that
the error by approximating f with Anf is smaller than the error of approximation by
the classical Szász-Mirakyan operators.

We prove in the next Lemma that An satisfy a differential equation. This equa-
tion is similar to the relation satisfied by the so called exponential type operators (see
[13, 11]).

Lemma 2.5. For every f ∈ C[0, 1] and x ∈ (0, 1) we have

(An(f, x))
′

=
2n

x
[An(f · (e1 − xe0), x)−An(e1 − xe0, x) ·An(f, x)] . (2.9)

Proof. Using again

s′n,k(x) = sn,k(x) · k − nx
x



284 Adrian Holhoş

we get  s2n,k(x)
n∑
i=0

s2n,i(x)


′

=
2sn,k(x)s′n,k(x)

n∑
i=0

s2n,i(x)

−
2s2n,k(x)

n∑
i=0

sn,i(x)s′n,i(x)(
n∑
i=0

s2n,i(x)

)2

=
2s2n,k(x)
n∑
i=0

s2n,i(x)

·

k − nxx
−

n∑
i=0

s2n,i(x)
i− nx
x

n∑
i=0

s2n,i(x)



=
2s2n,k(x)
n∑
i=0

s2n,i(x)

·

kx −
n∑
i=0

s2n,i(x)
i

x

n∑
i=0

s2n,i(x)



=
2n

x
·

s2n,k(x)
n∑
i=0

s2n,i(x)

·

k

n
−

n∑
i=0

s2n,i(x)
i

n

n∑
i=0

s2n,i(x)

 .

We obtain

(An(f, x))
′

=
2n

x
·An(f · (e1 −An(e1, x)), x)

which is equivalent with (2.9). �

Lemma 2.6. We have for every x > 0

lim
n→∞

(2n)2 · µn,4(x) = 3x2.

Proof. Using Lemma 2.2 and (2.1) the following limit holds true for every x > 0

lim
n→∞

2n · µ′n,2(x) = lim
n→∞

−4nµn,1(x)− 4nxµ′n,1(x) = 1.

In relation (2.9) we take f = (e1 − xe0)k and we obtain the recurrence relation

(µn,k(x))
′
+ k · µn,k−1(x) =

2n

x
· [µn,k+1(x)− µn,1(x) · µn,k(x)] , (2.10)

which is similar to the relation (2.7) of Ismail and May [11]. Using (2.10) we get

2nµk+1(x) = xµ′n,k(x) + kxµn,k−1(x) + 2nµn,1(x)µn,k(x), k = 1, 2, . . .

For k = 2 we have

2nµ3(x) = xµ′n,2(x) + 2xµn,1(x) + 2nµn,1(x)µn,2(x).
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Multiplying this equality with 2n and using the relations (2.2) and (2.3), we have for
every x

lim
n→∞

4n2 · µn,3(x) = −x
2
.

For k = 3, the recurrence (2.10) becomes

µ′n,3(x) + 3µn,2(x) =
2n

x
· [µn,4(x)− µn,1(x)µn,3(x)] .

Multiplying with 2n and letting n tend to infinity we get

lim
n→∞

4n2 · µn,4(x) = 3x2,

for every x > 0, if 2nµ′n,3(x)→ 0. We prove this convergence.

Applying the derivative to the relation (2.10) for k = 2 we get

2nµ′n,3(x) = 2nµn,1(x)µ′n,2(x) + 2nµn,2(x)µ′n,1(x)

+ µ′n,2(x) + xµ′′n,2(x) + 2xµ′n,1(x) + 2µn,1(x).

It remains to prove that µ′′n,2 converges to zero.

Applying the derivative twice to the relation (2.1), the sequence (µ′′n,2) converges
to zero if and only if the sequence µ′′n,1 converges to zero. But applying the derivative
to the relation (2.10) for k = 1 we obtain

2nµ′n,2(x) = 4nµn,1(x)µ′n,1(x) + µ′n,1(x) + xµ′′n,1(x) + 1.

Using that 2nµ′n,2(x)→ 1 we obtain that µ′′n,1 → 0 and the lemma is proved. �

3. Some approximation results

In order to give some approximation results for the operators An, let us introduce
some notation.

For α ≥ 0, we denote by Cθ,α the space of all continuous functions defined on
the positive half-line f : (0,∞)→ R with the property that exists a constant M > 0
such that |f(x)| ≤ Meαθ(x), for every x > 0. We denote with Cθ the union of all
spaces Cθ,α.

Let us observe that for θ(x) = x, the functions Anf exist for every f ∈ Cθ,α. To
prove this, it is enough to prove that An(eαt) exist. We will prove more in the next
lemma.

Lemma 3.1. The sequence An(eαt, x) converges pointwise to the function eαx.

Proof. We have

An(eαt, x) =
I0
(
2nxe

α
2n

)
I0(2nx)

.

For a fixed x ∈ (0,∞) we use the asymtotic relation (2.7) and we obtain

An(eαt, x) ∼ e2nxe
α
2n

√
2π · 2nxe α

2n

·
√

2π · 2nx
e2nx

∼ e2nx(e
α
2n−1) ∼ eαx (n→∞). �
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Remark 3.2. The Lemma 3.1 implies that for a fixed x > 0 we have

An(max(eαt, eαx), x) ≤Mα(x), (3.1)

for every n ∈ N. Indeed, for x > 0, there is n0 such that∣∣An(eαt, x)− eαx
∣∣ ≤ 1, for every n ≥ n0.

We obtain for every n ≥ n0
An(max(eαt, eαx), x) ≤ An(eαt + eαx, x) ≤ 1 + 2eαx.

The inequality (3.1) is true for

Mα(x) = 1 + 2eαx + max
n≤n0

An(max(eαt, eαx), x).

Remark 3.3. As was pointed out in Remark 7.2.1 of [6], the function Anf does not
necessarily belong to the space Cθ,α when f belong to the space Cθ,α, for θ(x) = x.
We prove that for θ(x) =

√
x, this condition is satisfied as in the case of the classical

Szász-Mirakyan operators (see [7]).

Lemma 3.4. There is a constant Mα > 0 not depending on n or x such that

An(eα
√
t, x) ≤Mαe

α
√
x, (3.2)

for every x > 0, α ≥ 0 and n ∈ N.

Proof. We need to prove that An(eα(
√
t−
√
x), x) is bounded.

Starting from the inequality
√
t−
√
x =

t− x√
t+
√
x
≤ t− x√

x
, x > 0 (3.3)

we obtain that

An(eα(
√
t−
√
x), x) ≤ An(e

α(t−x)√
x , x) =

An(e
αt√
x , x)

eα
√
x

=
I0

(
2nxe

α
2n
√
x

)
I0(2nx) · eα

√
x
.

Using again (2.7) we deduce the existence of a constant t0 > 0 such that

et

2
√

2πt
< I0(t) <

3et

2
√

2πt
, for every t > t0.

So, for x > t0
2n and n ∈ N

An(eα(
√
t−
√
x), x) ≤ 3

e2nxe
α

2n
√
x√

2π · 2nxe
α

2n
√
x

·
√

2π · 2nx
e2nx · eα

√
x

≤ 3 exp
(

2nx(e
α

2n
√
x − 1)− α

√
x
)
.

Using the inequality eu − 1 ≤ u+ u2eu, u ≥ 0, we obtain

An(eα(
√
t−
√
x), x) ≤ 3 exp

(
2nx · α

2n
√
x

+ 2nx · α2

4n2x
e

α
2n
√
x − α

√
x

)
= 3 exp

(
α2

2n
e

α
2n
√
x

)
≤ 3 exp

(
α2

2
e

α√
2t0

)
.
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Consider now the case when x is smaller than t0
2n . In this case, we need only prove that

An(eα
√
t, x) is bounded. Because

√
k ≤ k, for every k = 0, 1, 2, . . . and I0(2nx) ≥ 1

we obtain

An(eα
√
t, x) ≤ An(etα

√
n, x) =

I0(2nxe
α

2
√
n )

I0(2nx)
≤ I0

(
2nxe

α
2
√
n

)
≤ I0

(
t0e

α
2

)
. �

We need the following general result.

Theorem 3.5 ([8]). Let m be a nonnegative integer and let f ∈ Cθ,α such that f is m

times continuously differentiable with f (m) ∈ Cθ,α. Then∣∣∣∣∣Ln(f, x)−
m∑
k=0

f (k)(x)

k!
· µn,k(x)

∣∣∣∣∣ ≤ 1

m!

(
An,m(x) +

Bn,m(x)

δn

)
ωϕ,θ,α

(
f (m), δn

)
where

An,m(x) = Ln

(
max

(
eαθ(t), eαθ(x)

)
|t− x|m, x

)
Bn,m(x) = Ln

(
max

(
eαθ(t), eαθ(x)

)
|t− x|m · |ϕ(t)− ϕ(x)| , x

)
ωϕ,θ,α(f, δ) = sup

x,t∈I
|ϕ(t)−ϕ(x)|≤δ

|f(t)− f(x)|
max

(
eαθ(t), eαθ(x)

)
and ϕ is a continuous and strictly increasing function on I such that θ ◦ ϕ−1 is
uniformly continuous on ϕ(I).

Theorem 3.6. Let θ(x) = ϕ(x) =
√
x. For every f ∈ Cθ,α there is a constant M > 0

independent of n and x such that

|An(f, x)− f(x)| ≤Meα
√
x · ωϕ,θ,α

(
f,

1√
n

)
,

for every x > 0 and n ∈ N.

Proof. We apply Theorem 3.5 for m = 0 and δn = 1√
n

. Using inequality (3.2) we

easily obtain that An,0(x) ≤ C1e
α
√
x, for every x > 0, for some constant C1 > 0. Using

the Cauchy-Schwarz inequality for positive linear operators the quantity Bn,0(x) is
bounded by

Bn,0(x) ≤
√
An(max(e2α

√
t, e2α

√
x), x) ·

√
An(|ϕ(t)− ϕ(x)|2 , x).

Using inequalities (3.3) and (2.8) we have for x > 0

An(|ϕ(t)− ϕ(x)|2 , x) ≤ 1

x
· µn,2(x) ≤ S

n
.

Using again (3.2), the inequality
√
n ·Bn,0(x) ≤ C2

is true for every x > 0 and n ≥ 1, where C2 is some constant independent of n and
x. �
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Corollary 3.7. For every function f such that g(x) = e−xf(x2) is uniformly continu-
ous on (0,∞) we have

lim
n→∞

sup
x>0

e−α
√
x |An(f, x)− f(x)| = 0.

Proof. Because g is uniformly continuous, ωϕ,θ,α(f, 1/
√
n) → 0 when n → ∞ (see

[8]). �

Theorem 3.8. For α ≥ 0, θ(x) = x and ϕ(x) = x let f ∈ Cθ,α be a twice continuously
differentiable function such that f ′′ ∈ Cθ,α. Then∣∣∣∣An(f, x)− f(x)− µn,1(x)f ′(x)− µn,2(x)

2
f ′′(x)

∣∣∣∣
≤ 1

2

(√
µn,4(x)M2α(x) +

√
n · 4
√
M4α(x) · 4

√
[µn,4(x)]3

)
· ωϕ,θ,α

(
f ′′,

1√
n

)
,

for every x > 0 and n ∈ N.

Proof. We use Theorem 3.5 for m = 2 and δn = 1√
n

. We have

An,2(x) ≤
√
An(max(e2αt, e2αx), x) ·

√
An(|t− x|4 , x) ≤

√
µn,4(x)M2α(x).

Using Hölder inequality for p = 4 and q = 4/3 we obtain

Bn,2(x) = An(max(eαt, eαx) |t− x|3 , x)

≤
(
An(max(e4αt, e4αx), x)

) 1
4 ·
(
An
(
|t− x|4, x

)) 3
4

≤ 4
√
M4α(x) · 4

√
[µn,4(x)]3.

�

Corollary 3.9. For every f ∈ Cθ,α, with θ(x) = x such that f ′′ exists and

g(x) = e−xf ′′(x)

is uniformly continuous on (0,∞) and for every x > 0

lim
n→∞

n[An(f, x)− f(x)] = −1

4
· f ′(x) +

x

4
· f ′′(x).

Proof. Because g is uniformly continuous on (0,∞), the quantity ωϕ,θ,α

(
f ′′,

1√
n

)
tends to zero as n goes to infinity. We multiply with n the inequality proved in
Theorem 3.8 and we take the limit as n tends to infinity, using Lemma 2.6 and the
relations (2.2) and (2.3). The right-hand side of this inequality is 0. �

Problem 3.10. We propose the reader to study the general operators

Ln(f, x) =

∞∑
k=0

g(sn,k(x))f

(
k

n

)
∞∑
k=0

g(sn,k(x))

, x ≥ 0, n = 1, 2, . . . .
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For g(x) = x we obtain the classical Szász-Mirakyan operators. For g(x) = x2 we have
the operators studied in this paper. It would be interesting to study the operators for
g(x) = xm, related to the Rényi entropy and for g(x) = x lnx, related to the Shannon
entropy.
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