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Constrained visualisation using

Shepard-Bernoulli interpolation operator

Teodora Cătinaş

Abstract. We consider Shepard-Bernoulli operator in order to solve a problem of

interpolation of scattered data that is constrained to preserve positivity, using

the technique described by K.W. Brodlie, M.R. Asim and K. Unsworth (2005).

We also give some numerical examples.
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1. Introduction

The interpolation operators and the radial basis functions are the usual tools

used for approximating scattered data. Sometimes we may have data that have to pre-

serve some constraints, subject to certain physical laws (e.g., the densities, percentage

mass concentrations in a chemical reaction, volume and mass are always positive, see

[1], [2]); such cases require to impose some special conditions to the interpolants.

The Shepard method is a well suited method for multivariate interpolation of

very large scattered data sets, but it does not guarantee to preserve positivity.

In [3] and [4] there have been introduced some combined Shepard operators of

Bernoulli type which diminish the drawbacks of the Shepard operator. In [4] the com-

bined operators are obtained using the classical and the modified Shepard operator,

introduced, respectively, in [12] and [8]. They preserve the advantages and improve

the reproduction qualities, have better accuracy and better computational efficiency.

We recall some results from [6]. Bernoulli polynomials are defined by:
B0(x) = 1,

B′n(x) = nBn−1(x), n ≥ 1,∫ 1

0

Bn(x)dx = 0, n ≥ 1.

(1.1)
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For f ∈ Cm[a, b], the univariate Bernoulli interpolant is given by

(Bmf)(x) := Bm[f ; a, b] = f(a) +

m∑
i=1

Si

(
x− a
h

)
hi−1

i!
∆hf

(i−1)(a), (1.2)

where h = b− a and

Si

(
x− a
h

)
= Bi

(
x− a
h

)
−Bi, i ≥ 1, (1.3)

∆hf
(i−1)(a) = f (i−1)(b)− f (i−1)(a), 1 ≤ i ≤ m.

Let X = [a, b]× [c, d]. Denote h := b− a, k := d− c and consider the operators:

∆(h,0)f(x, y) := f(x+ h, y)− f(x, y), (1.4)

∆(0,k)f(x, y) := f(x, y + k)− f(x, y),

∆(h,k)f(x, y) := ∆(h,0)∆(0,k)f(x, y) = ∆(0,k)∆(h,0)f(x, y).

For f ∈ Cm,n(X), the Bernoulli interpolant on the rectangle is [6]:

(Bm,nf)(x, y) :=f(a, c) +
m∑
i=1

∆(h,0)f
(i−1,0)(a, c)

hi−1

i!
Si

(
x− a
h

)
(1.5)

+
n∑
j=1

∆(0,k)f
(0,j−1)(a, c)

kj−1

j!
Sj

(
y − c
k

)
+

m∑
i=1

n∑
j=1

∆(h,k)f
(i−1,j−1)(a, c)

hi−1kj−1

i!j!
Si

(
x− a
h

)
Sj

(
y − c
k

)
,

where Sk, k > 1 are given in (1.3). The polynomial from (1.5) satisfies the following

interpolation conditions [6]:

(Bm,nf)(a, c) = f(a, c), (1.6)

(∆(h,0)Bm,nf)(i,0)(a, c) = ∆(h,0)f
(i,0)(a, c), 0 ≤ i ≤ m− 1,

(∆(0,k)Bm,nf)(0,j)(a, c) = ∆(0,k)f
(0,j)(a, c), 0 ≤ j ≤ n− 1,

(∆(h,k)Bm,nf)(i,j)(a, c) = ∆(h,k)f
(i,j)(a, c), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

The Shepard method, introduced in [12], is a well suited method for multivariate

interpolation of very large scattered data sets. The bivariate Shepard operator is

given by

(Sf) (x, y) =

N∑
i=0

Ai,µ (x, y) f (xi, yi) , (1.7)

where

Ai,µ (x, y) =

N∏
j=0
j 6=i

rµj (x, y)

N∑
k=0

N∏
j=0
j 6=k

rµj (x, y)

, (1.8)
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with µ > 0 and ri (x, y) are the distances between (x, y) and the given points (xi, yi),

i = 0, 1, ..., N .

In [4] we have introduced the bivariate Shepard-Bernoulli operator that preserve

the advantages and improve the reproduction qualities, have better accuracy and

computational efficiency:

(SBf)(x, y) =

N∑
i=0

Ai,µ(x, y)(Bim,nf)(x, y), µ > 0, (1.9)

where Bim,nf denotes the Bernoulli interpolant Bm,n[f ; (xi, yi), (hi, ki)] in the rectan-

gle with opposite vertices (xi, yi), (xi+1, yi+1), given by (1.5), having hi = xi+1 − xi,
ki = yi+1 − yi, i = 0, ..., N .

Remark 1.1. The operator SB has the following interpolation properties:

(SBf)(xp, yp) = f(xp, yp), 0 ≤ p ≤ N ;µ > m+ n− 2

and its degree of exactness is (m,n).

There are flat spots at each data point and the accuracy tends to decrease in

the areas where the interpolation nodes are sparse. This can be improved using the

local version of Shepard interpolation, introduced by Franke and Nielson in [8] and

improved in [7], [10], [11]:

(Sf) (x, y) =

N∑
i=0

Wi (x, y) f (xi, yi)

N∑
i=0

Wi (x, y)

, (1.10)

with

Wi (x, y) =

[
(Rw − ri)+

Rwri

]2
,

where Rw is a radius of influence about the node (xi, yi) and it is varying with i. This

is taken as the distance from node i to the jth closest node to (xi, yi) for j > Nw
(Nw is a fixed value) and j as small as possible within the constraint that the jth

closest node is significantly more distant than the (j−1)st closest node (see, e.g. [10]).

As it is mentioned in [9], this modified Shepard method is one of the most powerful

software tools for the multivariate interpolation of large scattered data sets.

With these assumptions, for f ∈ C(m,n)(X) and distinct points (xi, yi) ∈ X,

i = 0, ..., N, the Shepard-Bernoulli operator, given in (1.9), becomes (see [4]):

(SwBf) (x, y) :=

N∑
i=0

Wi (x, y) (Bim,nf)(x, y)

N∑
i=0

Wi (x, y)

. (1.11)
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2. Constraints of the Shepard-Bernoulli operator

There are two most important classes of interpolation methods of very large

scattered data sets: radial basis functions and Shepard type methods. Both are widely

used in practice.

There could be cases when the data are inherently positive. We will make the

modified Shepard-Bernoulli operator to preserve positivity by forcing the quadratic

basis functions to be positive, using the method introduced in [2].

The modified Shepard-Bernoulli operator preserves the advantages of the classi-

cal Shepard operator and improves the reproduction qualities, have better accuracy

and computational efficiency. There are cases when we have additional information to

take into account in reconstruction by interpolation as the case when the information

are the subject to certain physical laws that constrain their behavior. In [2] there are

mentioned the case when the information refer to some densities and the case when

data values are specified as fractions of a whole. In the first case the reconstruction

must be positive and in the second must be within [0, 1] to be realistic.

The classical Shepard operator S, given in (1.7) satisfies the following property:

min{f (xi, yi)} ≤ (Sf)(x, y) ≤ max{f (xi, yi)}, i = 0, ..., N. (2.1)

A consequence of this property is that a positive interpolant is guaranteed if the data

values are positive.

The modified Shepard operator, given in (1.10), has superior qualities but it

does not satisfy the property (2.1).

For a function f ∈ C(m,n)(X), X = [a, b]× [c, d] and a set of N+1 distinct points

(xi, yi) ∈ X, i = 0, ..., N, we consider Shepard-Bernoulli operator given by (1.9). We

will impose constraints to positivity, using the method from [2].

We will use as a basis function a linear transformation of the old one, namely

the function

(CiBf)(x, y) = α(Bim,nf)(x, y) + β, i = 0, ..., N (2.2)

where α and β are chosen as

α =
f(xi, yi)

f(xi, yi)− min
(x,y)∈[xi,xi+1]×[yi,yi+1]

{Bim,nf(x, y)}
∈ [0, 1]

β = (1− α)f(xi, yi), for i = 1, ...N.

Remark 2.1. Bim,nf, i = 0, ..., N could have negative values but the constrained

function CiBf, i = 0, ..., N have just positive values.

Theorem 2.2. If (xA, yA) and (xB , yB) are two points such that

(Bim,nf)(xA, yA) ≤ (Bim,nf)(xB , yB)

then

(CiBf)(xA, yA) ≤ (CiBf)(xB , yB).
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Proof. The proof follows directly taking into account the form (2.2). �

Remark 2.3. The method can be extended to handle other types of constraints, for

example, in the interval [0, 1] or, furthermore, in any arbitrary interval [a, b], a > b,

a, b ∈ R.

T he constrained Shepard-Bernoulli operator of first kind is given by

(ScBf)(x, y) =

N∑
i=0

Ai,µ(x, y)(CiBf)(x, y), µ > 0, (2.3)

with Ai,µ(x, y) given in (1.8).

Theorem 2.4. For f ∈ C(m,n)(X) the operator SB has the following interpolation

properties:

(ScBf)(xp, yp) = f(xp, yp),

for 0 ≤ p ≤ N and µ > m+ n− 2.

Proof. We have

(ScBf)(xp, yp) =

N∑
i=0

Ai,µ(xp, yp)(C
i
Bf)(xp, yp)

= α

N∑
i=0

Ai,µ(xp, yp)(B
i
m,nf)(xp, yp) + β

N∑
i=0

Ai,µ(xp, yp)

Taking into account that
N∑
i=0

Ai,µ(xp, yp) = 1, we get

(ScBf)(xp, yp) = α

N∑
i=0

Ai,µ(xp, yp)(B
i
m,nf)(xp, yp) + β

= α(SBf)(x, y)(xp, yp) + β

and by the interpolation properties of SB (given in [4]) the conclusion follows. �

Theorem 2.5. The degree of exactness of the operator ScB is (m,n).

Proof. The proof follows considering the form of

(CiBf)(x, y) = α(Bim,nf)(x, y) + β

and the property that degree of exactness of the operator SB is (m,n), (as it was

proved in [4]). �

We consider also the modified Shepard-Bernoulli operator given by (1.11). We

will keep the benefits of the modified Shepard-Bernoulli interpolation and impose

constraints, using the previous method (see [2]).



274 Teodora Cătinaş

The constrained Shepard-Bernoulli operator of second kind is given by

(Sc,wB f) (x, y) :=

N∑
i=0

Wi (x, y) (CiBf)(x, y)

N∑
i=0

Wi (x, y)

, (2.4)

Remark 2.6. If f(xi, yi) = 0 for any i then α = 0 and β = f(xi, yi) therefore the

interpolants becomes the classical Shepard interpolants.

3. Numerical examples

We consider the following test functions ([7], [10], [11]):

f1(x, y) = exp

[
−81

16
((x− 0.5)2 + (y − 0.5)2)

]
/3, (Gentle)

f2(x, y) =
√

64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5 (Sphere)

Table 1 contains the maximum errors for approximating by the Shepard,

Shepard-Bernoulli, the modified Shepard-Bernoulli and the coresponding constrained

methods, (2.3) and (2.4), considering 52 random generated nodes in the unit square,

m = n = 2 and µ = 2. By numerical experiments we have obtained that for these data

the optimal value for Nw is Nw = 8. We compare the obtained numerical results with

some combined Shepard operators known in the literature, namely with the combined

Shepard operators of Lagrange, Hermite and Taylor type, denoted respectively by SL,

SH and ST .

In Figures 1 and 2 we plot the graphs of fi, SBfi, S
w
Bfi, S

c
Bfi, S

c,w
B fi, for i = 1, 2.

Table 1. Maximum approximation errors.

f1 f2
Sf 0.1870 0.2374

SBf 0.0905 0.0274

SwBf 0.0628 0.0187

ScBf 0.2975 0.3563

Sc,wB f 0.3085 0.3767

SLf 0.5353 0.5798

SHf 0.4646 0.0883

ST f 0.2110 0.3635
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Figure 1. Graphs for the function f1.
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Figure 2. Graphs for the function f2.
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