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Existence and multiplicity of solutions to the
Navier boundary value problem for a class of
(p(x), q(x))-biharmonic systems

Hassan Belaouidel, Anass Ourraoui and Najib Tsouli

Abstract. In this article, we study the following problem with Navier boundary
conditions. 

∆(a(x,∆u)) = Fu(x, u, v), in Ω

∆(a(x,∆v)) = Fv(x, u, v), in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω.

By using the Mountain Pass Theorem and the Fountain Theorem, we establish
the existence of weak solutions of this problem.
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1. Introduction

In recent years, the study of differential equations and variational problems with
p(x)-growth conditions was an interesting topic, which arises from nonlinear elec-
trorheological fluids and elastic mechanics. In that context we refer the reader to
Ruzicka [15], Zhikov [20] and the reference therein; see also [4, 7, 8, 5].

Fourth-order equations appears in many context. Some of theses problems come
from different areas of applied mathematics and physics such as Micro Electro-
Mechanical systems, surface diffusion on solids, flow in Hele-Shaw cells (see [10]).
In addition, this type of equations can describe the static from change of beam or the
sport of rigid body.

In [1] the authors studied a class of p(x)-biharmonic of the form

∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,



230 Hassan Belaouidel, Anass Ourraoui and Najib Tsouli

where Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1, λ ≥ 0 .

In [3], A. El Amrouss and A. Ourraoui considered the below problem and us-
ing variational methods, by the assumptions on the Carathéodory function f , they
establish the existence of Three solutions the problem of the form

∆(|∆u|p(x)−2∆u) + a(x)|u|p(x)−2u = f(x, u) + λg(x, u) in Ω,

Bu = Tu = 0 on ∂Ω.

Inspired by the above references, the work of L. Li [11]and [14], the aim
of this article is to study the existence and multiplicity of weak solutions for
(p(x), q(x))−biharmonic type system

∆(a(x,∆u)) = Fu(x, u, v), in Ω

∆(a(x,∆v)) = Fv(x, u, v), in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1,

∆2
p(x)u := ∆(|∆u|p(x)−2∆u),

is the p(x)-biharmonic operator, p,q are continuous functions on Ω with

inf
x∈Ω

p(x) > max

{
1,
N

2

}
, inf
x∈Ω

q(x) > max

{
1,
N

2

}
and F : Ω × R2 → R is a function such that F (., s, t) is continuous in Ω, for all
(s, t) ∈ R2, F (x, ., .) is C1 in R2 for every x ∈ Ω, and Fu, Fv denote the partial
derivative of F , with respect to u, v respectively such that

(F1) For all (x, s, t) ∈ Ω× R2, we assume

lim
|s|→0

Fs(x, s, t)

|s|p(x)−1
= 0, lim

|t|→0

Ft(x, s, t)

|s|q(x)−1
= 0.

(F2) For all (x, s, t) ∈ Ω× R2, we assume

F (x, s, t) = o(|s|p(x)−1 + |t|q(x)−1) as |(s, t)| → ∞.

(F3) There exists u > 0, v > 0 such that F (x, u, v) > 0 for a.e x ∈ Ω
(F4) There exist λ > 0 such that F (x, s, t) ≥ λ(|s|α(x) − |t|β(x)) for all (s, t) ∈ R2,

with

α− > r+, 1 < β− ≤ β+ < r−.

(F5) For all (x, s, t) ∈ Ω× R2 F (x,−s,−t) = −F (x, s, t).

Let a : Ω × RN → RN to be a continuous potential derivative with respect to
ξ of the mapping A : Ω × RN → RN where a = DA = A

′
, with the assumption as

below

(A1) A(x, 0) = 0 , for all x ∈ Ω.
(A2) a(x, ξ) ≤ C1(1 + |ξ|r(x)−1), C1 > 0 and r− > p+, r− > q+.
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(A3) A is r(x)-uniformly convex: there exists a constant k > 0 such that

A

(
x,
ξ + η

2

)
≤ 1

2
A(x, ξ) +

1

2
A(x, η)− k|ξ − η|r(x),

for all x ∈ Ω, ξ, η ∈ RN .
(A4) A is r(x)-subhomogenuous, for all (x, ξ) ∈ Ω× RN ,

|ξ|r(x) ≤ a(x, ξ) ≤ r(x)A(x, ξ).

(A5) For all (x, s) ∈ Ω× RN a(x,−s) = −a(x, s).

The main results of this paper are the following theorems.

Theorem 1.1. Assume that (A1)− (A4) and (F1)− (F3) hold. Then the problem (1.1)
has two weak solutions.

Theorem 1.2. Assume that (A1)− (A5) and (F1)− (F5) hold. Then the problem (1.1)
has a sequence of weak solutions such that φ(±(uk, vk)) → +∞, as k → +∞ with φ
is a energy associated of the problem (1.1) defined in (2.2).

This paper is organized as three sections. In Section 2, we recall some basic
properties of the variable exponent Lebegue-Sobolev spaces. In Section3 we give the
proof of main results.

2. Preliminaries

To study p(x))-Laplacian problems, we need some results on the spaces Lp(x))(Ω)
and W k,p(x))(Ω), and properties of p(x))-Laplacian, which we use later. Let Ω be a
bounded domain of RN , denote

C+(Ω) = {h(x);h(x) ∈ C(Ω), h(x) > 1,∀x ∈ Ω}.

For any h ∈ C+(Ω), we define

h+ = max{h(x); x ∈ Ω}, h− = min{h(x); x ∈ Ω};

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x))(Ω) =
{
u;u is a measurable real-valued function such that∫

Ω

|u(x)|p(x))dx <∞
}
,

endowed with the so-called Luxemburg norm

|u|p(x)) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x))

dx ≤ 1

}
.

Then (Lp(x))(Ω), | · |p(x))) becomes a Banach space.
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Proposition 2.1 ([9]). The space (Lp(x))(Ω), | · |p(x))) is separable, uniformly convex,

reflexive and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of
p(x)), i.e.,

1

p(x))
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x))(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x))|v|q(x) ≤ 2|u|p(x))|v|q(x).

The Sobolev space with variable exponent W k,p(x))(Ω) is defined as

W k,p(x))(Ω) = {u ∈ Lp(x))(Ω) : Dαu ∈ Lp(x))(Ω), |α| ≤ k},
where

Dαu =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαN

N

u,

with α = (α1, . . . , αN ) is a multi-index and |α| =

N∑
i=1

αi. The space W k,p(x))(Ω)

equipped with the norm

‖u‖k,p(x)) =
∑
|α|≤k

|Dαu|p(x)),

also becomes a separable and reflexive Banach space. For more details, we refer the
reader to [6, 9, 13]. Denote

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.2 ([9]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω, there is
a continuous embedding

W k,p(x))(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Then the func-

tion space
((
W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω)
)
, ‖u‖p(x)

)
is a separable and reflexive Banach

space, where

‖u‖p(x) = inf
{
µ > 0 :

∫
Ω

(∣∣∣∆u(x)

µ

∣∣∣p(x)

≤ 1
}
.

Remark 2.3. According to [[18] Theorem 4.4. ], the norm ‖ · ‖2,p(x) is equivalent to
the norm ‖ · ‖p(x) in the space X. Consequently, the norms ‖ · ‖2,p(x), ‖ · ‖ and ‖ · ‖p(x)

are equivalent.

Proposition 2.4 ([2]). If we denote ρ(u) =
∫

Ω
|∆u|p(x)dx, then for u, un ∈ X, we have

(1) ‖u‖p < 1 (respectively=1; > 1) ⇐⇒ ρ(u) < 1 (respectively = 1; > 1);
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(2) ‖u‖p ≤ 1⇒ ‖u‖p+p ≤ ρ(u) ≤ ‖u‖p−p ;

(3) ‖u‖p ≥ 1⇒ ‖u‖p−p ≤ ρ(u) ≤ ‖u‖p+p ;
(4) ‖un‖p → 0 (respectively →∞) ⇐⇒ ρ(un)→ 0 (respectively →∞).

Note that the weak solutions of problem (1.1) are considered in the generalized
Sobolev space

X =
(
W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω)
)
×
(
W 2,q(x)(Ω) ∩W 1,q(x)

0 (Ω)
)

equipped with the norm

‖(u, v)‖ = max{‖u‖p(x), ‖u‖q(x)}.
Remark 2.5 (see [19]). As the Sobolev space X is a reflexive and separable Banach
space, there exist (en)n∈N∗ ⊆ X and (fn)n∈N∗ ⊆ X∗ such that fn(el) = δnl for any
n, l ∈ N∗ and

X = span{en : n ∈ N∗}, X∗ = span{fn : n ∈ N∗}
w∗

.

For k ∈ N∗, denote by

Xk = span{ek}, Yk = ⊕kj=1Xj , Zk = ⊕∞k Xj .

For every m > 1 , u, v ∈ Lm(Ω), we define

|(u, v)|m := max{|u|m, |v|m}.
Lemma 2.6 (See [8]). Define

βk := sup{|(u, v)|m; ‖(u, v)‖ = 1, (u, v) ∈ Zk},
where m := max

x∈Ω
(p(x), q(x)). Then, we have

lim
k→∞

βk = 0.

2.1. Existence and multiplicity of weak solutions

Definition 2.7. We say that (u, v) ∈ X is weak solution of (1.1) if∫
Ω

a(x,∆u)∆ϕdx+

∫
Ω

a(x,∆v)∆ϕdx =

∫
Ω

Fu(x, u, v)ϕdx+

∫
Ω

Fv(x, u, v)ϕdx, (2.1)

for all ϕ ∈ X.

The functional associated to (1.1) is given by

φ(u, v) =

∫
Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx−
∫

Ω

F (x, u, v)dx. (2.2)

It should be noticed that under the condition (F1)− (F2) the functional φ is of class
C1(X,R) and

φ
′
(u, v)(ψ,ϕ) =

∫
Ω

a(x,∆u)∆ψdx+

∫
Ω

a(x,∆v)∆ϕdx (2.3)

−
∫

Ω

Fu(x, u, v)ψdx−
∫

Ω

Fv(x, u, v)ϕdx, ∀(ψ,ϕ) ∈ X.



234 Hassan Belaouidel, Anass Ourraoui and Najib Tsouli

Then, we know that the weak solution of (1.1) corresponds to critical point of
the functional φ.

Definition 2.8. We say that

(1) The C1-functional φ satisfies the Palais-Smale condition (in short (PS) condi-
tion) if any sequence (un)n∈N ⊆ X for which, (φ(un))n∈N ⊆ R is bounded and

φ
′
(un)→ 0 as n→∞, has a convergent subsequence.

(2) The C1-functional φ satisfies the Palais-Smale condition at the level c (in short
(PS)c condition) for c ∈ R if any sequence (un)n∈N ⊆ X for which, φ(un) → c

and φ
′
(un)→ 0 as n→∞, has a convergent subsequence.

(3) The C1-functional φ satisfies the (PS)∗c condition for c ∈ R if any sequence

(un)n∈N ⊆ X for which, un ∈ Yn for each n ∈ N, φ(un)→ c and φ
′

|Yn
)(un)→ 0 as

n→∞ with Yn, n ∈ N as defined in Remark 2.5, has a subsequence convergent
to a critical point of φ.

Remark 2.9. It is easy to see that if φ satisfies the (PS) condition, then φ satisfies
the (PS)c condition for every c ∈ R.

Proof of Theorem 1.1. To prove Theorem 1.1, we shall use the Mountain Pass theorem
[16]. We first start with the following lemmas.

Lemma 2.10. Under the assumptions (F1)-(F3) and (A1)-(A3) φ is sequentially weakly
lower semi continuous and coercive .

Proof. By (F1)-(F2), we see that

|F (x, s, t)| ≤ C3(1 + |s|p(x) + |t|q(x)), ∀(s, t) ∈ R2. (2.4)

By the compact embeddings

X ↪→ Lp(x)(Ω), X ↪→ Lq(x)(Ω),

we deduce that w 7→
∫

Ω
F (x,w)dx is sequentially lower semi continuous ∀w ∈ R2.

Since

w 7→
∫

Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx

is convex uniformly, so it is sequentially lower semi continuous.

Now we prove that φ is coercive. From (F2) for ε small enough, there exist δ > 0 such
that

| F (x, s, t) |≤ ε(|s|p(x) + |t|q(x)), for |(s, t)| > δ,

and thus we have

| F (x, s, t) |≤ ε(|s|p(x) + |t|q(x)) + max
|(s,t)|≤δ

| F (x, s, t) | ||(s, t)|,∀(s, t) ∈ R2,
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for a.e x ∈ Ω. Consequently, for ‖(u, v)‖ > 1 we obtain

φ(u, v) ≥
∫

Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx

− ε

∫
Ω

|u|p(x)dx− ε
∫

Ω

|v|q(x)dx− max
|(u,v)|≤δ

| F (x, u, v) |
∫

Ω

|(u, v)|dx

≥
∫

Ω

1

r(x)
|∆u|r(x)dx+

∫
Ω

1

r(x)
|∆v|r(x)dx

− Cε

∫
Ω

|u|p(x)dx− Cε
∫

Ω

|v|q(x))dx− max
|(u,v)|≤δ

| F (x, u, v) |
∫

Ω

|(u, v)|dx

≥ 1

r+
max

(
‖u‖r

−

r(x), ‖v‖
r−

r(x)

)
− 2Cεmax

(
‖u‖p

+

p(x), ‖v‖
q+

q(x)

)
−Cε|Ω| max

|(u,v)|≤δ
| F (x, u, v) | max

(
‖u‖p

+

p(x), ‖v‖
q+

q(x)

)
.

Therefore, φ is coercive and has a global minimizer (u1, v1) which is a nontrivial
because by (F3)

φ(u1, v1) ≤ φ(u, v) < 0.

Lemma 2.11. Under the assumptions (F1)-(F3) and (A1)-(A4). Then φ satisfies the
Palais-smale condition.

Proof. Let wn = (un, vn) ⊂ X be a Palais-smale sequence, then

φ
′
(wn)→ 0 in X∗, φ(wn)→ l ∈ R.

We show that (wn) is bounded. By (A5) we have

φ(wn) =

∫
Ω

A(x,∆un)dx+

∫
Ω

A(x,∆vn)dx−
∫

Ω

F (x, un, vn)dx

≥
∫

Ω

1

r(x)
|∆un|r(x)dx+

∫
Ω

1

r(x)
|∆vn|r(x)dx−

∫
Ω

F (x, un, vn)dx,

and we get

φ
′
(un, vn)(un, vn)

=

∫
Ω

a(x,∆un)∆undx+

∫
Ω

a(x,∆vn)∆vndx

−
∫

Ω

Fun(x, un, vn)undx−
∫

Ω

Fvn(x, un, vn)vndx

≤
∫

Ω

r(x)A(x,∆un)dx+

∫
Ω

r(x)A(x,∆vn)dx

−
∫

Ω

Fun
(x, un, vn)undx−

∫
Ω

Fvn(x, un, vn)vndx.

Using the fact that Fs, Ft ∈ C(Ω×R2,R) and with (F1)− (F2), for ε > 0 there exists
δ > 0 and η > 0 such that

|Fs(x, s, t)| ≤ ε|s|p(x)−1, |Ft(x, s, t)| ≤ ε|t|q(x)−1,
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and

|F (x, s, t)| ≤ ε(|s|p(x) + |t|q(x)),

for all |s, t)| ≤ δ, and for all |s, t)| ≥ η.
Then we have

|Fs(x, s, t)s| ≤ ε|s|p(x), |Ft(x, s, t)t| ≤ ε|t|q(x), (2.5)

and

|F (x, s, t)| ≤ ε(|s|p(x) + |t|q(x)),

for all |s, t)| ≤ δ, and for all |s, t)| ≥ η.
It yields,

− 1

2r+
φ
′
(un, vn)(un, vn)

≥ − 1

2r+

∫
Ω

r(x)A(x,∆un)dx− 1

2r+

∫
Ω

r(x)A(x,∆vn)dx

+
1

2r+

[∫
Ω

Fun
(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
≥ − 1

2r+

∫
Ω

r(x)A(x,∆un)dx− 1

2r+

∫
Ω

r(x)A(x,∆vn)dx

+
1

2r+

[∫
Ω

Fun(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
.

Thus,

φ(un, vn)− 1

2r+
φ
′
(un, vn)(un, vn)

≥
∫

Ω

A(x,∆un)dx+

∫
Ω

A(x,∆vn)dx−
∫

Ω

F (x, un, vn)dx

− 1

2r+

∫
Ω

r(x)A(x,∆un)dx− 1

2r+

∫
Ω

r(x)A(x,∆vn)dx

−
∫

Ω

F (x, un, vn)dx+
1

2r+

[∫
Ω

Fun(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
≥ 1

2

[∫
Ω

|∆un|r(x)dx+

∫
Ω

|∆vn|r(x)dx

]
−
∫

Ω

F (x, un, vn)dx

+
1

2r+

[∫
Ω

Fun(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
≥ 1

2
max

(
‖un‖r

+

r(x), ‖vn‖
r+

r(x)

)
− (Cε+ ε)

∫
Ω

|un|p(x)dx− (Cε+ ε)

∫
Ω

|vn|q(x))dx.

Since r− > p+ > 1, r− > q+ > 1, by the compact embeddings

X ↪→ Lp(x)(Ω), X ↪→ Lq(x)(Ω),
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we deduce

φ(un, vn)− 1

2r+
φ
′
(un, vn)(un, vn)

≥ 1

2
max

(
‖un‖r

+

r(x), ‖vn‖
r+

r(x)

)
− 2(C

′
ε+ ε)‖(un, vn)‖

≥
[

1

2
− 2(C

′
ε+ ε)

]
‖(un, vn)‖,

where C
′

is positive constant.

For ε small enough with R = 1
2 − 2(C

′
ε+ ε) > 0, we get

‖(un, vn)‖ ≤ 1

R

(
φ(un, vn)− 1

2r+
φ
′
(un, vn)(un, vn)

)
.

Since φ(un, vn) is bounded and φ
′
(un, vn)(un, vn) → 0 as n → ∞, then (un, vn) is

bounded in X, passing to a subsequence, so (un, vn) ⇀ (u, v) in X and (un, vn) →
Lp(x)(Ω)× Lq(x)(Ω). We show that (un, vn)→ (u, v) in X.

φ
′
(un, vn) ((un, vn)− (u, v))

=

∫
Ω

a(x,∆un)∆(un − u)dx+

∫
Ω

a(x,∆vn)∆(vn − v)dx

−
∫

Ω

Fun
(x, un, vn)(un − u)dx−

∫
Ω

Fvn(x, un, vn)(vn − v)dx.

Since ∣∣∣∣∫
Ω

a(x,∆un)∆(un − u)dx+

∫
Ω

a(x,∆vn)∆(vn − v)dx

∣∣∣∣
= |φ

′
(un, vn) ((un, vn)− (u, v)) +

∫
Ω

Fun
(x, un, vn)(un − u)dx

+

∫
Ω

Fvn(x, un, vn)(vn − v)dx|

≤ ‖φ
′
(un, vn)‖X?‖(un, vn)− (u, v)‖

+

∫
Ω

|Fun(x, un, vn)||(un − u)|dx+

∫
Ω

|Fvn(x, un, vn)||(vn − v)|dx.

By (2.5), we have∫
Ω

|Fun
(x, un, vn)||(un − u)|dx+

∫
Ω

|Fvn(x, un, vn)||(vn − v)|dx

≤ ε

∫
Ω

(
|un − u|p(x) + |vn − v|q(x)

)
dx,

we get

lim sup
n→+∞

(∫
Ω

a(x,∆un)∆(un − u)dx+

∫
Ω

a(x,∆vn)∆(vn − v)dx

)
≤ 0.

Since a(x, ξ) is of (S+) type, we see that (un, vn)→ (u, v) in X.
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Now, we verified the conditions of Mountain Pass Theorem. By Hölder’s inequality,
from (F1) there exists δ > 0 such that

|F (x, u, v)| ≤
∣∣∣∣∫ u

0

Fs(x, s, v)dx+

∫ v

0

Ft(x, 0, t)dx+ F (x, 0, 0)

∣∣∣∣
≤ ε

∣∣∣∣∫ u

0

|s|p(x)−1dx+

∫ v

0

|t|q(x)−1dx

∣∣∣∣+ |F (x, 0, 0)|

≤ ε(|u|p(x) + |v|q(x)) +M,

for all |u, v)| ≤ δ, with M := max
x∈Ω

F (x, 0, 0) and by (F2), there exists M(δ) > 0 such

that

| F (x, u, v) |≤M(δ)(|u|p(x) + |v|q(x)), for |(u, v)| > δ.

Therefore, for ‖(u, v)‖ = % small enough, we have

φ(u, v) ≥
∫

Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx− ε
∫
|(u,v)|<δ

(
|u|p(x) + |v|q(x)

)
dx

− M(δ)

∫
|(u,v)|>δ

(|u|p(x) + |v|q(x))−Mmeas{|(u, v)| < δ}

≥ 1

r+
max

(
‖u‖r

+

r(x), ‖v‖
r+

r(x)

)
− min(εC,M(δ)C

′
) max

(
‖u‖p

−

p(x), ‖v‖
q−

q(x)

)
−Mmeas{|(u, v)| < δ}

= g(%).

There exists θ > 0 such that g(%) > θ > 0. Since φ(0, 0) = 0, we conclude that φ
satisfies the conditions of Mountain Pass Theorem. Then there exists (u2, v2) such

that φ
′
(u2, v2) = 0.

Proof of Theorem 1.2. To prove Theorem 1.2, above, will be based on a variational
approach, using the critical points theory, we shall prove that the C1-functional φ has
a sequence of critical values. The main tools for this end are “Fountain theorem” (see
Willem [16, Theorem 6.5]) which we give below.

Theorem 2.12 (“Fountain theorem”, [16]). Let X be a reflexive and separable Banach
space, φ ∈ C1(X,R) be an even functional and the subspaces Xk, Yk, Zk as defined in
remark 2.5. If for each k ∈ N∗ there exist ρk > rk > 0 such that

(1) infx∈Zk,‖x‖=rk φ(x)→∞ as k →∞,
(2) maxx∈Yk,‖x‖=ρk φ(x) ≤ 0,
(3) I satisfies the (PS)c condition for every c > 0.

Then I has a sequence of critical values tending to +∞.

According to Lemma 2.6, (F5) and (A5), Φ ∈ C1(X,R) is an even functional. We
will prove that if k is large enough, then there exist ρk > νk > 0 such that

bk := inf{Φ(u)/u ∈ Zk, ‖u‖ = νk} → +∞ as k → +∞; (2.6)

ak := max{Φ(u)/u ∈ Yk, ‖u‖ = ρk} → 0 as k → +∞. (2.7)
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For any (u, v) ∈ Zk, ‖v‖q(x) > 1, ‖u‖p(x) > 1 and ‖(u, v)‖ = ηk, (ηk will be
specified later), by (2.4) we have

φ(u, v) =

∫
Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx−
∫

Ω

F (x, u, v)dx

≥ 1

r+
max

(
‖u‖r

−

r(x), ‖v‖
r−

r(x))

)
−
∫

Ω

C3(1 + |u|p(x) + |v|q(x))dx

≥ 1

r+
max

(
‖u‖r

−

r(x), ‖v‖
r−

r(x))

)
− C3

∫
Ω

dx− C3

∫
Ω

|u|p(x)dx− C3

∫
Ω

|v|q(x)dx

≥ 1

r+
‖(u, v)‖r

−
− C3(βk‖(u, v)‖)p

+

− C3(βk‖(u, v)‖)q
+

− C3|Ω|

≥ 1

r+
‖(u, v)‖r

−
− C4βk‖(u, v)‖m − C3|Ω|,

where m is defined in Lemma 2.6. We fix

ηk =

(
1

r+C4βbk

) 1

m−r−

→ +∞ as k → +∞.

Consequently

φ(u, v) ≥ ηk
[

1

r+
ηr
−−1
k − C4β

b
kη
m−1
k

]
− C3|Ω|.

Then,

φ(u, v)→ +∞ as k → +∞.

Proof of (2.7). From (F4), there exists λ > 0 such that

F (x, s, t) ≥ λ(|s|α(x) − |t|β(x)),

with α− > r+, β+ < r−.

Therefore, by Lemma 2.1 [12] and Lemma 3.1 [17], for any ω := (u, v) ∈ Yk with
‖ω‖ = 1 and 1 < t = ρk, we have

φ(tω) =

∫
Ω

A(x, t∆u)dx+

∫
Ω

A(x, t∆v)dx−
∫

Ω

F (x, tω)dx

≤
∫

Ω

tr(x)A(x,∆u)dx+

∫
Ω

tr(x)A(x,∆v)dx

− λ
∫

Ω

|tu|α(x)dx+ λ

∫
Ω

|tv|β(x)dx

≤ tr
+

[∫
Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx

]
− λtα

−
∫

Ω

|u|α(x)dx+ λtβ
−
∫

Ω

|v|β(x)dx.

By α− > r+ > β− and dimYk <∞, we conclude that φ(tu, tv)→ −∞ as ‖tω‖ → +∞
for ω ∈ Yk. By applying the fountain Theorem, we achieved the proof of Theorem 1.2.
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[12] Mashiyev, R.A., Cekic, B., Avci, M., Yücedag, Z., Existence and multiplicity of weak so-
lutions for nonuniformly elliptic equations with nonstandard growth condition, Complex
Var. Elliptic Equ., 57(2012), no. 5, 579-595.
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