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Existence and multiplicity of solutions to the
Navier boundary value problem for a class of
(p(x), g(x))-biharmonic systems

Hassan Belaouidel, Anass Ourraoui and Najib Tsouli

Abstract. In this article, we study the following problem with Navier boundary
conditions.
Ala(z, Au)) = Fu(z,u,v), in
A(a(z, Av)) = Fy(z,u,v), in Q,
u=v=Au=Av=0 on 0NQ2.
By using the Mountain Pass Theorem and the Fountain Theorem, we establish
the existence of weak solutions of this problem.
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1. Introduction

In recent years, the study of differential equations and variational problems with
p(z)-growth conditions was an interesting topic, which arises from nonlinear elec-
trorheological fluids and elastic mechanics. In that context we refer the reader to
Ruzicka [15], Zhikov [20] and the reference therein; see also [4, 7, 8, 5].

Fourth-order equations appears in many context. Some of theses problems come
from different areas of applied mathematics and physics such as Micro Electro-
Mechanical systems, surface diffusion on solids, flow in Hele-Shaw cells (see [10]).
In addition, this type of equations can describe the static from change of beam or the
sport of rigid body.

In [1] the authors studied a class of p(x)-biharmonic of the form

A(|Au|P® 72 Au) = Au|?™ 2y in Q,
u=Au=0 on 99,
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where € is a bounded domain in RY, with smooth boundary 9Q, N > 1, A >0 .

In [3], A. El Amrouss and A. Ourraoui considered the below problem and us-
ing variational methods, by the assumptions on the Carathéodory function f, they
establish the existence of Three solutions the problem of the form

A(AUP2Au) + a(@)ul" @20 = f(w,u) + Ag(z,u) in O,
Bu=Tu=0 on 0.

Inspired by the above references, the work of L. Li [11]and [14], the aim
of this article is to study the existence and multiplicity of weak solutions for
(p(x), g(x))—biharmonic type system

Ala(z, Au)) = Fy(z,u,v), in
Ala(z, Av)) = Fy(z,u,v), in Q, (1.1)
u=Au=0,v=Av=0 on 02,

where €2 is a bounded domain in RY with smooth boundary 99, N > 1,

A2 yu = A(|AuP@ =2 An),

p(x
is the p(x)-biharmonic operator, p,q are continuous functions on Q with

inf p(z) > max{L ];7}, inf ¢(x) > max{l, ];T}

e z€eQ

and F : Q x R? — R is a function such that F(.,s,t) is continuous in Q, for all
(s,t) € R2, F(x,.,.) is C! in R? for every x € Q, and F,, F, denote the partial
derivative of F', with respect to u, v respectively such that

(Fy) For all (z,s,t) € Q x R? we assume
F, F
im 78(33’1572&) =0, lim 775(33’.572&) =0
ls|»0 |s[p(z)—1 t|—0 |s]a(@)—1
(F) For all (z,s,t) € Q x R?, we assume
F(z,s,t) = o(|s|"™ 7 4 [¢|77) as |(s,1)] — oc.

(F3) There exists u > 0, v > 0 such that F(x,u,v) >0 fora.e z €
(F4) There exist A\ > 0 such that F(z,s,t) > A(|s|*®) — |t|3®) for all (s,t) € R?,
with
a”~ >t 1< BT <BT <.
(F5) For all (z,s,t) € Qx R? F(z,—s,—t) = —F(x,s,t).

Let a : © x RY — RY to be a continuous potential derivative with respect to
¢ of the mapping A : @ x RY — RY where a = DA = A, with the assumption as
below
(A1) A(z,0) =0, for all x € Q.

(42) a(,€) < Co(1+ [E71), €y > 0 and 1= > p*, 7= > g+,
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(A3) A is r(z)-uniformly convex: there exists a constant k > 0 such that

1 1
A 557) < 549 + A - K-

forallz € Q, &,neRY.
(A4) Ais r(z)-subhomogenuous, for all (z,&) € Q x RV,

€ < a(z, &) < r(@)A(z,€).
(As) For all (z,s) € Q x RN a(z,—s) = —a(x, s).
The main results of this paper are the following theorems.

Theorem 1.1. Assume that (A1) — (A4) and (Fy) — (F3) hold. Then the problem (1.1)
has two weak solutions.

Theorem 1.2. Assume that (A1) — (As) and (Fy) — (F5) hold. Then the problem (1.1)
has a sequence of weak solutions such that ¢(£(uk,vr)) = +00, as k — +oo with ¢
is a energy associated of the problem (1.1) defined in (2.2).

This paper is organized as three sections. In Section 2, we recall some basic
properties of the variable exponent Lebegue-Sobolev spaces. In Section3 we give the
proof of main results.

2. Preliminaries

To study p(z))-Laplacian problems, we need some results on the spaces LP(*)) ()
and W*P®)(Q), and properties of p(z))-Laplacian, which we use later. Let Q be a
bounded domain of RY, denote

C.+(Q) = {h(x); h(z) € C(Q), h(z) > 1,Vx € Q}.
For any h € C(2), we define
ht = max{h(z); x € Q}, h~ =min{h(z); z € Q};

For any p € C4(2), we define the variable exponent Lebesque space

Lp(w))(Q) = {u; u is a measurable real-valued function such that

/ lu(z)|P@) da < oo},
Q

endowed with the so-called Luzemburg norm

|u|p(m)) = inf {/L > 0; /
Q

Then (LP®)(Q), | - |p(x))) becomes a Banach space.

u(z)
I

p(z))
der <1;.
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Proposition 2.1 ([9]). The space (LP@)(Q),| - |,())) is separable, uniformly convex,
reflexive and its conjugate space is L9®)(Q) where q(x) is the conjugate function of

p(x)), i.e.,
1 1

_—t = 1,
p(x))  q(x)
for all x € Q. Foru € LP®)(Q) and v € L) (Q), we have

/ uvdx
Q

The Sobolev space with variable exponent W*?(#)(Q) is defined as
WEPE(Q) = {u € LPE(Q) : DY € LP@)(Q), |a| < k},

11
< (17_ + qi) |ulp(a)) V] g(z) < 2lulpe)|vlg)-

where ol
a «
D%y = u
«q a2 anN ’
0z 0x5” ... 0xy

N
with @ = (a1,...,ay) is a multi-index and |o| = Zai. The space WFP(®)((Q)
i=1
equipped with the norm

ullkp@y = D D Ulp(ay),

la|<k

also becomes a separable and reflexive Banach space. For more details, we refer the
reader to [6, 9, 13]. Denote

Nplo) - if fp(x) < N,

*(p) = { N—kp(z)
Pi(e) {+oo if kp(z) > N

for any z € Q, k > 1.

Proposition 2.2 ([9]). For p,r € C4 () such that r(x) < pj(z) for all x € Q, there is
a continuous embedding

WkPE)(Q) — L@ (Q).
If we replace < with <, the embedding is compact.
We denote by Wok’p(m)(Q) the closure of C$°(Q) in W*P®)(Q). Then the func-

tion space ((Wg’p(l)(ﬂ) N Wol’p(m)(Q)) , ||u||p(z)) is a separable and reflexive Banach
space, where

A p(z)
lullpy = inf {1 >0 / ( u(@) P 1),
Q H
Remark 2.3. According to [[18] Theorem 4.4. ], the norm || - [|2 () is equivalent to

the norm || - [|,,(, in the space X. Consequently, the norms || -
are equivalent.

2,p(x)» || : || and || : ||P(5U)

Proposition 2.4 ([2]). If we denote p(u) = [, |Au|P®)dz, then for u,u, € X, we have
(1) Jull, <1 (respectively=1; > 1) <= p(u) < 1 (respectively =1; > 1);
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+ -
@) full, <1 =l < plu) <lullf
- +
@) llully = 1= Jully < p(u) < lulf;
(4) |lunllp = 0 (respectively — 00) <= p(un) — 0 (respectively — o).

Note that the weak solutions of problem (1.1) are considered in the generalized
Sobolev space

X = (W2r@(@) nwg (@) x (We@) nwg 1 (@)
equipped with the norm

[(w; 0)|| = max{{[ullp(a), [lullq(a) }-

Remark 2.5 (see [19]). As the Sobolev space X is a reflexive and separable Banach
space, there exist (en)nen € X and (fn)nens € X* such that f,(e;) = 6, for any
n,l € N* and

*

X =span{e, : n € N*}, X" =sgspan{f, :n € N*}w .
For k € N*, denote by
Xy, =span{ey}, Yo = @5, X;, Z,=0FX,.
For every m > 1, u,v € L™(Q), we define

|(w, )l = max{|ulpm, [v]m}-

Lemma 2.6 (See [8]). Define

B := sup{|(u, v)|m; [[(u, v) || = 1, (u,v) € Z},
where m := max(p(z), q(xz)). Then, we have

e
klggo P = 0.

2.1. Existence and multiplicity of weak solutions
Definition 2.7. We say that (u,v) € X is weak solution of (1.1) if

/a(x,Au)Agpdx—!—/ a(x,Av)Agpdxz/Fu(a:,u,v)godx—!—/ Fy(z,u,v)pdz, (2.1)
Q Q Q Q
for all p € X.

The functional associated to (1.1) is given by

d)(u,v):/QA(JJ,Au)d:ch/QA(z,Av)d:rf QF(x,u,v)dx. (2.2)

It should be noticed that under the condition (Fy) — (F») the functional ¢ is of class
C'(X,R) and

gZ)/(u,v)(w,go):/Qa(x,Au)Awdx—i—/Qa(x,Av)Agodx (2.3)

—/ Fu(x,u,v)wdx—/ Fy(z,u,v)pdx, Y(1,p) € X.
Q

Q
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Then, we know that the weak solution of (1.1) corresponds to critical point of
the functional ¢.

Definition 2.8. We say that

(1) The C'-functional ¢ satisfies the Palais-Smale condition (in short (P.S) condi-
tion) if any sequence (uy)neny € X for which, (¢(un))neny € R is bounded and
(;5/ (un) — 0 as n — oo, has a convergent subsequence.

(2) The C'-functional ¢ satisfies the Palais-Smale condition at the level ¢ (in short
(PS). condition) for ¢ € R if any sequence (uy)ney € X for which, ¢(u,) — ¢
and ¢ (un) — 0 as n — oo, has a convergent subsequence.

(3) The C'-functional ¢ satisfies the (PS) condition for ¢ € R if any sequence
(un)nen C X for which, u,, € Y, foreachn € N, ¢(u,,) — cand (;S]Yn)(un) — 0as
n — oo with Y,,, n € N as defined in Remark 2.5, has a subsequence convergent
to a critical point of ¢.

Remark 2.9. It is easy to see that if ¢ satisfies the (PS) condition, then ¢ satisfies
the (PS). condition for every ¢ € R.

Proof of Theorem 1.1. To prove Theorem 1.1, we shall use the Mountain Pass theorem
[16]. We first start with the following lemmas.

Lemma 2.10. Under the assumptions (Fy)-(F3) and (A1)-(As) ¢ is sequentially weakly
lower semi continuous and coercive .

Proof. By (F1)-(F»), we see that
|F(z,5,t)] < Cs(1 + |s|P® +]t]9@), V(s,t) € R2, (2.4)
By the compact embeddings
X < LP@(Q), X — L1®)(Q),

we deduce that w — [, F/(x,w)dz is sequentially lower semi continuous Vuw € R2.
Since

wH/A(x,Au)dx—f—/A(x,Av)dx
Q Q

is convex uniformly, so it is sequentially lower semi continuous.

Now we prove that ¢ is coercive. From (F») for € small enough, there exist § > 0 such
that

| Pz, 5,8) |< e(|s/P™) + [t]), for |(s,)] > 6,
and thus we have

| F(x,s,1) < e(|sP™) +[¢]2)) + A | F(x,s,t) | ]|(s, )], ¥(s,t) € R?,
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for a.e z € Q. Consequently, for ||(u,v)|| > 1 we obtain

ou,v) > /Q A(z, Au)dz + / A(z, Av)dz

Q

- 5/|u\p(z)dx—e/|v|q(z)dxf max |F(x,u,v)|/ |(u,v)|dx
[(u,v)|<d Q

1
> | Au|"®) dx—i—/ ——|Av[" @z
/M( ) r(z)
- e [ s C’a/ l]7®)d — me;‘x5|F(ac,u,v)|/|(u,v)\dx
U’U Q
1
> ;max(nuu oy 017y ) = 2Cemax (Il loll2,))

— q
CelQ] mav | Flw,u,v) | max <||u||p(w Hv||q(1)) .

Therefore, ¢ is coercive and has a global minimizer (@y,77) which is a nontrivial
because by (F3)

o(u1,71) < ¢p(u,v) <O0.

Lemma 2.11. Under the assumptions (F1)-(F3) and (A1)-(A4). Then ¢ satisfies the
Palais-smale condition.

Proof. Let w,, = (un,v,) C X be a Palais-smale sequence, then
¢ (wn) — 0in X*, ¢p(w,) — 1 € R.
We show that (w,,) is bounded. By (As) we have

o(wy,) = /QA(x Auy,) d:17+/QA(x,Avn)d:v7/F(x,un,vn)d:r

Q

1 1
—|Au,|"= d:ch/ Av,|"®) dx — / F(x,un,vy)dz,
| i 7l [ Pl om)

Y
5

and we get
¢ (tn, vn)(un, vy)

/a(x,Aun)Aundx—l—/a(m,Avn)Avndx
Q Q

- /Fun(xaunavn)undx_/Fvn(xaunavn)vndx
Q Q

IN

/Qr(ac)A(x,Aun)dx—&-/r(x)A(m,Avn)dx

Q

— /Fun(a?,umvn)undx—/Fvn(x,un,vn)vndm.
Q Q

Using the fact that Fy, F; € C(Q x R?,R) and with (F}) — (Fy), for € > 0 there exists
6 > 0 and n > 0 such that

|Fs(z,s,t)| < 5|s|p(”)_17 |Fy(z,s,t)] < 5|t|‘I($)_1,
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and
|F(x,5,t)] < e(|s|P™) 4 [¢]96),

for all |s,t)] <6, and for all |s, )| > n.
Then we have

|Fo(z, s, t)s| < els|P™@), |Fy(x, s,t)t] < eft[?™),
and
|F(x,5,t)] < e(|sP™) 4 [¢]164)),

for all |s,t)| <6, and for all |s, )| > n.

It yields,
1
“ont (tn, V) (U s V)
1
> g [ @A Au)de = 5 [ (@A Av)d
. -
+ s _/QFun($7umvn)und$+/QFvn(xvumvn)vnd$_
1
> _277/QT(I)A(J;,Aun)d;c—27T [ (@A, Ay
Dt -
4 o= _/ngun(x,un,vn)undx-l-/QFUTL(CU,Umvn)UndSU_ .
Thus,

1
d)(unavn) - 2717+¢ (u'ruvn)(unyvn)

(2.5)

T

T

> /A(x,Aun)dx—l—/A(x,Avn)dx—/F(:r,umvn)dx
Q Q Q
1

== Qr(ac)A(:zc,Aun)dac—QT—Jr Qr(x)A(x,Avn)dx

1

_ /F(x,un,vn)dx—i—— [/ Fun(x,un,vn)undx—i—/Fvn(x,un,vn)vndx]
Q 2rt [Jq Q
1

> = [/ \Aun|r(x)dx+/ Aun|7-(w)d.%‘:| —/ F(z,up,v,)dz
2 Q Q Q

+ 27% {/ﬂ Fun(x,un,vn)undx—i-/QFvn(m,un,vn)vndm}

1 ’l”+ ’I"+ x x
> g max (i ol = (€ +) [ funPdo— (Ce+) [ o1 da.
2 Q Q

Since r~ > pT > 1, r~ > ¢ > 1, by the compact embeddings

X < LP@(Q), X — L1®(Q),
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we deduce

1 ’
(b(unvvn) - 27"7+¢ (unavn)(unavn)

1 ’r‘+ T+ /
> Lo (Il Il ) = 2(C2 + Ol ()|
1 ,
> [—2<cfs+a>] s )

2

where C is positive constant.
For ¢ small enough with R = § — 2(C'e +¢) >0, we get

1 ]_ ’
||(Un,’l]n)|| S E <¢(un»vn) - ¢ (unavn)(unvvn)> .

2wt

Since ¢(tn,v,) is bounded and @ (i, v, )(tn,vn) — 0 as n — oo, then (up,v,) is
bounded in X, passing to a subsequence, so (un,v,) — (u,v) in X and (un,v,) —
L) (Q) x L1@)(Q). We show that (u,,v,) — (u,v) in X.

¢ (ttn vn) (s v) = (u,0))

= /Qa(x, Aup)Au, —u)dx + /Q a(z, Avy)A(v, —v)dx

— / F,, (z,up, vy)(uy — u)de — / F, (x,upn,vy)(v, — v)da.
Q

Q
Since

/Qa(m, Auy)A(uy, — u)de + /Q a(z, Avy)A(vy, — v)dx

= ‘QZ)’(una V) ((Un, vn) — (u,v)) +/ Fy, (@, Un, V) (Uy, — u)dx

Q
+ / Fvn ('I7 Up, Un)(vn - U)dfl}|
Q

IN

||¢ (umvn)HX*H(umvn) - (u,v)||
4 / P (2, s 00) |t — )] + / By (2t ) [ (0 — ).
Q Q
By (2.5), we have
/ | Fo (2t 0) | (1 — )+ / Iy, (2, i, o) (0 — )]l
Q Q
< 6/ <|un — ulP@ 4 o, — v|q(z)> dz,
Q
we get

lim sup (/ a(z, Aup)A(u, — u)dz +/
Q

n—-+4o0o (9]

a(x, Avy ) A(v, — ’U)d:E> <0.

Since a(x, &) is of (Sy) type, we see that (un,v,) = (u,v) in X.
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Now, we verified the conditions of Mountain Pass Theorem. By Hoélder’s inequality,
from (F7) there exists § > 0 such that

Fla,uv)| < /Fs(x,s,v)dx+/ Ft(x,O,t)da:+F(x,0,0)‘
0 0

| tsretae e [t
0 0

(a4 o) + M,

for all |u,v)| <, with M := max F'(z,0,0) and by (F3), there exists M(J) > 0 such
€N

IN

3 —|—|F(J,‘,0,0)‘

IN

that
| F(z,u,v) |[< M) (JulP™ +|v]9®)), for |(u,v)] > 6.

Therefore, for ||(u,v)|| = o small enough, we have
é(u,v) > / Az, Au)dz +/ Az, Av)dx — a/ <|u|p(x) + |v|q(“')) dx
Q Q [(u,v)|<d

- M(9) (JufP™) + 0]7)) — Mmeas{|(u,v)| < 5}
|(uw,v)|>6
1 o+ o+
> - max (Jlull o, vl )
— min(=C, M@)C ) max (ulll, . 1ol ) — Mmeas{|(u,0)| < 8}

= 9(0).

There exists 6 > 0 such that g(o) > 6 > 0. Since ¢(0,0) = 0, we conclude that ¢
satisfies the conditions of Mountain Pass Theorem. Then there exists (ugz,7z) such
that ¢ (s,73) = 0.

Proof of Theorem 1.2. To prove Theorem 1.2, above, will be based on a variational
approach, using the critical points theory, we shall prove that the C'-functional ¢ has
a sequence of critical values. The main tools for this end are “Fountain theorem” (see
Willem [16, Theorem 6.5]) which we give below.

Theorem 2.12 (“Fountain theorem”, [16]). Let X be a reflexive and separable Banach
space, € C1(X,R) be an even functional and the subspaces Xy, Yi, Z), as defined in
remark 2.5. If for each k € N* there exist pr, > 1, > 0 such that

(1) infocz, af=r, ¢(x) = 00 as k — oo,

(2) maxzey, |zf=p, ?(2) <0,
(3) I satisfies the (PS). condition for every ¢ > 0.

Then I has a sequence of critical values tending to +oc.

According to Lemma 2.6, (F5) and (As), ® € C1(X,R) is an even functional. We
will prove that if k is large enough, then there exist px > v, > 0 such that
by == inf{®(u)/u € Zy, |ul]| = vk} = +o0 as k — +oo; (2.6)
ay, = max{®(u)/u € Yy, ||u|| = pr} = 0 as k — +oo.
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For any (u,v) € Zy, [[vllg@) > 1, [[ullp@) > 1 and [[(u,v)[| = e, (m will be
specified later), by (2.4) we have

w%mzéA@Amm+LA@Amw—AF@mmm

v

1 _ _
r r _ (z) (=)
(o ol ) = [ Calt+ o)+ o) e

1 ~ ~
i r r _ _ (@) o (z)
- max (Il 7 ol @Am @Ampm @qum

%H(u,wn” — O3Bl (w, 0) )P — Cs(Brll(u,0) ) — C3|

1

)™ = Cabell(w v} = C5/9,

v

v

where m is defined in Lemma 2.6. We fix

1 p—
=\ T~ — 400 as k — +oo.
Consequently
1 - _
o) = me | o, = Casf? | = Cafo

Then,

¢(u,v) = 400 as k — +oo.

Proof of (2.7). From (Fy), there exists A > 0 such that
F(:E,S,t) > )‘(|S|a(m) - |t|6(w))7

with ™ > rT, BT < r~.
Therefore, by Lemma 2.1 [12] and Lemma 3.1 [17], for any w := (u,v) € Y}, with
lwl| =1 and 1 < ¢ = pg, we have

¢(tw)=/A(m,tAu)dac—|—/A(m,tAv)dm—/F(x,tw)dm
Q Q Q
S/tT(I)A(x,Au)dx—F/tr(Z)A(a:,Av)dx
Q Q
—)\/ \tu|°‘(x)da:—|—)\/ |tv|?®) dx
Q Q
<t [/ A(ac,Au)d:v+/ A(x,Av)dx}
Q Q
—)\to‘f/ |u|°‘(z)dac—|—)\tﬁf/ [v]?@ .
Q Q

By a” > rT > 87 and dimY}, < oo, we conclude that ¢(tu,tv) — —oo as ||tw|| — +oo
for w € Yj. By applying the fountain Theorem, we achieved the proof of Theorem 1.2.
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