Geometric characteristics and properties of a two-parametric family of Lie groups with almost contact B-metric structure of the smallest dimension

Miroslava Ivanova and Lilko Dospatliev

Abstract. Almost contact B-metric manifolds of the lowest dimension 3 are constructed by a two-parametric family of Lie groups. Our purpose is to determine the class of considered manifolds in a classification of almost contact B-metric manifolds and their most important geometric characteristics and properties.

Mathematics Subject Classification (2010): 53C15, 53C50, 53D15.

Keywords: Almost contact B-metric manifold, Lie group, Lie algebra, indefinite metric.

1. Introduction

The study of the differential geometry of the almost contact B-metric manifolds has initiated in [5]. The geometry of these manifolds is a natural extension of the geometry of the almost complex manifolds with Norden metric [3, 6] in the case of odd dimension. Almost contact B-metric manifolds are investigated and studied for example in [5, 11, 12, 14, 15, 17, 18, 20].

Here, an object of special interest are the Lie groups considered as threedimensional almost contact B-metric manifolds. For example of such investigation see [19].

The aim of the present paper is to make a study of the most important geometric characteristics and properties of a family of Lie groups with almost contact B-metric structure of the lowest dimension 3, belonging to the main vertical classes. These classes are \mathcal{F}_4 and \mathcal{F}_5 , where the fundamental tensor F is expressed explicitly by the metric g, the structure (φ, ξ, η) and the vertical components of the Lee forms θ and θ^* , i.e. in this case the Lee forms are proportional to η at any point. These classes contain some significant examples as the time-like sphere of g and the light cone of the associated metric of g in the complex Riemannian space, considered in [5], as well as the Sasakian-like manifolds studied in [7].

The paper is organized as follows. In Sec. 2, we give some necessary facts about almost contact B-metric manifolds. In Sec. 3, we construct and study a family of Lie groups as three-dimensional manifolds of the considered type.

2. Almost contact manifolds with B-metric

Let $(M, \varphi, \xi, \eta, g)$ be a (2n + 1)-dimensional almost contact B-metric manifold, i.e. (φ, ξ, η) is a triplet of a tensor (1,1)-field φ , a vector field ξ and its dual 1-form η called an almost contact structure and the following identities holds:

$$\varphi \xi = 0, \quad \varphi^2 = -\mathrm{Id} + \eta \otimes \xi, \quad \eta \circ \varphi = 0, \quad \eta(\xi) = 1,$$

where Id is the identity. The B-metric g is pseudo-Riemannian and satisfies

$$g(\varphi x, \varphi y) = -g(x, y) + \eta(x)\eta(y)$$

for arbitrary tangent vectors $x, y \in T_p M$ at an arbitrary point $p \in M$ [5].

Further, x, y, z, w will stand for arbitrary vector fields on M or vectors in the tangent space at an arbitrary point in M.

Let us note that the restriction of a B-metric on the contact distribution $H = \ker(\eta)$ coincides with the corresponding Norden metric with respect to the almost complex structure and the restriction of φ on H acts as an anti-isometry on the metric on H which is the restriction of g on H.

The associated metric \tilde{g} of g on M is given by $\tilde{g}(x, y) = g(x, \varphi y) + \eta(x)\eta(y)$. It is a B-metric, too. Hence, $(M, \varphi, \xi, \eta, \tilde{g})$ is also an almost contact B-metric manifold. Both metrics g and \tilde{g} are indefinite of signature (n + 1, n).

The structure group of $(M, \varphi, \xi, \eta, g)$ is $\mathcal{G} \times \mathcal{I}$, where \mathcal{I} is the identity on span (ξ) and $\mathcal{G} = \mathcal{GL}(n; \mathbb{C}) \cap \mathcal{O}(n, n)$.

The (0,3)-tensor F on M is defined by $F(x, y, z) = g((\nabla_x \varphi) y, z)$, where ∇ is the Levi-Civita connection of g. The tensor F has the following properties:

$$F(x, y, z) = F(x, z, y) = F(x, \varphi y, \varphi z) + \eta(y)F(x, \xi, z) + \eta(z)F(x, y, \xi).$$

A classification of the almost contact B-metric manifolds is introduced in [5], where eleven basic classes \mathcal{F}_i (i = 1, 2, ..., 11) are characterized with respect to the properties of F. The special class \mathcal{F}_0 is defined by the condition F(x, y, z) = 0 and is contained in each of the other classes. Hence, \mathcal{F}_0 is the class of almost contact B-metric manifolds with ∇ -parallel structures, i.e. $\nabla \varphi = \nabla \xi = \nabla \eta = \nabla g = \nabla \tilde{g} = 0$.

Let g_{ij} , $i, j \in \{1, 2, ..., 2n + 1\}$, be the components of the matrix of g with respect to a basis $\{e_i\}_{i=1}^{2n+1} = \{e_1, e_2, ..., e_{2n+1}\}$ of T_pM at an arbitrary point $p \in M$, and g^{ij} – the components of the inverse matrix of (g_{ij}) . The Lee forms associated with F are defined as follows:

$$\theta(z) = g^{ij}F(e_i, e_j, z), \quad \theta^*(z) = g^{ij}F(e_i, \varphi e_j, z), \quad \omega(z) = F(\xi, \xi, z).$$

In [12], the square norm of $\nabla \varphi$ is introduced by:

$$\left\|\nabla\varphi\right\|^{2} = g^{ij}g^{ks}g\big(\left(\nabla_{e_{i}}\varphi\right)e_{k},\left(\nabla_{e_{j}}\varphi\right)e_{s}\big).$$
(2.1)

If $(M, \varphi, \xi, \eta, g)$ is an \mathcal{F}_0 -manifold then the square norm of $\nabla \varphi$ is zero, but the inverse implication is not always true. An almost contact B-metric manifold satisfying the condition $\|\nabla \varphi\|^2 = 0$ is called an *isotropic-\mathcal{F}_0-manifold*. The square norms of $\nabla \eta$ and $\nabla \xi$ are defined in [13] by:

$$\left\|\nabla\eta\right\|^{2} = g^{ij}g^{ks}\left(\nabla_{e_{i}}\eta\right)e_{k}\left(\nabla_{e_{j}}\eta\right)e_{s}, \quad \left\|\nabla\xi\right\|^{2} = g^{ij}g\left(\nabla_{e_{i}}\xi,\nabla_{e_{j}}\xi\right).$$
(2.2)

Let R be the curvature tensor of type (1,3) of Levi-Civita connection ∇ , i.e. $R(x,y)z = \nabla_x \nabla_y z - \nabla_y \nabla_x z - \nabla_{[x,y]} z$. The corresponding tensor of R of type (0,4) is defined by R(x, y, z, w) = g(R(x, y)z, w).

The Ricci tensor ρ and the scalar curvature τ for R as well as their associated quantities are defined by the following traces $\rho(x,y) = g^{ij}R(e_i,x,y,e_j)$, $\tau = g^{ij}\rho(e_i,e_j)$, $\rho^*(x,y) = g^{ij}R(e_i,x,y,\varphi e_j)$ and $\tau^* = g^{ij}\rho^*(e_i,e_j)$, respectively.

An almost contact B-metric manifold is called *Einstein* if the Ricci tensor is proportional to the metric tensor, i.e. $\rho = \lambda g, \lambda \in \mathbb{R}$.

Let α be a non-degenerate 2-plane (section) in T_pM . It is known from [20] that the special 2-planes with respect to the almost contact B-metric structure are: a *totally* real section if α is orthogonal to its φ -image $\varphi \alpha$ and ξ , a φ -holomorphic section if α coincides with $\varphi \alpha$ and a ξ -section if ξ lies on α .

The sectional curvature $k(\alpha; p)(R)$ of α with an arbitrary basis $\{x, y\}$ at p regarding R is defined by

$$k(\alpha; p)(R) = \frac{R(x, y, y, x)}{g(x, x)g(y, y) - g(x, y)^2}.$$
(2.3)

It is known from [12] that a linear connection D is called a *natural connection* on an arbitrary manifold $(M, \varphi, \xi, \eta, g)$ if the almost contact structure (φ, ξ, η) and the B-metric g (consequently also \tilde{g}) are parallel with respect to D, i.e. $D\varphi = D\xi =$ $D\eta = Dg = D\tilde{g} = 0$. In [18], it is proved that a linear connection D is natural on $(M, \varphi, \xi, \eta, g)$ if and only if $D\varphi = Dg = 0$. A natural connection exists on any almost contact B-metric manifold and coincides with the Levi-Civita connection if and only if the manifold belongs to \mathcal{F}_0 .

Let T be the torsion tensor of D, i.e. $T(x, y) = D_x y - D_y x - [x, y]$. The corresponding tensor of T of type (0,3) is denoted by the same letter and is defined by the condition T(x, y, z) = g(T(x, y), z).

In [15], it is introduced a natural connection \dot{D} on $(M, \varphi, \xi, \eta, g)$ in all basic classes by

$$\dot{D}_x y = \nabla_x y + \frac{1}{2} \{ (\nabla_x \varphi) \,\varphi y + (\nabla_x \eta) \, y \cdot \xi \} - \eta(y) \nabla_x \xi.$$
(2.4)

This connection is called a φB -connection in [16]. It is studied for the main classes $\mathcal{F}_1, \mathcal{F}_4, \mathcal{F}_5, \mathcal{F}_{11}$ in [15, 10, 11]. Let us note that the φB -connection is the odd-dimensional analogue of the B-connection on the almost complex manifold with Norden metric, studied for the class \mathcal{W}_1 in [4].

In [17], a natural connection \ddot{D} is called a φ -canonical connection on $(M, \varphi, \xi, \eta, g)$ if its torsion tensor \ddot{T} satisfies the following identity:

$$\begin{split} \ddot{T}(x,y,z) &- \ddot{T}(x,z,y) - \ddot{T}(x,\varphi y,\varphi z) + \ddot{T}(x,\varphi z,\varphi y) \\ &= \eta(x) \left\{ \ddot{T}(\xi,y,z) - \ddot{T}(\xi,z,y) - \ddot{T}(\xi,\varphi y,\varphi z) + \ddot{T}(\xi,\varphi z,\varphi y) \right\} \\ &+ \eta(y) \left\{ \ddot{T}(x,\xi,z) - \ddot{T}(x,z,\xi) - \eta(x)\ddot{T}(z,\xi,\xi) \right\} \\ &- \eta(z) \left\{ \ddot{T}(x,\xi,y) - \ddot{T}(x,y,\xi) - \eta(x)\ddot{T}(y,\xi,\xi) \right\}. \end{split}$$

It is established that the φ B-connection and the φ -canonical connection coincide if and only if $(M, \varphi, \xi, \eta, g)$ is in the class $\mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \mathcal{F}_4 \oplus \mathcal{F}_5 \oplus \mathcal{F}_6 \oplus \mathcal{F}_8 \oplus \mathcal{F}_9 \oplus \mathcal{F}_{10} \oplus \mathcal{F}_{11}$.

In [8] it is determined the class of all three-dimensional almost contact B-metric manifolds. It is $\mathcal{F}_1 \oplus \mathcal{F}_4 \oplus \mathcal{F}_5 \oplus \mathcal{F}_8 \oplus \mathcal{F}_9 \oplus \mathcal{F}_{10} \oplus \mathcal{F}_{11}$.

3. A family of Lie groups as three-dimensional $(\mathcal{F}_4 \oplus \mathcal{F}_5)$ -manifolds

In this section we study three-dimensional real connected Lie groups with almost contact B-metric structure. On a three-dimensional connected Lie group G we take a global basis of left-invariant vector fields $\{e_0, e_1, e_2\}$ on G.

We define an almost contact structure on G by

$$\varphi e_0 = o, \quad \varphi e_1 = e_2, \quad \varphi e_2 = -e_1, \quad \xi = e_0; \\ \eta(e_0) = 1, \quad \eta(e_1) = \eta(e_2) = 0,$$
(3.1)

where o is the zero vector field and define a B-metric on G by

$$g(e_0, e_0) = g(e_1, e_1) = -g(e_2, e_2) = 1,$$

$$g(e_0, e_1) = g(e_0, e_2) = g(e_1, e_2) = 0.$$
(3.2)

We consider the Lie algebra \mathfrak{g} on G, determined by the following non-zero commutators:

$$[e_0, e_1] = -be_1 - ae_2, \quad [e_0, e_2] = ae_1 - be_2, \quad [e_1, e_2] = 0, \tag{3.3}$$

where $a, b \in \mathbb{R}$. We verify immediately that the Jacobi identity for \mathfrak{g} is satisfied. Hence, G is a 2-parametric family of Lie groups with corresponding Lie algebra \mathfrak{g} .

Theorem 3.1. Let $(G, \varphi, \xi, \eta, g)$ be a three-dimensional connected Lie group with almost contact B-metric structure determined by (3.1), (3.2) and (3.3). Then it belongs to the class $\mathcal{F}_4 \oplus \mathcal{F}_5$.

Proof. The well-known Koszul equality for the Levi-Civita connection ∇ of g

$$2g(\nabla_{e_i}e_j, e_k) = g([e_i, e_j], e_k) + g([e_k, e_i], e_j) + g([e_k, e_j], e_i)$$
(3.4)

implies the following form of the components $F_{ijk} = F(e_i, e_j, e_k)$ of F:

$$2F_{ijk} = g\left(\left[e_i, \varphi e_j\right] - \varphi\left[e_i, e_j\right], e_k\right) + g\left(\varphi\left[e_k, e_i\right] - \left[\varphi e_k, e_i\right], e_j\right) + g\left(\left[e_k, \varphi e_j\right] - \left[\varphi e_k, e_j\right], e_i\right).$$
(3.5)

Using (3.5) and (3.3) for the non-zero components F_{ijk} , we get:

$$F_{101} = F_{110} = -F_{202} = -F_{220} = a,$$

$$F_{102} = F_{120} = F_{201} = F_{210} = b.$$
(3.6)

Immediately we establish that the components in (3.6) satisfy the condition $F = F^4 + F^5$ which means that the manifold belongs to $\mathcal{F}_4 \oplus \mathcal{F}_5$. Here, the components F^s of F in the basic classes \mathcal{F}_s (s = 4, 5) have the following form (see [8])

$$F_{4}(x, y, z) = \frac{1}{2}\theta_{0} \Big\{ x^{1} \left(y^{0}z^{1} + y^{1}z^{0} \right) - x^{2} \left(y^{0}z^{2} + y^{2}z^{0} \right) \Big\}, \\ \frac{1}{2}\theta_{0} = F_{101} = F_{110} = -F_{202} = -F_{220}; \\ F_{5}(x, y, z) = \frac{1}{2}\theta_{0}^{*} \Big\{ x^{1} \left(y^{0}z^{2} + y^{2}z^{0} \right) + x^{2} \left(y^{0}z^{1} + y^{1}z^{0} \right) \Big\}, \\ \frac{1}{2}\theta_{0}^{*} = F_{102} = F_{120} = F_{201} = F_{210}.$$

$$(3.7)$$

where $\theta_0 = \theta(e_0)$ and $\theta_0^* = \theta^*(e_0)$ are determined by $\theta_0 = 2a$, $\theta_0^* = 2b$. Therefore, the induced three-dimensional manifold $(G, \varphi, \xi, \eta, g)$ belongs to the class $\mathcal{F}_4 \oplus \mathcal{F}_5$ from the mentioned classification. It is an \mathcal{F}_0 -manifold if and only if (a, b) = (0, 0) holds.

Obviously, $(G, \varphi, \xi, \eta, g)$ belongs to \mathcal{F}_4 , \mathcal{F}_5 and \mathcal{F}_0 if and only if the parameters θ_0^* vanishes if the manifold belongs to \mathcal{F}_4 , and θ_0 vanishes if it belong to \mathcal{F}_5 , and $\theta_0 = \theta_0^*$ vanishes if it belong to \mathcal{F}_0 , respectively.

According to the above, the commutators in (3.3) take the form

$$[e_0, e_1] = -\frac{1}{2}(\theta_0^* e_1 + \theta_0 e_2), \quad [e_0, e_2] = \frac{1}{2}(\theta_0 e_1 - \theta_0^* e_2), \\ [e_1, e_2] = 0,$$
 (3.8)

in terms of the basic components of the Lee forms θ and θ^* .

According to Theorem 3.1 and the consideration in [9], we can remark that the Lie algebra determined as above belongs to the type $Bia(VII_h)$, h > 0 of the Bianchi classification (see [1, 2]).

Using (3.4) and (3.3), we obtain the components of ∇ :

$$\nabla_{e_1} e_0 = be_1 + ae_2, \quad \nabla_{e_1} e_1 = -be_0, \quad \nabla_{e_1} e_2 = ae_0, \\
\nabla_{e_2} e_0 = -ae_1 + be_2, \quad \nabla_{e_2} e_1 = ae_0, \quad \nabla_{e_2} e_2 = be_0.$$
(3.9)

We denote by $R_{ijkl} = R(e_i, e_j, e_k, e_l)$ the components of the curvature tensor R, $\rho_{jk} = \rho(e_j, e_k)$ of the Ricci tensor ρ , $\rho_{jk}^* = \rho^*(e_j, e_k)$ of the associated Ricci tensor ρ^* and $k_{ij} = k(e_i, e_j)$ of the sectional curvature for ∇ of the basic 2-plane α_{ij} with a basis $\{e_i, e_j\}$, where $i, j \in \{0, 1, 2\}$. On the considered manifold $(G, \varphi, \xi, \eta, g)$ the basic 2-planes α_{ij} of special type are: a φ -holomorphic section — α_{12} and ξ -sections — α_{01}, α_{02} . Further, by (2.3), (3.2), (3.3) and (3.9), we compute

$$-R_{0101} = R_{0202} = \frac{1}{2}\rho_{00} = k_{01} = k_{02} = \frac{1}{4}(\theta_0^2 - \theta_0^{*2}),$$

$$R_{0102} = R_{0201} = -\rho_{12} = -\frac{1}{2}\rho_{00}^* = -\frac{1}{2}\tau^* = -\frac{1}{2}\theta_0\theta_0^*,$$

$$R_{1212} = \rho_{12}^* = k_{12} = -\frac{1}{4}(\theta_0^2 + \theta_0^{*2}), \quad \rho_{11} = -\rho_{22} = -\frac{1}{2}\theta_0^{*2},$$

$$\tau = \frac{1}{2}(\theta_0^2 - 3\theta_0^{*2}).$$
(3.10)

The rest of the non-zero components of R, ρ and ρ^* are determined by (3.10) and the properties $R_{ijkl} = R_{klij}$, $R_{ijkl} = -R_{jikl} = -R_{ijlk}$, $\rho_{jk} = \rho_{kj}$ and $\rho^*_{jk} = \rho^*_{kj}$.

Taking into account (2.1), (2.2), (3.1), (3.2) and (3.9), we have

$$\|\nabla\varphi\|^{2} = -2 \|\nabla\eta\|^{2} = -2 \|\nabla\xi\|^{2} = \theta_{0}^{2} - \theta_{0}^{*2}.$$
(3.11)

Proposition 3.2. The following characteristics are valid for $(G, \varphi, \xi, \eta, g)$:

- 1. The φB -connection \dot{D} (respectively, φ -canonical connection \ddot{D}) is zero in the basis $\{e_0, e_1, e_2\}$.
- 2. The manifold is an isotropic- \mathcal{F}_0 -manifold if and only if the condition $\theta_0 = \pm \theta_0^*$ is valid.
- 3. The manifold is flat if and only if it belongs to \mathcal{F}_0 .
- 4. The manifold is Ricci-flat (respectively, *-Ricci-flat) if and only if it is flat.
- 5. The manifold is scalar flat if and only if the condition $\theta_0 = \pm \sqrt{3} \theta_0^*$ holds.
- 6. The manifold is *-scalar flat if and only if it belongs to either \mathcal{F}_4 or \mathcal{F}_5 .

Proof. Using (2.4), (3.1) and (3.9), we get immediately the assertion (1). Equation (3.11) implies the assertion (2). The assertions (5), (3) and (6) hold, according to (3.10). On the three-dimensional almost contact B-metric manifold with the basis $\{e_0, e_1, e_2\}$, bearing in mind the definitions of the Ricci tensor ρ and the ρ^* , we have

$$\rho_{jk} = R_{0jk0} + R_{1jk1} - R_{2jk2} \qquad \rho_{jk}^* = R_{1kj2} + R_{2jk1}$$

By virtue of the latter equalities, we get the assertion (4).

According to (3.6) and (3.10) we establish the truthfulness of the following

Proposition 3.3. The following properties are equivalent for the studied manifold $(G, \varphi, \xi, \eta, g)$:

- 1. *it belongs to* \mathcal{F}_4 *;*
- 2. it is η -Einstein;
- 3. the Lee form θ^* vanishes.

Using again (3.6) and (3.10) we establish the truthfulness of the following

Proposition 3.4. The following properties are equivalent for the studied manifold $(G, \varphi, \xi, \eta, g)$:

- 1. it belongs to \mathcal{F}_5 ;
- 2. it is Einstein;
- 3. it is a hyperbolic space form with $k = -\frac{1}{4}\theta_0^{*2}$;
- 4. the Lee form θ vanishes.

References

- Bianchi, L., Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, Serie Terza, 11(1898), 267-352.
- Bianchi, L., On the three-dimensional spaces which admit a continuous group of motions, Gen. Relativity Gravitation, 33(2001), 2171-2253.
- [3] Ganchev, G., Borisov A., Note on the almost complex manifolds with a Norden metric, C.R. Acad. Bulgare Sci., 39(1986), 31-34.

- [4] Ganchev, G., Gribachev, K., Mihova, V., B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric, Publ. Inst. Math., Beograd (N.S.), 42(1987), no. 56, 107-121.
- [5] Ganchev, G., Mihova, V., Gribachev, K., Almost contact manifolds with B-metric, Math. Balkanica (N.S.), 7(1993), 261-276.
- [6] Gribachev, K., Mekerov, D., Djelepov, G., *Generalized B-manifolds*, C.R. Acad. Bulgare Sci., 38(1985), 299-302.
- [7] Ivanov, S., Manev, H., Manev, M., Sasaki-like almost contact complex Riemannian manifolds, J. Geom. Phys., 107(2016), 136-148.
- [8] Manev, H., On the structure tensors of almost contact B-metric manifolds, Filomat, 29(2015), no. 3, 427-436.
- Manev, H., Almost contact B-metric structures and the Bianchi classification of the three-dimensional Lie algebras, God. Sofii. Univ. "Sv. Kliment Okhridski." Fac. Mat. Inform., 102(2015), 133-144.
- [10] Manev, M., Properties of curvature tensors on almost contact manifolds with B-metric, Proc. of Jubilee Sci. Session of Vasil Levski Higher Mil. School, Veliko Tarnovo, 27(1993), 221-227.
- [11] Manev, M., Contactly conformal transformations of general type of almost contact manifolds with B-metric, Applications, Math. Balkanica (N.S.), 11(1997), 347-357.
- [12] Manev, M., Natural connection with totally skew-symmetric torsion on almost contact manifolds with B-metric, Int. J. Geom. Methods Mod. Phys., 9(2012), no. 5, 20 pages.
- [13] Manev, M., Curvature properties on some classes of almost contact manifolds with Bmetric, C. R. Acad. Bulgare Sci., 65(2012), no. 3, 283-290.
- [14] Manev, M., Gribachev, K., Contactlly conformal transformations of almost contact manifolds with B-metric, Serdica Math. J., 19(1993), 287-299.
- [15] Manev, M., Gribachev, K., Conformally invariant tensors on almost contact manifolds with B-metric, Serdica Math. J., 20(1994), 133-147.
- [16] Manev, M., Ivanova, M., A natural connection on some classes of almost contact manifolds with B-metric, C.R. Acad. Bulgare Sci., 65(2012), no. 4, 429-436.
- [17] Manev, M., Ivanova, M., Canonical-type connection on almost contact manifolds with B-metric, Ann. Global Anal. Geom., 43(2013), no. 4, 397-408.
- [18] Manev, M., Ivanova, M., A classification of the torsions on almost contact manifolds with B-metric, Cent. Eur. J. Math., 12(2014), no. 10, 1416-1432.
- [19] Manev, H., Mekerov, D., Lie groups as 3-dimensional almost B-metric manifolds, J. Geom., 106(2015), no. 2, 229-242.
- [20] Nakova, G., Gribachev, K. Submanifolds of some almost contact manifolds with B-metric with codimension two, Math. Balkanica (N.S.), 12(1998), no. 1-2, 93-108.

Miroslava Ivanova

Trakia University, Department of Informatics and Mathematics, 6000 Stara Zagora, Bulgaria e-mail: mivanova_tru@abv.bg

Lilko Dospatliev

Trakia University, Department of Pharmacology, Animal Physiology and Physiological Chemistry, 6000 Stara Zagora, Bulgaria e-mail: lkd@abv.bg