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Ball comparison for three optimal eight order
methods under weak conditions

Ioannis K. Argyros and Santhosh George

Abstract. We considered three optimal eighth order method for solving nonlinear
equations. In earlier studies Taylors expansions and hypotheses reaching up to
the eighth derivative are used to prove the convergence of these methods. These
hypotheses restrict the applicability of the methods. In our study we use hypothe-
ses on the first derivative. Numerical examples illustrating the theoretical results
are also presented in this study.
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1. Introduction

In this paper we are concerned with the problem of approximating a solution x∗

of the equation

F (x) = 0, (1.1)

where F : D ⊆ S → T is a Fréchet-differentiable operator defined on a convex set D,
where S, T are subsets of R or C.

Equation of the form (1.1) is used to study problems in Computational Sciences
and other disciplines [3, 7, 14, 16, 20]. Newton-like iterative methods [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] are famous for approximating
a solution of the equation (1.1).

In this paper, we study the local convergence analysis of the methods defined
for each n = 0, 1, 2, · · · by Siyyam et al. [19]

yn = xn −
1

F ′(xn)
F (xn),
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zn = xn + (1 + β)
1

F ′(xn)
(F (xn) + F (yn)),

− 1

F ′(xn)
F (xn)(F (xn)− F (yn))−1F (xn)

−β(
1

F ′(xn)
F (xn) + (F ′(xn) + F 2(xn)F ′(xn))−1F (yn)) (1.2)

xn+1 = zn −A−1n F (zn),

where x0 ∈ D is an initial point, β ∈ S,

An = F ′(xn) + ([xn, yn, zn;F ] + [xn, xn, yn;F ])(zn − xn)

+ 2([xn, yn, zn;F ]− [xn, xn, yn;F ])(zn − yn)

and [·, ·, ·;F ] denotes a divided difference of order two for function F on D. The second
and third method are due to Wang et. al. [23] and are defined, respectively as

yn = xn −
1

F ′(xn)
F (xn),

zn = xn −
1

F ′(xn)
F (xn)(F (xn)− 2F (yn))−1(F (xn)− F (yn)),

xn+1 = zn −
1

F ′(xn)
F (zn) (1.3)

×

1

2
+

1 + 8F (yn)
5F (xn)

+ 2
5 (F (yn)

F (xn)
)2

1− 12
5

1
F ′(xn)

F (yn)
(1 + F ′(yn)−1F (zn))

 ,
and

yn = xn −
1

F ′(xn)
F (xn),

zn = xn −
1

F ′(xn)
F (xn)(F (xn)− 2F (yn))−1(F (xn)− F (yn)),

xn+1 = zn − F (xn)−1F (xn)

[
1− 2

5
1

F ′(xn)
F (yn) + 1

5 (F (xn)−1F (yn))2

1− 12
5

1
F ′(xn)

F (yn)

+(1 + 4
1

F ′(xn)
F (yn))F ′(yn)−1F (zn)

]
. (1.4)

Convergence ball of high convergence order methods is usually very small and in
general decreases as the convergence order increases. The approach in this paper
establishes the local convergence result under hypotheses only on the first derivative
and give a larger convergence ball than the earlier studies, under weaker hypotheses.
Notice that in earlier studies [19, 23] the convergence is shown under hypotheses
on the eighth derivative. The same technique can be used to other methods. As a
motivational example, define function f on D = [− 1

2 ,
3
2 ) by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0

(1.5)
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Choose x∗ = 1. We also have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x lnx2 + 20x3 + 12x2 + 10x

and

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Notice that f ′′′(x) is unbounded on D. Hence, the results in [19, 23], cannot apply to
show the convergence of method (1.2) (see also the numerical examples).

The rest of the paper is organized as follows. In Section 2 we present the local
convergence analysis of methods (1.2)–(1.4). The numerical examples are given in the
concluding Section 3.

2. Local convergence

The local convergence of method (1.2), method (1.3) and method (1.4) is based
on some functions and parameters. Let K0 > 0,K > 0, L0 > 0, L > 0, M ≥ 1 and
β ∈ S be given parameters. Let g1, p1, hp1

, p2 and hp2
be functions defined on the

interval [0, 1
L0

) by

g1(t) =
Lt

2(1− L0t)

p1(t) =
L0t

2
+Mg1(t)

hp1(t) = p1(t)− 1,

p2(t) = L0t+
M2t2

1− L0t

hp2(t) = p2(t)− 1

and parameter r1 by

r1 =
2

2L0 + L
. (2.1)

We have that g1(r1) = 1 and for each t ∈ [0, r1) : 0 ≤ g1(t) < 1. We also get that

hp1
(0) = hp2

(0) = −1 < 0 and hp1
(t) → +∞, hp2

(t) → +∞ as t → 1
L0

−
. It then

follows from the intermediate value theorem that functions p1 and p2 have zeros in
the interval (0, 1

L0
). Denote by rp1

and rp2
the smallest such zeros of functions hp1

and rp2
, respectively. Let r̄ = min{rp1

, rp2
}. Define functions g2 and h2 on the interval

[0, r̄) by

g2(t) =
Lt

2(1− L0t)
+

2M2g1(t)

(1− L0t)(1− p1(t))

+
|1 + β|Mg1(t)

1− L0t
+
M |β|g1(t)

1− p2(t)

and h2(t) = g2(t) − 1. We have that h2(0) = −1 < 0 and h2(t) → +∞ as t → r̄−.
Denote by r2 the smallest zero of function h2 in the interval (0, r̄). Moreover, define
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functions q and hq on the interval [0, r̄) by q(t) = L0t+(K+K0)(1+g2(t))t+2(K0 +
K)(g1(t) + g2(t))t and hq(t) = q(t)−1. We get that hq(0) = −1 < 0 and hq(t)→ +∞
as t → r̄−. Denote by rq the smallest zero of function hq on the interval (0, r̄). Let
r̄0 = min{r̄, rq}.

Finally, define functions g3 and h3 on the interval [0, r̄0) by

g3(t) = (1 +
M

1− q(t)
)g2(t)

and h3(t) = g3(t) − 1. We get that h3(0) = −1 < 0 and h3(t) → +∞ as t → r̄−0 .
Denote by r3 the smallest zero of function h3 on the interval (0, r̄0). Define the radius
of convergence r by

r = min{ri}, i = 1, 2, 3. (2.2)

Then, we have that

0 < r < r1 <
1

L0
(2.3)

and for each t ∈ [0, r)

0 ≤ gi(t) < 1, i = 1, 2, 3 (2.4)

0 ≤ pj(t) < 1, j = 1, 2 (2.5)

and

0 ≤ q(t) < 1. (2.6)

Let us denote by U(v, ρ), U(v, ρ) the open and closed balls in S with center v ∈ S
and of radius ρ > 0.

Next, we present the local convergence analysis of method (1.2) using the pre-
ceding notation.

Theorem 2.1. Let F : D ⊂ S → T be a differentiable function. Let also [., ., .;F ]
denote a divided difference of order two for function F on D. Suppose that there exist
x∗ ∈ D

F (x∗) = 0, F ′(x∗) 6= 0 (2.7)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖. (2.8)

Moreover, suppose that there exist L > 0 and M ≥ 1 and K > 0 such that for each
x, y, z ∈ D0 = D ∩ U(x∗, 1

L0
)

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, (2.9)

‖F ′(x∗)−1F ′(x)‖ ≤M, (2.10)

‖F ′(x∗)−1[x, x, y;F ]‖ ≤ K0, ‖F ′(x∗)−1[x, y, z;F ]‖ ≤ K (2.11)

and

Ū(x∗, r) ⊆ D, (2.12)

where the radius of convergence r is defined by (2.2). Then, the sequence {xn} gener-
ated for x0 ∈ U(x∗, r)−{x∗} is well defined in U(x∗, r), remains in U(x∗, r) for each
n = 0, 1, 2, · · · , and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.13)
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‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (2.14)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.15)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

) the limit

point x∗ is the only solution of the equation F (x) = 0 in D1 = D ∩ Ū(x∗, T ).

Proof. We shall show that method (1.2) is well defined in U(x∗, r) remains in U(x∗, r)
for each n = 0, 1, 2, . . . , and converges to x∗ so that estimates (2.13)–(2.15) are satis-
fied. Using hypothesis x0 ∈ U(x∗, r)− {x∗}, (2.3) and (2.8), we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ ≤ L0r < 1. (2.16)

It follows from (2.16) and the Banach Lemma on invertible functions [3, 7, 14] that
F ′(x0) 6= 0 and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
. (2.17)

Hence, y0 is well defined. By the first sub-step of method (1.2) for n = 0, (2.3), (2.4),
(2.7), (2.9) and (2.17), we get in turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F ′(x0)‖
≤ ‖F ′(x0)−1F ′(x∗)‖

×‖
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (2.18)

which shows (2.13) for n = 0 and y0 ∈ U(x∗, r).
We can write by (2.7) that

F (y0) = F (y0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(y0 − x∗))(y0 − x∗)dθ. (2.19)

Notice that ‖x∗ + θ(y0 − x∗) − x∗‖ = θ‖y0 − x∗‖ < r, so x∗ + θ(y0 − x∗) ∈ U(x∗, r)
for each θ ∈ [0, 1]. Then, by (2.10), (2.18) and (2.19), we get that

‖F (y0)F ′(x∗)−1‖ ≤M‖y0 − x∗‖ ≤Mg1(‖x0 − x∗‖)‖x0 − x∗‖. (2.20)

We must show in turn that F (x0)− F (y0) 6= 0 and F ′(x0) + F 2(x0)
F ′(x0)

6= 0. We have by

(2.3), (2.5), (2.8) and (2.20) that

‖(F ′(x∗)(x0 − x∗))−1(F (x)− F (x∗)− F ′(x∗)(x0 − x∗)− F (y0))‖

≤ ‖x0 − x∗‖−1(
L0

2
‖x0 − x∗‖2 +M‖y0 − x∗‖)

≤ p1(‖x0 − x∗‖) < p1(r) < 1, (2.21)

so

‖(F (x0)− F (y0))−1F ′(x∗)‖ ≤ 1

‖x0 − x∗‖(1− p1(‖x0 − x∗‖)
. (2.22)
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Similarly, by (2.3), (2.5), (2.8) and (2.20) (for x0 = y0) that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗) +
F 2(x0)

F ′(x0)
)‖

≤ L0‖x0 − x∗‖+
M2‖x0 − x∗‖2

1− L0‖x0 − x∗‖
= p2(‖x0 − x∗‖)

< p2(r) < 1, (2.23)

so

‖(F ′(x0) +
F 2(x0)

F ′(x0)
)−1F ′(x∗)‖ ≤ 1

1− p2(‖x0 − x∗‖)
. (2.24)

and z0 is well defined. Using the second substep of method (1.2), (2.3), (2.17), (2.18),
(2.20), (2.22) and (2.24) we obtain in turn that

z0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + (2 + β)F ′(x0)−1F (x0)

+(1 + β)F ′(x0)−1F (y0)− 2
F 2(x0)

F ′(x0)(F (x0)− F (y0))

−βF ′(x0)F (x0)− β F (y0)

F ′(x0) + F 2(x0)
F ′(x0)

= y0 − x∗ − 2[F ′(x∗)−1F (x0)][F ′(x0)−1F ′(x∗)]

×[(F (x0)− F (y0))−1F ′(x∗)][F ′(x∗)−1F (y0)]

+(1 + β)[F ′(x0)−1F ′(x∗)][F ′(x∗)−1F (y0)]

−β[F ′(x∗)−1F (y0)][(F ′(x0) +
F 2(x0)

F ′(x0)
)−1F ′(x∗)], (2.25)

so

‖z0 − x∗‖ ≤ ‖y0 − x∗‖

+
2M2‖y0 − x∗‖‖x0 − x∗‖

‖x0 − x∗‖(1− L0‖x0 − x∗‖)(1− p1(‖x0 − x∗‖)

+
|1 + β|M‖y0 − x∗‖
1− L0‖x0 − x∗‖

+
|β|M‖y0 − x∗‖

1− p2(‖x0 − x∗‖)
= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.26)

which shows (2.14) for n = 0 and z0 ∈ U(x∗, r). Next, we must show that A0 6= 0.
Using (2.3), (2.6), (2.8), (2.11), (2.18) and (2.26), we get in turn that

‖F ′(x∗)−1(A0 − F ′(x∗))‖
≤ L0‖x0 − x∗‖

+(K0 +K)[‖z0 − x∗‖+ ‖x0 − x∗‖] + 2(K0 +K)[‖z0 − x∗‖+ ‖y0 − x∗‖]
≤ L0‖x0 − x∗‖+ (K0 +K)(1 + g2(‖x0 − x∗‖)‖x0 − x∗‖

2(K0 +K)(g1(‖x0 − x∗‖) + g2(‖x0 − x∗‖))‖x0 − x∗‖
= q(‖x0 − x∗‖) < q(r) < 1,
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so

‖A−10 F ′(x∗)‖ ≤ 1

1− q(‖x0 − x∗‖)
(2.27)

and x1 is well defined. Then, from (2.3), (2.4), (2.18), (2.20) (for y0 = z0), (2.27), and
the last substep of method (1.2) for n = 0, we have that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
M‖z0 − x∗‖

1− q(‖x0 − x∗‖)
= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.28)

which implies (2.15) holds for n = 0 and x1 ∈ U(x∗, r). By simply replacing
x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates we arrive at (2.13)–(2.15).
Using the estimate ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖, c = g3(‖x0 − x∗‖) ∈ [0, 1), we deduce
that lim

k→∞
xk = x∗ and xk+1 ∈ U(x∗, r). The proof of the uniqueness part is standard

[5]. �
Next, we introduce the needed functions as the corresponding ones above Theo-

rem 2.1 but for method (1.3). Define functions ϕ1, ϕ2, ϕ3, hϕ1
, hϕ2

, hϕ3
on the interval

[0, 1
L0

) by

ϕ1(t) =
12

5

Mg1(t)

1− L0

2 t
, hϕ1

(t) = ϕ1(t)− 1,

ϕ2(t) =
L0

2
t+ 2Mg1(t), hϕ2(t) = ϕ2(t)− 1,

ϕ3(t) =
L0

2
g1(t)t and hϕ3

(t) = ϕ3(t)− 1.

We have that hϕ1
(0) = hϕ2

(0) = hϕ3
(0) = −1 < 0 and hϕ1

(t)→ +∞, hϕ2
(t)→ +∞,

hϕ3(t) → +∞ as t → 1
L0

−
. Denote by rϕ1 , rϕ2 , rϕ3 the smallest zero of functions

hϕ1 , hϕ2 , hϕ3 , respectively on the interval (0, 1
L0

). Moreover, define functions g2 and

h2 on the interval [0, rϕ2) by

g2(t) = (1 +
M2

(1− L0t)(1− ϕ2(t))
)g1(t)

and h2(t) = g2(t) − 1. We get that h2(0) = −1 < 0 and h2(t) → +∞ as t → rϕ2 .
Denote by r2 the smallest such zero. Finally, for

r̄ = min{rϕ1
, rϕ2

, rϕ3
}

define functions g3 and h3 on the interval [0, r̄) by

g3(t) =

1 +
M

1− L0t

1

2
+

1 + 8Mg1(t)

5(1−L0
2 t)

+ 2
5

(
Mg1(t)

1−L0
2 t

)2

1− ϕ1(t)


(

1

2
+
Mḡ2(t)

1− L0

2 t

)
g2(t)

 ,
h3(t) = g3(t)− 1

and

ḡ2(t) = 1 +
M2

(1− L0t)(1− ϕ2(t))
.
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We have that h3(0) = −1 < 0 and h3(t)→ +∞ as t→ r̄−. Denote by r3 the smallest
zero of function g3 on the interval (0, r̄). Define the radius of convergence ρ1 by

ρ1 = min{ri}, i = 1, 2, 3. (2.29)

Finally, for method (1.4), define functions g1 and g2 as in method (1.3) but define
function g3 and h3 by

g3(t) =

1 +
M

1− L0t

1 + 2Mg1(t)

5(1−L0
2 t)

+ 1
5

(
Mg1(t)

1−L0
2 t

)2

1− ϕ1(t)

(
1 +

4Mg1(t)

1− L0

2 t

)
Mḡ2(t)

1− ϕ3(t)

 g2(t),

h3(t) = g3(t)− 1

and radius of convergence ρ2 by

ρ2 = min{ri}, i = 1, 2, 3. (2.30)

Next, drop the hypotheses on the divided differences and K from Theorem 2.1 and
exchange the “g” functions and r with the corresponding “g” functions for method
(1.3), ρ1 and method (1.4), ρ2. Call the resulting hypotheses (C) and (H), respectively.
Then, we obtain the corresponding results.

Theorem 2.2. Under the (C) hypotheses the conclusions of Theorem 2.1 hold for
method (1.3) with ρ1 replacing r.

Theorem 2.3. Under the (H) hypotheses the conclusions of Theorem 2.1 hold for
method (1.4) with ρ2 replacing r.

Remark 2.4. (a) The radius r1 was obtained by Argyros in [2] as the convergence
radius for Newton’s method under condition (2.13)-(2.15). Notice that the convergence
radius for Newton’s method given independently by Rheinboldt [18] and Traub [21]
is given by

ρ =
2

3L
< r1.

As an example, let us consider the function f(x) = ex − 1. Then x∗ = 0.
Set D = U(0, 1). Then, we have that L0 = e− 1 < l = e, so

ρ = 0.24252961 < r1 = 0.3827.

Moreover, the new error bounds [2, 3, 6, 7] are:

‖xn+1 − x∗‖ ≤
L

1− L0‖xn − x∗‖
‖xn − x∗‖2,

whereas the old ones [14, 16]

‖xn+1 − x∗‖ ≤
L

1− L‖xn − x∗‖
‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, we do not expect
the radius of convergence of method (1.2) given by r to be larger than r1 (see (2.4)) .
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(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method(GMREM), the generalized conju-
gate method(GCM) for combined Newton/finite projection methods and in connec-
tion to the mesh independence principle in order to develop the cheapest and most
efficient mesh refinement strategy [2, 3, 6, 7].

(c) The results can be also be used to solve equations where the operator F ′

satisfies the autonomous differential equation [3, 7, 14, 16]:

F ′(x) = p(F (x)),

where p is a known continuous operator. Since F ′(x∗) = p(F (x∗)) = p(0), we can apply
the results without actually knowing the solution x∗. Let as an example F (x) = ex−1.
Then, we can choose p(x) = x+ 1 and x∗ = 0.

(d) It is worth noticing that method (1.2) are not changing if we use the new
instead of the old conditions [23]. Moreover, for the error bounds in practice we can
use the computational order of convergence (COC)

ξ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .

instead of the error bounds obtained in Theorem 2.1. Related work on convergence
orders can be found in [8].

(e) In view of (2.9) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (2.11) can be dropped and M can be replaced by

M(t) = 1 + L0t

or
M(t) = M = 2,

since t ∈ [0, 1
L0

).

3. Numerical Example

We present a numerical example in this section.

Example 3.1. Returning back to the motivation example at the introduction on this
paper, we have L0 = L = 96.662907, M = 1.0631,K = K0 = L

2 , β = −1. Then, the
parameters for method (1.2) are

r1 = 0.0069, r2 = 0.0051 = r, r3 = 0.1217.

We have ACOC = 1.7960 and COC = 1.8371.



430 Ioannis K. Argyros and Santhosh George

References

[1] Argyros, I.K., Quadratic equations and applications to Chandrasekhar’s and related equa-
tions, Bull. Aust. Math. Soc., 32(1985), 275-292.

[2] Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-
point Newton-like methods in Banach space, J. Math. Anal. Appl., 298(2004), 374-397.

[3] Argyros, I.K., Computational theory of iterative methods, Series: Studies in Computa-
tional Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New
York, U.S.A, 2007.

[4] Argyros, I.K., Chen, D., Results on the Chebyshev method in Banach spaces, Proyec-
ciones, 12(2)(1993), 119-128.

[5] Argyros, I.K., George, S., Alberto Magrenan, A., Local convergence for multi-point-
parametric Chebyshev-Halley-type methods of high convergence order, J. Comput. Appl.
Math., 282(2015), 215-224.

[6] Argyros, I.K., Hilout, S., Weaker conditions for the convergence of Newton’s method, J.
Complexity, 28(2012), 364-387.

[7] Argyros, I.K., Hilout, S., Numerical Methods in Nonlinear Analysis, World Scientific
Publ. Comp. New Jersey, 2013.
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