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Approximation with Riemann-Liouville
fractional derivatives

George A. Anastassiou

Abstract. In this article we study quantitatively with rates the pointwise con-
vergence of a sequence of positive sublinear operators to the unit operator over
continuous functions. This takes place under low order smothness, less than one,
of the approximated function and it is expressed via the left and right Riemann-
Liouville fractional derivatives of it. The derived related inequalities in their right
hand sides contain the moduli of continuity of these fractional derivatives and
they are of Shisha-Mond type. We give applications to Bernstein Max-product
operators and to positive sublinear comonotonic operators connecting them to
Choquet integral.
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1. Introduction

In this paper among others we are motivated by the following results:

First by P.P. Korovkin [9], (1960), p. 14: Let [a,b] be a closed interval in R
and (Ly),cy be a sequence of positive linear operators mapping C'([a, b]) into itself.
Suppose that (L, f) converges uniformly to f for the three test functions f = 1, x, 2.
Then (L, f) converges uniformly to f on [a,b] for all functions f € C ([a, b]).

Let f € C([a,b]) and 0 < h < b — a. The first modulus of continuity of f at h is
given by

wi (f,h) = sup |[f(z) = f(y)l
z,y€a,b]
lz—y|<h
If h > b — a, then we define wy (f,h) = w1 (f,b— a).
Another motivation is the following:
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By Shisha and Mond [12], (1968): Let [a,b] C R a closed interval. Let {L, }nen
be a sequence of positive linear operators acting on C ([a, b]) into itself. For n = 1,...,
suppose L, (1) is bounded. Let f € C ([a,b]). Then for n = 1,2, ..., we have

[nf = flloe < 1flloo [1En1 = oo + 1 En1 + 1o w1 (f; n) »

where )
3

Lo ((t=2)*) (@)
and |-, stands for the sup-norm over [a,b].
One can easily see, forn =1,2, ...

,ui < ||Ln (tQ;x) — :L‘2||OO +2¢c||Ly (t;2) — x| o + c? | Ly (1;2) — 1]

where ¢ = max (|al , |0]).

Thus, given the Korovkin assumptions, as n — oo, we get u, — 0, and
|Lnf — flloo — 0 for any f € C([a,b]). That is one derives the Korovkin conclu-
sion in a quantitative way and with rates of convergence.

We continue this type as research here for positive sublinear operators over con-
tinuous functions with existing left and right Riemann-Liouville fractional derivatives
of order less than one. We give applications.

Other motivations come from author’s monographs [2], [3] and [4].

,un:‘

o0

o ?

2. Main results
‘We mention

Definition 2.1. ([10, pp. 68, 89]) Let z, 2’ € [a,b], f € C ([a,b]). The Riemann-Liouville
(R-L) fractional derivative of a function f of order ¢ (0 < ¢ < 1) is defined as

per )= { T nn

oS @), <

= 71 { di;lfzzz(xl - t? _qqf (t) dt7 $//> xz, (21)
Fl—q) | % [0 @t—a)"f(t)dt, o' <uz,

the left and right R-L fractional derivatives, respectively, where I" is the gamma

function.

‘We need

Lemma 2.2. ([1], [10], pp. 71, 75) Let z,2’ € [a,b], f € ([ b)), 0 < ¢ < 1. Assume

that DY, (7 ()= 1 (@) € C ([o,b)), DI_ (£ ()~ f () € C ([a,a)), where  is fived.

/

F) - f0) = [ @9 T DL (O f @) @)
allz < 2’ <b, and
@) =@ =gz [ =)D G = fad(23)

alla <2’ < 2.
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We accept 0 - 0o = 0 and we notice that DY, 0= DI_0=0.

We need
Definition 2.3. Let f € C ([a,b]). The first modulus of continuity is given by
wi (f,0) == sup |f(x)=[f(y)l, 6>0. (2.4)
z,y€la,b]
lz—y[<é

We need

Definition 2.4. Denote by D4 (f (-) — f (z)) any of DI, (f(-) — f (x)), and § > 0.
We set

wi (DY(f () = £ (x)),6) (2:5)
= max fwr (DL, (F () = £ (@)),6) w1 (DL (F() = £ (2)),6) -
We give

Theorem 2.5. Here f € C([a,}]), 0 < ¢ < 1, § > 0; z,2’ € [a,b]. Assume that
DI (f ()= f(2) € C([z,b]), and D_(f(-) — f(2)) € C([a,2]), where x is fized.
Then

‘.’[/ _ x|q+1

(g+1)6

/

fx|q+

|z

wi (D (f () = f(2)),0)
I'(g+1) [ ] -0
V' ela,b].

Proof. Obviously DI, (f (x) — f (x)) = 0. We estimate:
i) Case of x < 2/ <b:

— qu)/x (@' — )| DL, (f(2) — f(2) = DL, (f (x) — f (x))| d= 2.7)
(61>0) L z 2 — N q 7 01 (z _ x)
s [ (P 0 - ), )Md

_ ) - f (:L‘)) ) 51)[x b] (:,E/ — l‘)q 1 o' / q—1 2—1
= ) [ . a/w (' —2)" " (z—2)" " dz
(D (FO=F@),00) 0 [@—2)"  1T@T2),, e
B T (g) [ ;. THTury Y } (28)
(D (FO=F@) 0y (@ =) 1 T() |, g
a I (q) [ . TETarn Y }
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(x/ _ x)q i (x/ _ x)qul
q 61 qlg+1)

on (DI (F ()= F)),6) l
)
! (Dg'f' (f (() -f (33)) ’ 51)[:1:,b] [( r )q + i (33/ — x)q+1] .

')
I'(q

(2.9)

I'(g+1) 6 (¢+1)
When z < 2’ < b, we have proved that
|f (@) = f(2)] <
wn (DL (F () = 1 @) .01) l(
L(g+1)
where 0 < ¢ < 1, §; > 0.

(2.10)

ii) Case of a < 2’ <z (here DI_ (f (x) — f (x))

1) na
wo [E=2)  1T@T@), 0
@ { ¢ T nTry Y } (2.12)

wi (DI (f () = f(2)),82) [(x _ )l o= x/)q+1‘|

I'(q) q q(q+1)0;
_wdpgaﬂ»—funﬁﬂ@ﬂbm_fy+

B I'(g+1)
When a < 2’ < z, we have proved that

(J) _ x/)q+11 .

(q+1)62

If (@) = f (@) <
w1 (Dgf (f () - f (.’E)) 762)[a,x] na ({I? B x/)‘l+1

2.13
(g+1)02 ( )
where 0 < ¢ < 1, d2 > 0.

Finally choose: 61 = 63 =: § > 0. The theorem is proved. d
We need
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Definition 2.6. Here C ([a,b]) :=
Let Ly : Cy ([a,b]) = C+ ([a, b]), operators, V N € N, such that
(i) Ly (af) = aLy (), Ya > 0,Yf € C ([a,b]),
(ii) if f,g € C4 ([a, b)) : f < g, then Ly (f) < Ln(g), VN €N,
(ili) Ln (f +9) < Ln (f)+Ln(9), V f.9€Cy([a,b]).
We call {Ln} ¢y positive sublinear operators.

= {f :[a,b] — R4, continuous functions}.

We make
Remark 2.7. Let f,g € Cy ([a,b]), then it holds
L (f) (#) — Ly (9) (8)] < Ly (1f — g) (x), V & € [a,b]. (2.14)
Furthermore, we also have

[Ly () (@) = f (@) < Ly (I () = f(@)]) (@) + | f (@) [Lw (eo) () = 1], (2.15)

V€ la,b; e (t) =1.
From now on we assume that Ly (1) = 1. Hence

Ly (f) (@) = f ()| < Ly (If () = f (@)]) (=), Vo € [a,b]. (2.16)
We give
Theorem 2.8. Let f € Cy([a,b]), 0 < ¢ < 1, DI _(f(:)—f(x)) € C([z,b]),
DI_(f(-)— f(x) € C(la,z]), x is fized, where x € [a,b]. Then
wi (DE(f () = [(2)),0) g, l—a™
10 -7 < AL l|-—x s | 020 @1
‘We present:
Theorem 2.9. Let f € Cy ([a,b]), Dy (f (1) = f (x)) € C ([w, ]) ~(f() = f(2) €
C ([a,x]), where x € [a,b] is fized, O < q<1,8>0.Let Ly : ([ b)) = C4+ ([a,b]),
be positive sublinear operators, such that LN( )=1,V N eN. Then
[ (f) (z) = £ (2)] (2.18)
w1 (DL(/ () = [ (2)).9) A (e [
S PR {LN("‘”C'W” @+ |

vV N eN.
We need Holder’s inequality for positive sublinear operators:

Lemma 2.10. ([5], p. 6) Let L : C4 ([a,b]) — C4 ([a,b]), be a positive sublinear op-
erator and f,g € Cy ([a,b]), furthermore let p,q > 1 : %—l—% = 1. Assume that

L((f()P)(54), L((g(:)?) (s4) > 0 for some s« € [a,b]. Then

L(f () () (s0) < (T O)) (57 (L (9 (D)D) (52)7 - (2.19)
‘We make

=
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Remark 2.11. In Theorem 2.9 we assumed Ly (1) =1, V N € N. We further assume
that Ly (| - x|q+1) (r) >0,V N €N, for the fixed x € [a,b].
Then, by (2.19), we obtain

q

Ly (| = ol (@) < (Lw (|- = 2l™) @), vNeN. (2.20)
We give

Theorem 2.12. All as in Theorem 2.9, plus Ly (\ - a:|q+l) () >0,V N €N, fora
fized x € [a,b]. Then

wi (DF (f () = f(x)),9)

[Ln () (z) = f ()] <

F(g+1)
q =z (2 o
. (LN <| _ x‘q-f—l) (x))qi1 1+ (LN <| (q —’|_ 1)2 ( )) ’ (2.21)

vV N eN.

_1
Next we choose ¢ := (LN (| - x\qﬂ) (:U)) >0, to obtain:
Theorem 2.13. All as in Theorem 2.9, plus Ly (| - x|q+1) () >0, VN eN; z €

[a,b] is fized. Then

(¢+2)
Lx (F) (@) = F (@) < 1t
wr (D26 0= £ (B (12l @) ) (B (1=l @) T
(2.22)
vV N eN.
Application 2.14. The max-product Bernstein operators are defined by
N L2
BWMﬂ@%:v“wNwaUJ7VNEN, (2.23)

Vi:V:OPNAk ()
. _( N\ & N-k .
where V stands for maximum, and py j (z) = )T (1—-ux) ,and f:[0,1] —
R, is a continuous function, see [6], p. 10.
These are positive sublinear operators mapping C ([0,1]) into itself. Notice
BM(1)y=1,y NeN.
In [5], p. 76, we proved that

B](VM) <| — 33‘1""/3) (aj) < \/%, Ve [O, 1}, (224)

VNEN,VA3>0.
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Furthermore, clearly it holds that
B (|. - x\W) (2)>0, YNeN, VB3>0, (2.25)
and any x € (0,1).
‘We present

Theorem 2.15. Let f e C,([0,1]), DI (f()—/f(x) € C([1]),
DI _(f()—f(z)eC(0,z]), where x € (0,1), 0 < g < 1. Then

BY (1) (@) - £ (@)

q

<3, (Dgu(-)—f(x)),( NGH)) (=) e

vV N € N.
As N — 400, we get BJ(VM) (f) () = f ().

Proof. By (2.23), (2.24), (2.25) and Theorem 2.13. O

One can give many examples like in Theorem 2.15, but we choose to omit it this
task.

Choquet integral has become very important in statistical mechanics, potential
theory, non-additive measure theory, and lately in economics. For the definition and
properties of Choquet integral read [7], [8], [13].

We denote it by (C) |-

Next we talk about representations of positive sublinear operators by Choquet
integrals:

We need

Definition 2.16. Let € be a set, and let f,g : 2 — R be bounded functions. We say
that f and g are comonotonic, if for every w,w’ € €,

(f (W) = F (W) (g (w) —g () 20 (2.27)
We also need the famous Schmeidler’s Representation Theorem (Schmeidler 1986).

Theorem 2.17. ([11]) Denote with Lo (A) the vector space of A-measurable bounded
real valued functions on Q, where A C 2% is a o-algebra. Given a real functional
I': Lo (A) = R, assume that for f,g € Lo (A):

() T(cf) = T (f), ¥ e >0,

(it) f < g, implies I' (f) <T'(g),
and

(iti) T (f+g) =T (f)+T (g9), for any comonotonic f,g.

Then v (A) :=T(14), V A € A, defines a finite monotone set function on A,
and T" is the Choquet integral with respect to -y, i.e.

T (f) = (C) /Q FW) Ay (), V€ Lo (A). (2.28)

Above 14 denotes the characteristic function on A.
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We make

Remark 2.18. Consider here [a,b] C R, B = B([a,b]) is the Borel o-algebra on [a, ],
and L (B) is the vector space of B-measurable bounded real valued functions on
[a,b]. Let (Ln)yen be a sequence of positive sublinear operators from Lo, (B) into
C4 ([a,b]), and = € [a,b]. That is here Ly fulfills the positive homogenuity, mono-
tonicity and subadditivity properties, see Definition 2.6.

Assume Ly (1) =1,V N € N. Clearly here L, (B) D C4 ([a,b]). In particular
we treat Ln|c., ([a,5]); just denoted for simplicity by Ly, V N € N.

It is clear that Ly () (z) : Loo (B) — R is a functional, V N € N. It has the
properties:

(i)
Ly (cf)(z) =cLn (f) (), V>0,V fe Lo (B)), (2.29)
(ii)
[ < g, implies Ly (f) (z) < Ly (9) (z), where f,g € Lo (B), (2.30)
and
(i)
Ly (f+9)(2) <Ly (f)(x)+Ln(g) (), Vfg€Lx(B). (2.31)
For comonotonic f,g € Lo (B), we further assume that
Ly (f+9)(z)=Ln(f)(@)+Ln(9)(z). (2.32)

In that case Ly is called comonotonic.

By Theorem 2.17 we get that:
YNz (A):=Ln(1a)(x), VA€ B, VN €N, (2.33)

defines a finite monotone set function on B, and

b
Ly (f) () = (C) / £ () dyne (1), (2.34)

VfeLls(B),YNeN

In particular (2.34) is valid for any f € C4 ([a, b]). Furthermore ~yy ., is normal-
ized, that is Yy 5 ([a,0]) =1,V N € N.

We give

Theorem 2.19. Let f € Cy ([a,b]), DI, (f () — f(x)) € C([x,b]),

Dy (f() = f () € C([a,2]),

where x € [a,b] C R is fited, 0 < ¢ < 1. Let Ly : Lo (B([a,b])) = C4 ([a,b]), be
positive sublinear comonotonic operators, such that Ly (1) = 1,V N € N. Assume
that

b
(0)/ It — 2| dywa (£) > 0, YN € .
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Then

(q+2)

Ly (F) @)~ F @) < 5

b T
wi|DE(f ()= [ (2)), <(C)/ t—2| "™ dyn e (t)>

. ((0) /b = 2" s (t)> T yNen (2.35)

If
’ 1
(0)/ It — )" dyn . (t) = 0,
then Ly (f) () — f(z), as N — oc.
Proof. By Theorem 2.13. g
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