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An elliptic Diophantine equation from the study
of partitions
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Abstract. We present the elliptic equation X3 + 2 = Y 2 as the first in a sequence
of Diophantine equations arising from some new results in the theory of partitions
of multisets with equal sums. Two proofs for Theorem 2.3, showing that the only
integer solutions to this equation are (−1, 1) and (−1,−1), are given.
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1. Introduction and motivation

For a positive integer k ≥ 2 and an arbitrary positive integer n, in the papers [2] and
[1] the authors introduced the sequence (Qk(n))n≥1,

Qk(n) =
1

2π

∫ 2π

0

n∏
s=1

(k − 2 + 2 cos st) dt. (1.1)

An enumerative formula for Qk(n) is given by the number of ordered partitions of
[n] = {1, . . . , n} into k disjoint sets A1, . . . , Ak with the property that σ(A1) = σ(Ak), where
σ(A) denotes the sum of all elements in A.

Clearly, Qk(n) is a monic polynomial of degree n in k − 2. Moreover, in the paper [2]
is proved that

Qk(n) =

n∑
d=0

N(d, n)(k − 2)n−d, (1.2)

where for each d = 0, . . . , n, the coefficient N(d, n) is the number of ordered partitions of [n]
into 3 subsets A,B,C such that |B| = d and σ(A) = σ(C), where |B| is the cardinality of B.

Therefore, Qk(n) has non-negative integer coefficients, and each coefficient has a com-
binatorial meaning in terms of partitions of the set [n]. A simple direct computation of the
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integral (1.1) shows that for n = 3, 4, 5, 6 and k ≥ 2, we have

Qk(3) = (k − 2)3 + 2;

Qk(4) = (k − 2)4 + 4(k − 2) + 2;

Qk(5) = (k − 2)5 + 8(k − 2)2 + 6(k − 2);

Qk(6) = (k − 2)6 + 12(k − 2)3 + 16(k − 2)2 + 6(k − 2).

The sequence Qk(3) is indexed as A084380 in OEIS [10], where it is mentioned that it
does not contain any perfect squares, i.e. the elliptic equation X3 + 2 = Y 2 has no solutions
in positive integers. This is linked to a Catalan-type conjecture related to Pillai’s equation
XU −Y V = m, with X,Y, U, V ≥ 2 integers. The conjecture states that for any given integer
m, there are finitely many perfect powers whose difference is m (see [13], Conjecture 1.6).
For m = 2, it was computationally checked that the only solution involving perfect powers
smaller than 1018 is 2 = 33−52. The number of such solutions is linked to A076427 in OEIS.

Motivated by the property that the sequence Qk(3) does not contain any perfect
squares, in the papers [2] and [1], the authors suggested the following problems: study if
the sequence Qk(n) contains any n− 1 powers, where n = 4, 5 or 6. These are equivalent to
the study of the following Diophantine equations:

X4 + 4X + 2 = Y 3;

X5 + 8X2 + 6X = Y 4;

X6 + 12X3 + 16X2 + 6X = Y 5.

Using effective methods for identifying integral points on curves, we will discuss these equa-
tions and variations of them in a following series of papers.

In Theorem 2.3 of the present paper we prove that the equation X3 + 2 = Y 2 has
only integer solutions (−1, 1) and (−1,−1). We give two proofs for this statement. In the

first we use the fact that Q(
√

2) has trivial class group, property that allows us to pass from

factorisations of ideals to nice factorisations in the ring Z[
√

2]. The second proof uses the
geometry of the elliptic curve defining the equation.

2. The equation Y 2 = X3 + 2

Although the family of Mordell equations Y 2 = X3+D, where D ∈ Z\{0} (see [7]) was
extensively studied, we were unable to find in the literature an explicit solution for the case
D = 2. In this section, we give two different solutions to the problem of finding all integral
x, y satisfying the aforementioned equation. In the first one we combine factorisations in the
ring of integers of Q(

√
2) with an elementary solution to a particular cubic Thue equation.

Our second solution relies on the geometric structure of the elliptic curve defined by the
given affine equation.

Before going further, let us make a few remarks about the finiteness of the set of integral

points on various curves. For any bivariate polynomial f ∈ Z[X,Y ], let Cf := {(x, y) ∈ Q2
:

f(x, y) = 0} be an affine algebraic curve. The points of Cf with coordinates in Q are called

rational and, in general, for any S ⊆ Q, we denote by Cf (S) = Cf ∩ S2. Curves can be
classified by their genus, a non-negative integer associated to their projectivization. The
genus is a geometric invariant. A classical result in number theory is the following theorem

Theorem 2.1 (Siegel, 1929). If f ∈ Z[X,Y ] defines an irreducible curve Cf of genus g(Cf ) > 0,
then Cf (Z) is finite.
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If additionally gf (Cf ) ≥ 2, this result is superseded by the notorious Falting’s theorem,
which says that Cf (Q) is also finite. Although both Siegels’ and Faltings’ theorems are
milestones in number theory, they are “ineffective” results, meaning that their proof does
not even allow one to control the size of the sets known to be finite. Therefore, they cannot
be used to explicitly determine Cf (Z) or Cf (Q).

Effectively finding rational points on curves is an incredible difficult task and a very
active topic of research. The toolbox for determining Cf (Z) became a lot richer starting with
the monumental work of Baker on linear forms in logarithms. As one of the first applications
to his theory, Baker proved the following result.

Theorem 2.2 (Baker, 1969). Suppose f(X,Y ) = Y 2 − anX
n − an−1X

n−1 − · · · − a0 ∈
Z[X,Y ], the polynomial anX

n + · · · + a0 is irreducible in Z[X], an 6= 0 and n ≥ 5. Let
H = max{|a0|, . . . , |an|}. Then, any integral point (x, y) ∈ Cf (Z) satisfies

max(|x|, |y|) ≤ exp exp exp{(n10nH)n
2

}.

Bounds on such solutions have been improved by many authors, but they remain
astronomical and often involve inexplicit constants. Let us proceed to the resolution of our
Diophantine equations.

To settle the conjecture posed by Andrica and Bagdasar in [2] and [1] which inferred
that X3+2 does not contain perfect squares when X runs through the set of positive integers,
we prove the following theorem.

Theorem 2.3. The only solutions of X3 + 2 = Y 2 in the set of integer numbers are (−1, 1)
and (−1,−1).

A few remarks are in order before giving the proof of this theorem. Since the genus
of (the projectivization of) the curve determined by this equation is 1, we can use Siegel’s
theorem to deduce that there are finitely many points with integer coordinates. By Theorem
2.2, we know that if (x, y) ∈ Z2 is a point lying on this curve, then

max(|x|, |y|) ≤ exp exp exp((330 · 2)3
2

).

Although theoretically one could now run a for loop through all possible values of x and
check for which x3 + 2 is a perfect square, the triple exponential bound presented above is
astronomical and way out of the current computational limitations. In practice, one could
check values of x up to 1018, but could not hope to even get close to the aforementioned
triple exponential. We proceed with the first proof of for our theorem.

3. Proof to Theorem 2.3

We will make use of the following proposition.

Proposition 3.1. The only solution (a, b) ∈ Z2 to the equation

a3 + 3a2b+ 6ab2 + 2b3 = 1 (3.1)

is (a, b) = (1, 0).

Proof. Write f(X) = X3 + 3X2 + 6X + 2 ∈ Q[X]. It is an irreducible polynomial and let

θ ∈ Q be any root of f . Denote by L = Q(θ), the number field obtained by adjoining θ to
Q and write OL for its ring of integers. L is a degree 3 extension over Q and has signature
(1, 1). We are going to denote by σ1, σ2, σ3 : L ↪→ C its three different complex embeddings.

It can be checked that ring of integers OL is Z[θ, θ2] and, making use of Dirichelt’s unit
theorem, one can compute the group of units

O×L = 〈±1〉 · 〈−θ2 − 3θ − 1〉 ∼= (Z/2Z) · Z.
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The element µ := −θ2− 3θ− 1 is a fundamental unit, NormL/Q(µ) = 1 and NormL/Q(−1) =
−1. The equation (3.1) can be written as

NormL/Q(a− b · θ) =

3∏
i=1

(a− b · σi(θ)) = 1, where a, b ∈ Z.

The above implies that a− bθ is a unit of norm 1 in OL, hence

a− bθ = µn for some n ∈ Z. (3.2)

We are going to use p-adic analysis to solve this last equation. We first need a local field
Qp into which there are three distinct embeddings of L, equivalently a prime number p such
that the polynomial X3 + 3X2 + 6X + 2 has three distinct roots in Qp. We find p = 79 to
be such a prime and the distinct roots are

θ1 = 19− 32 · 79 (mod 792)
θ2 = 20− 7 · 79 (mod 792)
θ3 = 37 + 38 · 79 (mod 792)

∈ Q79.

The root θ of f is mapped to r1, r2 and r3 respectively, under the embeddings of L into Q79.
Under the same embeddings, the fundamental unit µ = −θ2 − 3θ − 1 maps to

µ1 = 55− 37 · 79 (mod 792)
µ2 = 13− 21 · 79 (mod 792)
µ3 = 20− 22 · 79 (mod 792)

∈ Q79.

By embedding the equation (3.2) into Q79, we obtain that a − b · θi = µni and hence a =
µni + b · θi for i = 1, 2 and 3. One obtains the equality

(θ3 − θ2) · µn1 + (θ1 − θ3) · µn2 + (θ2 − θ1) · µn3 = 0

and since µ1µ2µ3 = Norm(µ) = 1, we can rewrite this as

(θ3 − θ2) + (θ1 − θ3) · (µ2
2µ3)n + (θ2 − θ1) · (µ2µ

2
3)n = 0. (3.3)

Now µ2
2µ3 ≡ 62 (mod 79) and µ2µ

2
3 ≡ 65 (mod 79). Since the left hand side of (3.3) must

be equal to zero modulo 79, we can check that n is divisible by 13. Hence n = 13 · m for
some m ∈ Z.

We have that (µ2
2µ3)13 ≡ 1 + 8 · 79 (mod 792) and (µ2µ

2
3)13 ≡ 1 + 36 · 79 (mod 792).

We can now use Lemma 5.2 in [5] to expand

(θ3 − θ2) + (θ1 − θ3) · (µ2
2µ3)13·m + (θ2 − θ1) · (µ2µ

2
3)13·m =

∞∑
k=1

ak ·mk,

with lim
k→∞

‖ak‖79 = 0 and it can be checked that ‖a1‖79 = 79−1 and ‖ak‖79 ≤ 79−2 for every

k ≥ 2. Using Strassmann’s theorem (see Theorem 4.1 in [5]), we obtain that the only value

of m for which
∞∑
k=1

ak ·mk vanishes is m = 0.

This proves that n = 0 and replacing in (3.2) we obtain (a, b) = (1, 0) is the only
solution to the equation in the statement, as claimed. �

Remark 3.2. We have used the computer algebra package Sage [12] for basic modular arith-
metic computations. The equation (3.1) is a Thue equation. It was proved that the latter
have finitely many solutions and algorithms that find all of them have been implemented in
various computer algebra packages. One can consult [3] for a very efficient such algorithm.
The known methods for solving general Thue equations are involved, making use of Baker’s
bounds for linear forms in complex and of complicated reduction methods such as the one
in described in loc. cit. In the above proof, we made essential use of the fact that the right
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hand side of (3.1) is 1 and that the ring OL has only one fundamental unit to apply p-adic
analysis techniques successfully.

We now return to the proof of our theorem. Let K = Q(
√

2) and denote by OK = Z[
√

2]
its ring of integers. The later is a Dedekind domain, i.e. it is Noetherian, integrally closed in
its field of fractions Frac(OK) = K and all its non-zero prime ideals are maximal. For any
element o ∈ OK , we are going to denote by (o) ⊆ OK the principal ideal o generates.

Suppose that x, y ∈ Z \ {0} are such that y2 = x3 + 2. Therefore, in OK we have the

factorization (y −
√

2) · (y +
√

2) = x3 and the same holds for the ideals generated by these
factors. It is known that ideals of OK factor uniquely into prime ideals. Suppose the prime
ideal p ⊂ OK divides both of the non-zero ideals (y−

√
2) and (y+

√
2). Then, p must divide

the ideal generated by the difference y +
√

2− y +
√

2 = 2
√

2 =
√

23. As (
√

2) ⊂ OK is the

only prime ideal of OK that lies above 2, we must have p = (
√

2). Hence, the ideals (y−
√

2)

and (y +
√

2) are coprime outside of (
√

2). From the previous factorization, we deduce that

for every prime ideal p 6= (
√

2), if p divides (y −
√

2), then p3 divides the same ideal.

To see what happens in the case p = (
√

2), let µ ∈ Gal(K/Q) be the non-trivial Q-
automorphism of K. Given a rational prime p, Gal(K/Q) acts naturally on the ideals p of
OK that lie above p. Write pµ for the ideal obtained from p by applying µ to every element
in p. As µ(

√
2) = −

√
2, we note that (

√
2)µ = (−

√
2) = (

√
2), i.e. µ stabilises the ideal

above 2. Notice that (y −
√

2)µ = (y +
√

2), hence the powers of (
√

2) that divide the ideals

(y−
√

2) and (y+
√

2) are equal. Since the product (y−
√

2) · (y+
√

2) is a third power, we

conclude that the power of (
√

2) dividing (y −
√

2) must be divisible by 3.
It is an easy exercise, using for example the Minkowski bound, to prove that the class

group of K is trivial. In particular, this means that every ideal of OK is principal. Considering
the remarks above, we have

(y −
√

2) = (x0)3 = (x30), as ideals, where x0 ∈ OK .

We deduce that y−
√

2 and x30 are the same up to a unit in the ring OK , that is there
exists a unit u ∈ U(OK) such that y −

√
2 = u · x30.

By Dirichlet unit’s theorem we know that U(OK) is isomorphic to T · Z, where T is
the finite group formed by the roots of unity that lie in K. It is an easy exercise to verify
that U(OK) = 〈−1〉 · 〈1 −

√
2〉, so 1 −

√
2 is the fundamental unit of OK . Observing that

every element u ∈ U(UK) can be written as u = (1 −
√

2)i · (u0)3 where i ∈ {−1, 0, 1} and
u0 ∈ U(OK) ⊆ OK , we derive that

y −
√

2 = (1−
√

2)i · x31,
for some i ∈ {−1, 0, 1} and x1 ∈ OK . The element x1 is of the form a+ b

√
2 for a, b ∈ Z. For

each choice of i ∈ {−1, 0, 1}, by equating the coefficients of
√

2 in the left and right hand
side of the above equation, we obtain an equality of the form

f(a, b) = −1 (3.4)

where f ∈ Z[x, y] is a homogeneous cubic polynomial. When f is reducible (3.4) can be
easily solved using factorization in Z. If this is not the case and f is irreducible, the equation
(3.4) is a cubic Thue equation. It is known (see for example [3]) that the latter have finitely
many integral solutions and routines for determining them have been implemented in various
computer algebra packages. We will appeal to Proposition 3.1 to find the solutions of the
latter type of equations that arise here.

Let us analyse each of the three cases.
Case 1. i = −1⇒ y −

√
2 = (1−

√
2)−1 · (a+ b

√
2)3.

Hence,

y −
√

2 = −a3 − 6a2b− 6ab2 − 4b3 +
√

2
(
−a3 − 3a2b− 6ab2 − 2b3

)
.
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Using that 1,
√

2 are linearly independent over Q, we obtain the following two equations:

y = −a3 − 6a2b− 6ab2 − 4b3 (3.5)

and

1 = a3 + 3a2b+ 6ab2 + 2b3. (3.6)

The variable y is an indeterminate and every solution (a, b) to (3.6) will determine a value
for y. From Proposition 3.1, we know that the only solution in integers to the last equation
is a = 1 and b = 0. Substituting, we see that this corresponds to y = −1, which implies that
x = −1.
Case 2. i = 0⇒ y −

√
2 = (a+ b

√
2)3.

Expanding the right hand side, we see that

y −
√

2 = a3 + 6ab2 +
√

2
(
3a2b+ 2b3

)
and since 1,

√
2 are linearly independent over Q we must have

−1 = b · (3a2 + 2b2).

Trying b = ±1, we see that 3a2 + 2 = ∓1 is not solvable. Hence this case does not give us
any solutions.
Case 3. i = 1⇒ y −

√
2 =

(
1−
√

2
)
· (a+ b

√
2)3.

This gives us

y −
√

2 = a3 − 6a2b+ 6ab2 − 4b3 +
√

2
(
−a3 + 3a2b− 6ab2 + 2b3

)
,

which implies that

1 = a3 − 3a2b+ 6ab2 − 2b3.

By making the substitution t := −b in the last equation we obtain the one discussed in Case
1. Therefore, using Proposition 3.1 once again we find a = 1, b = 0 and hence y = 1. Using
that y2 = x3 + 2, we get that x = −1. The proof of our theorem is now complete.

In the proof above we made explicit use of the fact that Q(
√

2) has trivial class group,
information that allowed us to pass from factorisations of ideals to nice factorisations of
elements in the ring Z[

√
2]. In general, for D ∈ Z the ideal class group of Q(

√
D) can be

arbitrary large so our first strategy will not work for more general Mordell equations. The
second proof of our theorem can be adapted to find all the integral solutions of Y 2 = X3 +D
for any fixed D ∈ Z.

The given problem is one of explicitly determining the integral points on the affine
curve given by Y 2 = X3 + 2. These can be found by exploiting its rich geometric structure,
as presented below.

4. Alternate proof to Theorem 2.3

The geometry of the curve is better captured by its projectivization

E := Y 2Z = X3 + 2Z3 ∈ P2(C), (4.1)

a non-singular projective curve of genus 1, which contains the point O = [0 : 1 : 0] ∈ P2(Q),
commonly called “the point at infinity”. The point at infinity is the only one on the projective
curve that does not naturally project on our chosen affine model. The set of complex points
on E can be given an abelian group structure for which the distinguished point O acts as
the identity element. The group law is given by chord-tangent formulas and therefore it is
easy to see that E(Q) is a subgroup of E(C). By a famous theorem of Mordell, we know that
E(Q) ∼= T × Zr (as abstract abelian groups) where T is a finite group, commonly called the
torsion subgroup and r is a positive integer called the rank.
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Using the Lutz-Nagell theorem (see Corollary 7.2 in [11]), it is easy to deduce that T
is included in {O, P,−P}, where P = [−1 : 1 : 1] and −P = [−1 : −1 : 1] are inverses of each
other under the group law. Using the formulae for addition on the elliptic curve, we compute
all the values of 2 · P, . . . , 12 · P and observe that none of them is equal to the origin O.
For example, 5 ·P = [108305279/48846121 : 1226178094681/341385539669 : 1] 6= O, and the
larger multiples of P involve denominators that are too big to fit in one line. In his seminal
article [9], Mazur gave a classification of all the possible isomorphisms types for the torsion
group of an elliptic curve defined over Q. From there, we see that the order of any torsion
point is at most 12 and therefore we can conclude that P has infinite order.

The non-torsion part of E(Q) is in general extremely difficult to compute. Even com-
puting the rank of a given elliptic curve is, in general, a notorious problem. The latter
quantity features in the famous Birch and Swinnerton-Dyer conjecture, one of the Mille-
nium Problems. There are implementations of algorithms that succeed most of the times in
computing the rank and finding generators. By running one such, namely John Cremona’s
mwrank algorithm implemented in Sage [12], we prove unconditionally that r = 1 and P is
the generator of E(Q). Just to sum up,

E(Q) = 〈P 〉 ∼= Z,

so all the points with rational coordinates on the projective curve are of the form k · P , for
k ∈ Z. By computing with the group law, one can observe that 2 · P = [17/4 : −71/8 : 1]
and −2 · P = [17/4 : 71/8 : 1]. As |k| ≥ 2, the experiments suggest that the coordinates of
k ·P have denominators that grow extremely fast. We should remark that we always set the
last coordinate Z = 1, as we are interested in the image of these points on the affine curve.

Suspecting that P and −P are the only points with integral affine coordinates, we will
use the program integral points implemented in Sage by Cremona to prove it. The algorithm
behind integral points is described in Section 8.7 of [6]. We will mention briefly that this
algorithm relies on a deep generalisation of Baker’s theorem due to David and Hirata-Köhno
[8], which if applied to our setup proves that if |k| > e100 then k · P does not have integral
coordinates on our affine model. Additionally, the aforementioned algorithm includes a clever
application of the LLL reduction algorithm to reduce the bound e100 to 13, in our case. After
this reduction, the program tests which of k ·P are integral, when k ≤ 13. The Sage program
integral points requires as input our elliptic curve E and a list of generators for the Mordell-
Weil group E(Q). It returns as output all the points in E(Z). We refer the reader to Section
8.7 of [6] for a deeper understanding of integral points and of the Sage output below, which
proves our theorem.

sage: E = EllipticCurve([0,2]);
sage: E
Elliptic Curve defined by y^2 = x^3 + 2 over Rational Field
sage: P = E(-1,1)
sage: E.integral_points(mw_base = [P], both_signs = True, verbose = True)
Using mw_basis [(-1 : 1 : 1)]
e1,e2,e3: 0.629960524947437 - 1.09112363597172*I,
0.629960524947437 + 1.09112363597172*I, -1.25992104989487
Minimal and maximal eigenvalues of height pairing matrix:
0.754576903181227,0.754576903181227
x-coords of points on non-compact component with -1 <=x<= 2
[-1]
starting search of remaining points using coefficient bound 4 and
|x| bound 184648.204428771
x-coords of extra integral points:
[-1]
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Total number of integral points: 2
[(-1 : -1 : 1), (-1 : 1 : 1)]
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University of Warwick
Mathematics Institute
CV4 7AL, Coventry, United Kingdom
e-mail: g.c.turcas@warwick.ac.uk


