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Abstract. We consider positive linear operators acting on C(K), where K is a
metrizable Bauer simplex. For such an operator L we investigate the limit of
the iterates Lm, when m → ∞. Qualitative results and rates of convergence
are obtained. The general results are illustrated by examples involving classical
operators.
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1. Introduction

Iterates of positive linear operators were investigated in many papers and from
several points of view. General criteria for their convergence can be found in [1],
[2], [13], [14], [20], [21], [23]. Rates of convergence of the iterates were established
in [6], [10], [16], [17], [18], [20], [21], [28]. The relationship with Korovkin theory
is presented in [6], [7], [8], [22]. Iterates are essentially used for representing some
strongly continuous semigroups of operators: see [7], [8], [17], [28]. Iterates for q-
Bernstein operators are studied in [24]; the case of complex operators is considered
in [11]. In the above papers analytical methods were used and also methods from
probability theory. Results based on spectral theory can be found in [9]; fixed point
theory is used in [3], [4], [30], [31], [32], [33].

This paper is devoted to the study of iterates of positive linear operators on
Bauer simplices. General definitions and results are presented in this introduction;
see also [5], [7], [8], [25].

Section 2 is devoted to the iterates of operators preserving affine functions.
An example concerning a finite dimensional simplex is discussed in Section 3. Other
examples are presented in Section 4.

Throughout the paper we shall use the following notions.
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Let E be a real locally convex Hausdorff space and K a convex compact subset
of E. Let C(K) be the space of all continuous real-valued functions on K, endowed
with the usual ordering and the supremum norm. By Hervé’s theorem [5, Th.I.4.3],
[7, p.57], C(K) contains a strictly convex function if and only if K is metrizable.
Throughout the paper we shall suppose that K is metrizable.

The set of all probability Radon measures on K will be denoted by M+
1 (K). For

each x ∈ K, εx stands for the probability Radon measure concentrated on {x}.
The Choquet-Meyer ordering < on M+

1 (K) is defined as follows: for every µ, ν ∈
M+

1 (K), µ < ν if µ(f) ≤ ν(f) for every convex function f ∈ C(K). A measure µ
which is maximal with respect to < will be simply called a maximal measure.

Let A(K) be the set of all affine functions for all h ∈ C(K). The barycenter
of µ ∈ M+

1 (K) is the point r ∈ K for which µ(h) = h(r), h ∈ A(K); in this case
µ(f) ≥ f(r) for each convex function f ∈ C(K).

There are several equivalent properties defining a Choquet simplex. We need the
following one:

K is called a Choquet simplex if for every x ∈ K there exists a unique maximal
measure µx ∈M+

1 (K) having x as barycenter.
The set of the extreme points of K will be denoted by ex(K).
A Choquet simplex K such that ex(K) is closed will be called a Bauer simplex.

In this case µx is supported by ex(K); moreover, if µx = εx, then x ∈ ex(K).
If K is a Bauer simplex, then the operator P : C(K) −→ A(K) defined by

Pf(x) = µx(f), f ∈ C(K), x ∈ K,

is linear, positive, and Ph = h for all h ∈ A(K).
P is called the canonical projection associated with the Bauer simplex K.
Let L : C(K) −→ C(K) be a positive linear operator such that Lh = h, for

every h ∈ A(K). For each x ∈ K let νx(f) := Lf(x), f ∈ C(K). Then νx ∈ M1
+(K)

and x is the barycenter of νx. In particular, if x ∈ ex(K) then νx = εx, so that

Lf(x) = f(x), x ∈ ex(K), f ∈ C(K). (1.1)

Moreover, if g ∈ C(K) is convex, then νx(g) ≥ g(x), x ∈ K, i.e.,

Lg ≥ g. (1.2)

We shall need the following result [26], [27], [7, Th.1.5.2].

Lemma 1.1. Let µ ∈M+
1 (K) with barycenter r and let u be a strictly convex function.

If µ(u) = u(r), then µ = εr.

2. Iterates of positive linear operators preserving the affine functions

In the sequel, K will be a metrizable Bauer simplex.

Theorem 2.1. Let L : C(K) −→ C(K) be a positive linear operator such that Lh = h,
h ∈ A(K). Let u ∈ C(K) be a strictly convex function. If

lim
m→∞

Lmf = Pf, f ∈ C(K), (2.1)
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then

Lu(x) > u(x), x ∈ K r ex(K). (2.2)

Proof. Let x ∈ K. As in the preceding section, let νx(f) := Lf(x), f ∈ C(K). By
(1.2), Lu(x) ≥ u(x). Suppose that Lu(x) = u(x). Then νx(u) = u(x), and Lemma
1.1 yields νx = εx, i.e., Lf(x) = f(x), f ∈ C(K). By induction, Lmf(x) = f(x),
f ∈ C(K). Now (2.1) shows that Pf(x) = f(x), f ∈ C(K). This means that µx = εx,
which entails x ∈ ex(K). �

For K = [0, 1] the above result was obtained in [29] and [12, Corollary 2].
We shall prove that the converse of Th. 2.1 is also true. Having applications in

mind, let us consider a sequence of positive linear operators Ln : C(K) −→ C(K)
preserving the affine functions, i.e.,

Lnh = h, h ∈ A(K), n ≥ 1. (2.3)

Fix a strictly convex function u ∈ C(K).
For n ≥ 1 and s ∈ (0,+∞) define

an(s) := max
K

(Pu− u− ns(Lnu− u)). (2.4)

For x ∈ ex(K) we have Pu(x)− u(x) = Lnu(x)− u(x) = 0, so that an(s) ≥ 0.

Lemma 2.2. If ns ≥ 1, m ≥ 1, then

0 ≤ Pu− Lm
n u ≤ an(s)1 +

(
1− 1

ns

)m

(Pu− u), (2.5)

where 1 is the constant function of value 1 defined on K.

Proof. Since P preserves the affine functions, we have u ≤ Pu by virtue of (1.2).
Moreover, Pu ∈ A(K), and so Lnu ≤ Ln(Pu) = Pu. By induction we get Lm

n u ≤ Pu,
and this is the first inequality in (2.5).
From (2.4) we derive

an(s)1 ≥ Pu− u− ns(Lnu− u).

This implies
1

ns
(Pu− an(s)1) +

(
1− 1

ns

)
u ≤ Lnu.

Since 1− 1

ns
≥ 0, iterating over m ≥ 1(
1−

(
1− 1

ns

)m)
(Pu− an(s)1) +

(
1− 1

ns

)m

u ≤ Lm
n u.

This leads immediately to the second inequality in (2.5), and the lemma is proved. �

Lemma 2.3. Let n ≥ 1 be fixed, and suppose that for a given strictly convex function
u ∈ C(K) one has

Lnu(x) > u(x), x ∈ K r ex(K). (2.6)

Then lim
s→∞

an(s) = 0.
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Proof. Since an ≥ 0 and an is decreasing on (0,+∞), we have l := lim
s→∞

an(s) ≥ 0.

Suppose that l > 0. Let

As := {x ∈ K : Pu(x)− u(x)− ns(Lnu(x)− u(x)) ≥ l}.

The sets As are closed and the family (As)s>0 is descending. For each s > 0, As and

ex(K) are disjoint, so that (2.6) implies
⋂
s>0

As = ∅. Since K is compact, there exists

t > 0 such that At = ∅. Then an(t) < l, a contradiction. �

Theorem 2.4. (i) Let 0 < c < 1. Then

0 ≤ Pu− Lm
n u ≤ an(mc)1 +

(
1− 1

nmc

)m

(Pu− u), (2.7)

for all m,n ≥ 1.
(ii) If (2.6) holds for a given n ≥ 1, then

lim
m→∞

Lm
n f = Pf, f ∈ C(K). (2.8)

Proof. (i) is a consequence of (2.5), with s = mc. From (2.7) and Lemma 2.2 we
infer that lim

m→∞
Lm
n u = Pu. This fact, combined with Corollary 3.3.4 of [7], leads to

(2.8). �

In the sequel we shall suppose that the limit

T (t)f := lim
n→∞

Lk(n)
n f

exists in C(K) for each f ∈ C(K), each t ≥ 0, and each sequence of positive integers

(k(n))n≥1 such that lim
n→∞

k(n)

n
= t.

Denote a(s) = sup{an(s) : n ≥ 1}, s > 0.

Theorem 2.5. (i) Let 0 < c < 1. Then for all t > 0,

0 ≤ Pu− T (t)u ≤ a(tc)1 + (Pu− u) exp(−t1−c). (2.9)

(ii) If lim
s→∞

a(s) = 0, then

lim
t→∞

T (t)f = Pf, f ∈ C(K). (2.10)

Proof. Let t > 0 be fixed. If ntc ≥ 1, from (2.5) we get

0 ≤ Pu− Lk(n)
n u ≤ a(tc)1 +

(
1− 1

ntc

)k(n)

(Pu− u).

Choosing k(n) such that lim
n→∞

k(n)

n
= t, we obtain (2.9).

If lim
s→∞

a(s) = 0, (2.9) yields

lim
t→∞

T (t)u = Pu.

Another application of [7, Cor. 3.3.4] concludes the proof. �
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3. An example and a quantitative result

Let K be the canonical simplex of Rd, that is

K = {x ∈ Rd : x1, . . . xd ≥ 0, x1 + . . .+ xd ≤ 1}.
The canonical projection associated with K is defined, for every f ∈ C(K) and x ∈ K,
by

Pf(x) = (1− x1 − . . .− xd)f(0) + x1f(v1) + . . .+ xdf(vd), (3.1)

where 0, v1 := (1, 0, . . . , 0), . . . , vd := (0, . . . , 0, 1) are the vertices of K.
Let f ∈ C(K); suppose that there exists a constant Qf > 0 such that for all x ∈ K,

|f(x)− f(0)| ≤ Qf

d∑
i=1

xi, (3.2)

|f(x)− f(vj)| ≤ Qf

(
1− 2xj +

d∑
i=1

xi

)
, j = 1, . . . , d. (3.3)

Then, for x ∈ K,

|f(x)− Pf(x)| = |f(x)−

(
1−

d∑
i=1

xi

)
f(0)−

d∑
i=1

xif(vi)|

=

∣∣∣∣∣
(

1−
d∑

i=1

xi

)
(f(x)− f(0)) +

d∑
i=1

xi(f(x)− f(vi))

∣∣∣∣∣
≤ Qf

(1−
d∑

i=1

xi

)
d∑

i=1

xi +

d∑
i=1

xi

1− 2xi +

d∑
j=1

xj


= 2Qf

(
d∑

i=1

xi −
d∑

i=1

x2i

)
.

Consider the strictly convex function u ∈ C(K), u(x) =

d∑
i=1

x2i , x ∈ K. Then

Pu(x) =

d∑
i=1

xi,

so that for the above function f we have

|f(x)− Pf(x)| ≤ 2Qf (Pu(x)− u(x)), x ∈ K. (3.4)

Let Ln : C(K) −→ C(K) be a positive linear operator preserving affine functions.
From (3.4) we get

|Lm
n f − Pf | ≤ 2Qf (Pu− Lm

n u). (3.5)

Finally, (3.5) and (2.7) yield

|Lm
n f − Pf | ≤ 2Qf

(
an(mc)1 +

(
1− 1

nmc

)m

(Pu− u)

)
,



336 Mădălina Dancs and Sever Hodiş

i.e.,

|Lm
n f(x)− Pf(x)| ≤ 2Qf

[
an(mc) +

(
1− 1

nmc

)m d∑
i=1

xi(1− xi)

]
. (3.6)

Moreover, in the context of Theorem 2.3 we derive from (3.4):

|T (t)f − Pf | ≤ 2Qf (Pu− T (t)u). (3.7)

Combined with (2.9), this gives

|T (t)f(x)− Pf(x)| ≤ 2Qf

[
a(tc) + (exp(−t1−c))

d∑
i=1

xi(1− xi)

]
. (3.8)

Remark 3.1. If f ∈ C1(K), i.e., f has continuous partial derivatives on the interior of
K which can be continuously extended on K, then (3.2) and (3.3) are satisfied with

Qf := max

{∥∥∥∥ ∂f∂xi
∥∥∥∥
∞

: i = 1, . . . , d

}
.

4. Examples

In this section we present examples of sequences (Ln)n≥1 of operators preserving
affine functions and satisfying the fundamental condition (2.6).

Example 4.1. Let Bn, n ≥ 1, be the Bernstein-Schnabl operators associated with the
canonical projection P and the arithmetic mean Toeplitz matrix (see [7, p. 381]). Let
u ∈ C(K) be a strictly convex function. Suppose that for a given n ≥ 1 and a given
x ∈ K one has Bnu(x) = u(x). According to Lemma 1.1, we infer that Bnf(x) = f(x),
for every f ∈ C(K). In particular, Bnh

2(x) = h2(x), for all h ∈ A(K). Now [7,
(6.1.16)] leads to P (h2)(x) = h2(x), h ∈ A(K). From [7, Cor. 3.3.4 and Remark to
Prop. 3.3.2] we deduce that x ∈ ex(K). So (2.6) is satisfied for the operators Bn.

Example 4.2. Let Un, n ≥ 1, be the genuine Bernstein-Durrmeyer operators on a
simples K in Rd (see [34], [19], [35]). If u ∈ C(K) is strictly convex, then Unu ≥
Bnu ≥ u [19, Th.8]. If Unu(x) = u(x), then Bnu(x) = u(x), and from Ex. 4.1 we
know that x ∈ ex(K). So (2.6) is satisfied for the operators Un.

Example 4.3. It was proved in [28, Example 2.4] that (2.6) is satisfied for the classical
Meyer-König and Zeller operators on C[0, 1].

Example 4.4. The case of the Bernstein-Schnabl operators on the unit interval, asso-
ciated with a continuous selection of probability Borel measures on [0, 1], is considered
in [28, Example 3.3]. The operators satisfy (2.6).

For all the operators presented in the above examples one can apply Lemma 2.2
and, consequently, one can obtain the corresponding quantitative results derived from
Theorems 2.2 and 2.3.

Other examples and quantitative results can be found in [18], [28], [29].
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