Stud. Univ. Babes-Bolyai Math. 64(2019), No. 2, 291-296
DOLI: 10.24193/subbmath.2019.2.13

An application of inverse Padé interpolation

Radu T. Trimbitasg

Abstract. We use inverse Padé interpolation to find a fourth order method for
the solution of scalar nonlinear equations. Our approach is based on Computer
Algebra. Maple Computer Algebra system assisted us to find the method and to
establish its order.

Mathematics Subject Classification (2010): 65H05, 65Y99.

Keywords: Nonlinear equations, inverse interpolation, Computer Algebra.

1. Introduction

Suppose we wish to approximate the solution of the nonlinear equation

f(z) =0, (1.1)
where f: Q CR — R. Let a be a solution of (1.1).

Suppose there exists g = f~! on a neighbourhood V of a.. The inverse interpo-
lation consists of approximating

a=g(0),
by the value of an interpolant g for g at 0
a ~ g(0).

In this paper we will use inverse Padé interpolation. Let R, , be the set of rational
functions with numerator degree m and denominator degree n. Suppose f has a formal
Taylor series

f(z2)=co+crz 4z +---
For any pair of natural numbers (m,n), rmn € R, p is the type (m,n) Padé approx-
imant to f if their Taylor series at z = 0 agree as far as possible:

(f = rmn) (2) = O (z™%). (1.2)

This paper has been presented at the fourth edition of the International Conference on Numerical
Analysis and Approximation Theory (NAAT 2018), Cluj-Napoca, Romania, September 6-9, 2018.

292 Radu T. Trimbitas

The formula we look for will have the form
Tht1 = Tmn (i), K=0,1,... (1.3)

For details on inverse interpolation see [1, 5, 7]. The paper [7] uses rational interpo-
lation to derive methods for the solution of scalar nonlinear equations.

The paper is structured as follows. The second section establishes the formula,
its order and the efficiency index. The third section studies the convergence by using a
fixed point approach. The next section gives a MATLAB implementation. Finally, the
last section gives two numerical examples and compares the new method to Newton
and Halley methods respectively.

2. The formula and its order
We use the Maple package numapprox (see [4, 6]). Let us start with a (1, 1)-degree
inverse Padé interpolation.
> restart;
> with(numapprox) :
> eval(pade((f@@(-1)) (y),y=f(x), [1,1]),y=0);

Lp 42 D) @)~ (2. (D) () ()2 +4D (1) () £ @)
2 (D () @)” — (D) () @)/ (@)

> collect(%,x,simplify);

We rewrite the formula as

f(z)
O(z)=x— eI
F(z) — f2(f’)(];())

This is the well-known Halley’s formula. This formula was obtained using direct Padé
approximation in [2, 3].
The next step is to try a (2,1)-degree Padé formula.
> eval(pade((f@@(-1)) (y),y=f(x),[2,1]),y=0):
> Fl:=collect(%,x,simplify);
z)(6 (D z))2(D® z)+2D z)f(z)(D® z)—3 ((D® T 2 T
Fi—z12))(6(D(N@)2(DD)(N)(@)+2D() @) F(@)(DD)()(@)-3 ((DD) () (@) (@)

D(f)(r)(3 (D(f)(f))z(D(”)(f)(x)+D(f)(r)f(ﬂ?)(D(3>)(f)(m)*3((D<2>)(f)(r))2f(x))
Rewrite the previous formula as

R (C) b
(I)() - fl(.%‘) 1+ f/(l‘) |:f/(l‘) N f///(x):| 1 (21)
fr(a) Lf(@) 3f"(x)

The formula (2.1) is equivalent to F1 from previous Maple code.

An application of inverse Padé interpolation 293

> FF:=x-£(x)/D(£) (x)*(1+(1/2) / ((D(£) (x) /(DOO2) (£) (x))*(D(£) (x) /£ (x)+
> (Dee3) (£) (x)/ (3% (Dee2) (f) (x)))-1)):

> simplify(F1-FF);
0
We compute the order of (2.1) as follows:
> Phi:=unapply(F1,x);
x3 — a) (324365 — 7222 (333 — a))
22 (16225 — 9022 (23 — a))
> simplify(Phi(alpha), [f(alpha)=0]);
@
> simplify(D(Phi) (alpha), [f(alpha)=0]);
0
> simplify((D@@2) (Phi) (alpha), [f(alpha)=0]);
0
> simplify((D@@3) (Phi) (alpha), [f (alpha)=0]);
0
> simplify((D@e4) (Phi) (alpha), [f(alpha)=0]);

(AP)XY DD) a)r-4 (DD) f)X))* YD) (@)D 1)) ((DP) (1)(@))* (DD) () (@HA (D) ()())*

i) ::xl—>x—1/6(

Q
1/3 (D()(@)?(D@)(f)(a)

The last expression is the asymptotic error constant. We write it as
(Sf”(a)f(‘”(a) —4 [f”’(oz)]z) F2(e) = 6" (a) [f"(@)]* /(@) + 9 [f" ()]
3[f"())* f"(a) '
(2.2)

The order of (2.1) is d = 4, and the efficiency index is 43 = /2. See [5, Section 3.2]
for a definition and properties of the efficiency index.

[e3%

3. The convergence

Let . ={z € Q: |z —a| < e} and

o) (z)
M(E) = e &
Theorem 3.1. If & € C*(I.) and
eM(e) < 1, (3.2)

then

(a) zp € I,n=1,23..., Vag € I;
(b) lim z, = a.
n—oo

294 Radu T. Trimbitas

Proof. (a) Since the method has order d = 4 we have
enp1 < Cel (3.3)

where e, = |z, — «| and M is given by (3.1). If zy € I., the conclusion follows by
using complete induction.
(b) From (3.3) using the Maple code

> rsolve({e(n+1)=Cxe(n)"4,e(0)=e0},e(n));
604W’C1/3~4”
Ve

it follows s
{((768)4 }
€nt1 < C1/3
The right hand side tends to 0 if Ced < 1 which is equivalent to (3.2). O

[1, Theorem 26.1.4, pag. 317] leads us to the same conclusion.

4. Implementation

The function invPade gives a MATLAB implementation for the formula (2.1).
The meaning of the input and output parameters are explained in function header.

function [y,nil=invPade(f, fpl, fp2, fp3, x0, ea, er, nmax)
%INVPADE - solution of f(x) = O by inverse Pade interpolation
%f, fpl, fp2, fp3 - f and its derivatives

%x0 - starting value

%ea, er - absolute and relative error

%nmax - maximum number of iterations

hy - result

%ni - #iterations

if nargin < 8, nmax=50; end;
if nargin < 7, er=0; end
if nargin < 6, ea=le-4; end
for k=1:nmax
f0=f(x0); f1=fp1(x0); f2=fp2(x0); £3=fp3(x0);
ffp=£f0/f1; ifp=£1/£0;
x1=x0-ffp*(1+0.5/(£1/£2* (1ifp+£3/3/£2)-1));
if abs(x1-x0)<eaterxabs(xl) %success
y=x1; ni=k;
return
end
x0=x1;
end
error (’max #iterations exceeded’)

An application of inverse Padé interpolation 295

5. Numerical examples

We tested our implementation at the computation of /a. We compared our
method to Newton and Halley method, respectively. See the source below. We took
a = 201.

a = input(’a=’);
f = 0(x) x"3-a;
fdl = @(x) 3*x"2;
£fd2 = @(x) 6*x;
e(x) 6;

Hh

[oN

w
1

[z0,ni0]=Newton(f,fd1, (a+2)/3, 0, eps,100)
[z1,nil]=Halley(f,fd1,£fd2, (a+2)/3, 0, eps, 100)
[z2,ni2]=invPade(f,fd1,fd2,fd3, (a+2)/3, 0, eps, 100)
z0 =
5.857766002650652
ni0 =
12
zl =
5.857766002650653
nil =
8
z2 =
5.857766002650652
ni2 =
6
In order to compute the result with a relative error of machine epsilon and the
starting value xo = (a+2)/3, inverse Padé method requires 6 iteration, while Newton
and Halley method require 12 and 8 iterations respectively.
The second example solves numerically the equation

ze® + 22 —6=0.

g = 0(x) x*exp(x)+x"2-6;

gdl = @(x) (x+1)*exp(x)+2*x;

gd2 = @(x) 2+(x+2)*exp(x);

gd3 = @(x) (x+3)*exp(x);

tic

[z0,ni0]=Newton(g,gdl,5, 0, eps,100);
t0=toc;

tic

[z1,nil]=Halley(g,gdl,gd2, 5, 0, eps,100);
tl=toc;

tic

296 Radu T. Trimbitas

[z2,ni2]=invPade(g,gdl,gd2,gd3, 5, 0, eps,100);

t2=toc;

fprintf (’Newton, z=Y17.15f, ni=%2d, elapsed time=%f\n’,z0,ni0,t0)
fprintf (’Halley, z=Y17.15f, ni=%2d, elapsed time=%f\n’,zl,nil,t1)
fprintf (’Inv. Pade, z=%17.15f, ni=%2d, elapsed time=%f\n’,z2,ni2,t2)
Newton, z=1.257169468081542, ni=11, elapsed time=0.000570

Halley, z=1.257169468081542, ni= 6, elapsed time=0.000560

Inv. Pade, z=1.257169468081542, ni= 5, elapsed time=0.000549

For a relative tolerance equal to machine epsilon and a starting value xg = 5, the

inverse Padé method requires 5 iterations, while Newton and Halley method require
11 and 6 iterations, respectively.

References

[1] Agratini, O., Blaga, P., Chiorean, I., Coman, Gh., Stancu, D.D., Trimbitag, R.T., Nu-
merical Analysis and Approximation Theory (vol. III), Cluj University Press, Cluj-
Napoca, 2002 (in Romanian).

[2] Gander, W., Gander, M.J., Kwok, F., Scientific Computing. An Introduction Using
Maple and MATLAB, Springer, 2014.

[3] Gander, W., Gruntz, D., Derivation of numerical methods using Computer Algebra,
SIAM Rev., 41(1999), no. 3, 577-593.

[4] Garvan, F., The Maple Book, 1st Edition, Chapman & Hall/CRC, 2001.

[6] Gautschi, W., Numerical Analysis, Second Edition, Springer Science+Business Media,
2012.

[6] Heck, A., Introduction to Maple, Third Edition, Springer-Verlag, New York, 2003.

[7] Pavaloiu, 1., Equations Solution through Interpolation, Dacia Publishers, 1981 (in Ro-
manian).

Radu T. Trimbitag

Babeg-Bolyai University

Faculty of Mathematics and Computer Sciences
1, Kogalniceanu Street,

400084 Cluj-Napoca, Romania

e-mail: tradu@math.ubbcluj.ro

