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A generalization of Bernstein-Durrmeyer
operators on hypercubes by means of an
arbitrary measure
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Abstract. In this paper we introduce and study a sequence of Bernstein-
Durrmeyer type operators (Mn,µ)n≥1, acting on spaces of continuous or inte-

grable functions on the multi-dimensional hypercube Qd of Rd (d ≥ 1), defined
by means of an arbitrary measure µ. We investigate their approximation proper-
ties both in the space of all continuous functions and in Lp-spaces with respect
to µ, also furnishing some estimates of the rate of convergence. Further, we prove
an asymptotic formula for the Mn,µ’s. The paper ends with a concrete example.
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1. Introduction

Bernstein-Durrmeyer operators were introduced, independently, by Durrmeyer
([15]) and Lupaş ([18]) in their respective dissertations, as a modification of the classi-
cal Bernstein operators acting on spaces of integrable functions. More precisely, they
are defined by setting

Mn(f)(x) := (n+ 1)

n∑
k=0

(∫ 1

0

f(u)pn,k(u) du

)
pn,k(x),

for every n ≥ 1, x ∈ [0, 1] and f : [0, 1] → R such that fpn,k ∈ L1([0, 1]) for every
k = 0, . . . , n, where pn,k(x) :=

(
n
k

)
xk(1− x)n−k.

These operators were intensively studied by Derriennic ([12]), and during the
years they have been subject to many generalizations. The most renowned one is due
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to Paltanea ([19], see also [11, 21, 22]), who replaced the weighted measure pn,kλ1
(λ1 being the Lebesgue-Borel measure on [0, 1]) with the absolutely continuous Borel
measure with respect to λ1 with density the normalized Jacobi weights

wa,b(x) :=
xa(1− x)b∫ 1

0
ya(1− y)b dy

a > −1, b > −1, x ∈ (0, 1).

The Bernstein-Durrmeyer operators with Jacobi weights have been matter of
many investigations, in the context of the interval [0, 1], in the multi-dimensional
framework of simplices ([13, 1]) and, more recently, for hypercubes ([3]). In particular,
in [1, 3] the connection between such operators and the study of the so-called Fleming-
Viot differential operators is investigated.

A further step in the possible generalizations of the Bernstein-Durrmeyer oper-
ators, which has significant applications in learning theory, consists in replacing the
Lebesgue measure with an arbitrary regular Borel measure. This generalization was
briefly mentioned by Berens and Xu in [11] in the context of the interval [0, 1], and
then intensively studied in [8, 6, 7, 17, 9] for the multi-dimensional simplex.

Inspired by these last works, in this paper we introduce and study a sequence of
Bernstein-Durrmeyer type operators (Mn,µ)n≥1 with respect to an arbitrary measure
µ (see (3.1)-(3.3)), acting both on spaces of continuous and integrable functions on
the hypercube Qd := [0, 1]d of Rd (d ≥ 1).

First, we prove a necessary and sufficient condition, which involves only prop-
erties of the measure µ, in order that the sequence (Mn,µ)n≥1 is an approximation
process with respect to the uniform norm.

Moreover, following the reasoning in [17] (see also [9]), we show that (Mn,µ)n≥1
is an approximation process in Lp(Qd, µ) (1 ≤ p < +∞) for any Borel measure µ for
which the Mn,µ’s are well defined; this entails that the space Lp(Qd, µ) is the most
natural environment in which studying these operators.

Further, we produce, under suitable conditions, an asymptotic formula for the
sequence (Mn,µ)n≥1, that involves a second order differential operator.

Finally, a concrete example of Bernstein-Durrmeyer operators on Qd is illus-
trated.

2. Notation and preliminary results

Let us start by fixing some notation. Let X be a compact Hausdorff space. As
usual, we denote by C(X) the space of all continuous real-valued functions on X.
C(X) will be endowed with the uniform norm ‖ · ‖∞, with respect to which it is a
Banach space.

A linear operator T on C(X) is called a Markov operator on C(X) if it is positive
and T (1) = 1, where 1 indicates the constant function of constant value 1 on X.

If BX is the σ-algebra of all Borel subsets of X, the symbol M+(X) (resp.,
M+
b (X)) stands for the cone of all regular Borel measures on X (resp., the cone of all

bounded Borel measures on X).
For a measure µ ∈ M+(X), we denote by supp(µ) the support of µ, i.e., the

complement of the largest open subset of X on which µ is zero. We recall that a
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measure µ on X is said to be strictly positive on X if µ(X ∩ A) > 0 for every open
subset A such that A ∩X 6= ∅. We remark that, on the account of [20, Prop. 13, p.
408], µ is a strictly positive measure if and only if supp(µ) = X.

Let µ ∈ M+(X) and 1 ≤ p < +∞. As usual, Lp(X,µ) is the space of all
(the equivalence classes of) Borel measurable, real-valued functions on X which are
µ-integrable in the pth power. The space Lp(X,µ) is endowed with the norm

‖f‖p :=

(∫
X

|f |p dµ
)1/p

(f ∈ Lp(X,µ)).

Now, let γ = (γ1, . . . , γd) ∈ Rd, d ≥ 1. If x = (x1, . . . , xd) ∈ Rd, xi > 0 for every
i = 1, . . . , d, we set

xγ :=

d∏
i=1

xγii .

If γi ≥ 0 and xi ≥ 0 for each i = 1, . . . , d, then xγ is similarly defined as above
assuming 00 := 1.

If x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, then we write x ≤ y whenever xi ≤ yi
for every i = 1, . . . , d.

Let j = (j1, . . . , jd), k = (k1, . . . , kd) ∈ Nd be two multi-indices such that k ≤ j;
we define (

j

k

)
:=

d∏
i=1

(
ji
ki

)
.

We also set 0d := (0, . . . , 0) and, for every n ≥ 1, nd := (n, . . . , n).
All the results of this paper concern the case where X is the d-dimensional

hypercube Qd := [0, 1]d, d ≥ 1.
First, for each i = 1, . . . , d, the symbol pri stands for the i-th coordinate function

on Qd, which is defined by setting pri(x) = xi for every x ∈ Qd.
Moreover, let us consider the partition P = {ξ0, ξ1, ξ2} of the unit interval [0, 1]

such that ξ0 = 0, ξ1 = 1
2 and ξ2 = 1. Then, P yields a partition of Qd composed by

closed sub-hypercubes of the form

Qd,j := [ξj1 , ξj1+1]× · · · × [ξjd , ξjd+1] (2.1)

where j = (j1, . . . , jd) is such that ji = 0 or ji = 1 for every i = 1, . . . , d (briefly,
j ∈ {0, 1}d).

For a ∈ Qd and r > 0, we define the open d-dimensional hypercube

Id(a; r) := (a1 − r, a1 + r)× · · · × (ad − r, ad + r) , (2.2)

and the closed d-dimensional hyperrectangle

Jd(a; r) := [a1, a1 + r]× · · · × [ad, ad + r] . (2.3)

Remark 2.1. Observe that, if a belongs to some Qd,j and if r ≤ 1
2 , then Jd(a; r) ⊂ Qd.

Indeed, a ∈ Qd,j means that ξji ≤ ai ≤ ξji+1 for every i = 1, . . . , d. Hence, if
x ∈ Jd(a; r), for any i = 1, . . . , d, xi ≥ 0, since ji ∈ {0, 12 , 1}. Now, fix i = 1, . . . , d

and suppose that ji = 0; in this case 0 ≤ ai ≤ 1
2 from which it easily follows xi ≤ 1.
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Otherwise, if ji = 1, 1
2 ≤ ai ≤ 1, that is 0 ≤ 1 − ai ≤ 1

2 , therefore ai + r ≤ 1 is

equivalent to the true inequality r ≤ 1− ai ≤ 1
2 , and again xi ≤ 1.

The following lemma will play an important role in the next section. It deals
with the case of the unit interval [0, 1].

Lemma 2.2. Let 0 < r ≤ 1
2 . Then, there exists a positive constant K = K(r), depend-

ing only on r, such that

maxx∈[0,1]\(a−r,a+r) x
a(1− x)1−a

minx∈[a,a+r2] xa(1− x)1−a
< K < 1 .

Proof. The proof can be found in [6, Lemma 3 and Lemma 4] (see also [7, p. 738]).
In particular it is worth noticing that

max
x∈[0,1]\(a−r,a+r)

xa(1− x)1−a =

 (a+ r)a(1− a− r)1−a if 0 ≤ a ≤ 1
2 ,

(a− r)a(1− a+ r)1−a if 1
2 ≤ a ≤ 1 ,

and

min
x∈[a,a+r2]

xa(1− x)1−a = (a+ r2)a(1− a− r2)1−a .

�

Finally, coming back to the case d ≥ 1, we state the following result.

Lemma 2.3. Consider µ ∈ M+
b (Qd) such that supp(µ) = Qd. Then, for every r > 0

and j ∈ {0, 1}d,

inf
a∈Qd,j

µ(Jd(a; r)) > 0,

where Qd,j and Jd(a; r) are defined, respectively, by (2.1) and (2.3).

Proof. We begin with supposing r ≤ 1/2. In this case, from Remark 2.1 it follows that

the interior
◦
Jd(a; r) of Jd(a; r) is contained into Qd, so that

◦
Jd(a; r) =

◦
Jd(a; r) ∩Qd.

Since µ is strictly positive on Qd, we have that

0 < µ(
◦
Jd(a; r) ∩Qd) = µ(

◦
Jd(a; r)) ≤ µ(Jd(a; r)).

The case r > 1/2 is an easy consequence of the fact that µ(Jd(a; r)) ≥ µ(Jd(a; 1
2 )) > 0,

where the last inequality is true for the first part of the proof. �

On account of Lemma 2.3, we set

C(µ, r) := min
j∈{0,1}d

inf
a∈Qd,j

µ(Jd(a; r)) > 0 . (2.4)
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3. Bernstein-Durrmeyer operators on Qd with respect to arbitrary
measures

Let µ ∈M+
b (Qd) be a nonnegative Borel measure on Qd satisfying the assumption

supp(µ) \ ∂Qd 6= ∅. (3.1)

For every n ≥ 1, let us consider the operator Mn,µ : L1(Qd, µ) → C(Qd) defined by
setting, for every f ∈ L1(Qd, µ) and x ∈ Qd,

Mn,µ(f)(x) :=
∑
h∈Nd

0d≤h≤nd

ωnd,h(f, µ)

(
nd
h

)
xh(1d − x)nd−h,

(3.2)

where, for every n ≥ 1 and h = (h1, . . . hd) ∈ Nd, 0d ≤ h ≤ nd,

ωnd,h(f, µ) :=
1∫

Qd
yh(1d − y)nd−h dµ(y)

∫
Qd

yh(1d − y)nd−hf(y) dµ(y). (3.3)

We remark that assumption (3.1) guarantees that, for every n ≥ 1 and h ∈ Nd,
0d ≤ h ≤ nd, ∫

Qd

yh(1d − y)nd−h dµ(y) > 0.

Clearly, the operators Mn,µ are linear, positive, and Mn,µ(1) = 1, so that the
restriction of each Mn,µ to C(Qd) is a Markov operator on C(Qd) with unitary norm.
Moreover, for any f ∈ L1(Qd, µ) and n ≥ 1, Mn,µ(f) is a polynomial of total degree
at most n.

In order to discuss the convergence of the sequence (Mn,µ)n≥1 both on C(Qd)
and Lp(Qd, µ) (p ≥ 1), first of all, we recall the definition of the classical Bernstein
operators on Qd (see [16] and the references therein). They are defined by setting, for
any n ≥ 1, f ∈ C(Qd), and x ∈ Qd,

Bn(f)(x) =
∑
h∈Nd

0d≤h≤nd

f

(
h

n

)(
nd
h

)
xh(1d − x)nd−h. (3.4)

The sequence (Bn)n≥1 is an approximation process on C(Qd), i.e., for any f ∈ C(Qd)

lim
n→∞

Bn(f) = f uniformly on Qd. (3.5)

Observe in particular that Bn(1) = 1, or equivalently, that∑
h∈Nd

0d≤h≤nd

(
nd
h

)
xh(1d − x)nd−h = 1 for every x ∈ Qd . (3.6)

Finally, we have that, for every n ≥ 1 and i = 1, . . . , d,

Bn(pri) = pri and Bn(pr2i ) =
1

n
pri +

n− 1

n
pr2i . (3.7)
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3.1. Approximation properties on C(Qd)

In what follows we study the convergence properties of the sequence
(Mn,µ(f))n≥1 on the space C(Qd).

Theorem 3.1. The following statements are equivalent:

(i) For every f ∈ C(Qd),

lim
n→∞

Mn,µ(f) = f uniformly on Qd . (3.8)

(ii) supp(µ) = Qd.

Proof. (i) =⇒ (ii). Suppose that there exists a nonempty open set A ⊂ Qd such that
µ(A) = 0. Then, for every f ∈ C(Qd), f = 0 on Qd \ A, on account of (3.5) for
operators Bn, we have∫

Qd

yh(1d − y)nd−hf(y) dµ(y)=

{∫
A

+

∫
Qd\A

}
yh(1d − y)nd−hf(y) dµ(y) = 0 .

Therefore, Mn,µ(f) = 0 and this leads to a contradiction because of (i).
(ii) =⇒ (i). For n ≥ 1, f ∈ C(Qd) and x ∈ Qd, we have

|Mn,µ(f)(x)− f(x)| ≤ |Mn,µ(f)(x)−Bn(f)(x)|+ |Bn(f)(x)− f(x)|

≤
∑
h∈Nd

0d≤h≤n

∣∣∣∣ωnd,h(f, µ)− f
(
h

nd

)∣∣∣∣ (ndh
)
xh(1d − x)nd−h + ‖Bn(f)− f‖∞

≤ max
h∈Nd

0d≤h≤n

∣∣∣∣ωnd,h(f, µ)− f
(
h

nd

)∣∣∣∣+ ‖Bn(f)− f‖∞,

as (3.6) holds true. Thus, keeping (3.5) in mind, in order to get the claim it is sufficient
to prove that

lim
n→∞

max
h∈Nd

0d≤h≤nd

∣∣∣∣ωnd,h(f, µ)− f
(
h

n

)∣∣∣∣ = 0. (3.9)

We begin to observing that, since f is uniformly continuous on Qd,

for a fixed ε > 0, there exists δ̃ > 0 such that, for every

x, y ∈ Qd with ‖x− y‖ < δ̃, then |f(x)− f(y)| < ε,
(3.10)

where by ‖·‖ we indicate the l∞-norm on Rd defined by setting ‖x‖ := maxi=1,...,d |xi|
(x ∈ Rd).

Fix δ = min{δ̃, 12}, n ≥ 1, h ∈ Nd, 0d ≤ h ≤ nd, and j ∈ {0, 1}d such that, the

point h
n belongs to the piece Qd,j of Qd (see (2.1)).

Then∣∣∣∣ωnd,h(f, µ)− f
(
h

n

)∣∣∣∣ ≤
∫
Qd

∣∣f(y)− f
(
h
n

)∣∣ yh(1d − y)nd−h dµ(y)∫
Qd
yh(1d − y)nd−h dµ(y)

.
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Now, rewrite Qd =
(
Qd ∩ Id(hn ; δ)

)
∪
(
Qd \ Id(hn ; δ)

)
(see (2.2)), and observe that,

from (3.10) it follows that
∣∣f(y)− f

(
h
n

)∣∣ < ε when y ∈ Qd ∩ Id(hn ; δ). Hence, setting
M := ‖f‖∞, from Remark 2.1, (2.3) and (2.4), we get∣∣∣∣ωnd,h(f, µ)− f

(
h

n

)∣∣∣∣ ≤ ε+ 2M

∫
Qd\Id( h

n ;δ)
yh(1d − y)nd−h dµ(y)∫

Qd
yh(1d − y)nd−h dµ(y)

< ε+ 2M

∫
Qd\Id( h

n ;δ)
yh(1d − y)nd−h dµ(y)∫

Jd(
h
n ;δ2)

yh(1d − y)nd−h dµ(y)

< ε+ 2M
µ(Qd)

µ(Jd(
h
n ; δ2))

maxy∈Qd\Id( h
n ;δ) y

h(1d − y)nd−h

miny∈Jd( h
n ;δ2) y

h(1d − y)nd−h

< ε+ 2M
µ(Qd)

C(µ, δ2)

(
maxy∈Qd\Id(a;δ) y

a(1d − y)1d−a
)n(

miny∈Jd(a;δ2) y
a(1d − y)1d−a

)n ,

where in the last inequality a := h
n .

Since

max
y∈Qd\Id(a;δ)

ya(1d − y)1d−a =

d∏
i=1

max
yi∈[0,1]\(ai−δ,ai+δ)

yaii (1− yi)1−ai ,

and

min
y∈Jd(a;δ2)

ya(1d − y)1d−a =

d∏
i=1

min
yi∈[ai,ai+δ2]

yaii (1− yi)1−ai ,

by applying Lemma 2.2 we get that(
maxy∈Qd\Id(a;δ) y

a(1d − y)1d−a
)n(

miny∈Jd(a;δ2) y
a(1d − y)1d−a

)n < K(r)n → 0 as n→∞ .

Therefore, there exists nε ∈ N such that, for every n ≥ nε, (K(r))n < ε C(µ,δ2)
2Mµ(Qd)

.

Accordingly, for every n ≥ nε and h ∈ Nd, 0d ≤ h ≤ nd,∣∣∣∣ωnd,h(f, µ)− f
(
h

n

)∣∣∣∣ < 2ε

and this completes the proof of (3.9). �

At the end of Section 4 we present, under suitable assumptions, an estimate of
the convergence in (3.8).

3.2. Approximation properties on Lp(Qd, µ)

In this section we are interested in the convergence properties of the Bernstein-
Durrmeyer operators Mn,µ defined by (3.1)-(3.3) in the space Lp(Qd, µ) (1≤p<+∞).

First note that, if n ≥ 1 and f ∈ L1(Qd, µ), we get∫
Qd

Mn,µ(f) dµ =

∫
Qd

f dµ . (3.11)



246 Mirella Cappelletti Montano and Vita Leonessa

Indeed, keeping (3.6) in mind,∫
Qd

Mn,µ(f) dµ =
∑
h∈Nd

0d≤h≤nd

ωnd,h(f, µ)

(
nd
h

)∫
Qd

xh(1d − x)nd−h dµ(x)

=
∑
h∈Nd

0d≤h≤nd

(
nd
h

)∫
Qd

yh(1d − y)nd−hf(y) dµ(y)

=

∫
Qd

∑
h∈Nd

0d≤h≤nd

[(
nd
h

)
yh(1d − y)nd−h

]
f(y) dµ(y) =

∫
Qd

f(y) dµ(y) .

Moreover, by using the convexity of the function |t|p(t ∈ R) and (3.6), for any n ≥ 1
and f ∈ Lp(Qd, µ), we obtain

|Mn,µ(f)(x)|p ≤
∑
h∈Nd

0d≤h≤nd

(ωnd,h(|f |, µ))
p

(
nd
h

)
xh(1d − x)nd−h.

Now, by applying the integral Jensen inequality (see, e.g. [5]) to the probability mea-
sure ρ on Qd which is absolutely continuous with respect to µ with density the weight

function wnd,h defined on the interior
◦
Qd of Qd as

wnd,h(x) =
xh(1d − x)nd−h∫

Qd
yh(1d − y)nd−h dµ(y)

(x ∈
◦
Qd),

we get (see (3.3))

(ωnd,h(|f |, µ))
p

=

(∫
Qd

|f(y)| dρ(y)

)p
≤
∫
Qd

|f(y)|p dρ(y) = ωnd,h(|f |p, µ) ,

and hence, |Mn,µ(f)|p ≤Mn,µ(|f |p). Therefore, by integrating with respect to µ over
Qd, we gain ∫

Qd

|Mn,µ(f)|p dµ ≤
∫
Qd

Mn,µ(|f |p) dµ =

∫
Qd

|f |p dµ , (3.12)

where in the last equality we have used (3.11). Inequality (3.12) means thatMn,µ maps
Lp(Qd, µ) into itself and, in particular that each restriction Mn|Lp(Qd,µ) coincides with
the extension of Mn|C(Qd) to Lp(Qd, µ).

Thanks to these considerations, we are able to get the following result.

Proposition 3.2. Consider µ ∈ M+
b (Qd) satisfying (3.1). Then, for every n ≥ 1 and

1 ≤ p < +∞, for the operator Mn,µ : Lp(Qd, µ)→ Lp(Qd, µ) the following inequality
holds:

‖Mn,µ(f)‖Lp ≤ ‖f‖Lp (f ∈ Lp(Qd, µ)) . (3.13)

Property (ii) on µ for the convergence in C(Qd) seems to be too strong for
spaces of integrable functions, and in fact, following the idea used by Li in the case
of simplices (see [17]; see also [9]), we prove that (Mn,µ)n≥1 constitutes a positive
approximation process in Lp(Qd, µ) requiring only that µ satisfies (3.1).
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We need some additional notation. Consider the space C1(Qd) of all real-valued

continuous functions on Qd which are continuously differentiable on
◦
Qd and whose

partial derivatives can be continuously extended to Qd. We shall continue to denote
by ∂

∂xi
the continuous extensions to Qd of ∂

∂xi
. Moreover, the space C1(Qd) will be

equipped with the seminorm |||∇g||| := maxi=1,...,d ‖ ∂
∂xi

g‖∞.

Further, let K(f, t)p be the K-functional (see, e.g. [14]) defined by

K(f, t)p = inf
g∈C1(Qd)

{‖f − g‖Lp + t|||∇g|||} for p ≥ 1 , t > 0.

In particular, for every f ∈ Lp(Qd, µ), one has

K(f, t)p → 0 as t→ 0 . (3.14)

Theorem 3.3. Let µ ∈ M+
b (Qd) satisfying (3.1) and consider the operators Mn,µ

defined by (3.2). For every f ∈ Lp(Qd, µ), 1 ≤ p < +∞ and n ≥ 1,

‖Mn,µ(f)− f‖p ≤ 2K(f, Cp(µ(Qd))
1
pn−

1
2 )p (3.15)

where Cp is a constant depending only on p and d. In particular,

lim
n→∞

Mn,µ(f) = f in Lp(Qd, µ) . (3.16)

Proof. By an inspection of Theorems 2.1 and 2.2 in [17], one notes that the arguments
used there work also for hypercubes. In fact, first we have that, for any n ≥ 1,
f ∈ Lp(Qd, µ) and p ≥ 1, the following estimate holds:

‖Mn,µ(f)− f‖p ≤ 2K(f,∆n,p/2)p , (3.17)

where

∆n,p :=

d∑
i=1

(∫
Qd

|Mn,µ(|pri − pri(x)1|)(x)|p dµ(x)

)1/p

=

d∑
i=1

‖Mn,µ(|pri − pri(x)1|)‖Lp .

The proof of (3.17) runs as in [17, Theorem 2.1] (see also [8, Theorem 4.5]) on
account of (3.13) and the well-known equivalence between l∞-norm and l1-norm in
Rd.

Subsequently, estimates of ∆n,p similar to those in [9, Theorem 1.1, Lemma 1.1]
can be obtained, thanks to (3.6) and, moreover, to the fact that the expressions of
Bn(pri) and Bn(pr2i ) in the case of hypercubes (see (3.7)) are the same as those for
simplices (see, e.g [17, Lemma 2.1]). In particular, for every i = 1, . . . , d,

‖Mn,µ(|pri − pri(x)1|)‖Lp ≤ cp(µ(Qd))
1
pn−

1
2 ,

where cp is a constant depending only on p. Hence,

‖Mn,µ(f)− f‖p ≤ 2K(f, dcp(µ(Qd))
1
pn−

1
2 /2)p,

which leads to (3.15) and, letting n→∞, we get (3.16) by virtue of (3.14). �
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4. Asymptotic formula for the operators Mn,µ

In order to present an asymptotic formula for the operators Mn,µ, we need some
further notation.

In particular, we denote by C2(Qd) the space of all real-valued continuous func-

tions on Qd which are twice-continuously differentiable on
◦
Qd and whose partial

derivatives up to the order 2 can be continuously extended to Qd. We shall continue

to indicate by ∂
∂xi

and ∂2

∂xi∂xj
the continuous extensions to Qd of ∂

∂xi
and ∂2

∂xi∂xj
.

Moreover, for every x ∈ Qd, we denote by Ψx, dx ∈ C(Qd) the functions defined by

Ψx(y) := y − x and dx(y) :=

(
d∑
i=1

|yi − xi|2
)1/2

(y ∈ Qd) .

We notice that, for every y = (y1, . . . , yd) ∈ Qd, and i = 1, . . . , d,

(pri ◦Ψx)(y) = pri(y − x) = yi − xi = pri(y)− xi;
accordingly,

d2x =

d∑
i=1

(pri ◦Ψx)2 and d4x =

d∑
i,j=1

(pri ◦Ψx)2(prj ◦Ψx)2. (4.1)

Theorem 4.1. Under the hypothesis supp(µ) = Qd, assume also that:

(i) For every i = 1, . . . , d, there exists βi ∈ C(Qd) such that

lim
n→∞

n(Mn,µ(pri)− pri) = βi uniformly on Qd . (4.2)

(ii) For every i, j = 1, . . . , d, there exists γij ∈ C(Qd) such that

lim
n→∞

n(Mn,µ(priprj)− priprj) = γij uniformly on Qd . (4.3)

(iii) For every x ∈ Qd, n ≥ 1 and for every h ∈ Nd, 0d ≤ h ≤ nd, one has

lim
n→∞

n max
h∈Nd

0d≤h≤nd

ωnd,h(d4x, µ)−
d∑

i,j=1

(
hi
n
− xi

)2(
hj
n
− xj

)2
 = 0 (4.4)

uniformly w.r.t. x ∈ Qd.

Then, for every u ∈ C2(Qd),

lim
n→∞

n(Mn,µ(u)− u) =

d∑
i,j=1

αij
∂2u

∂xi∂xj
+

d∑
i=1

βi
∂u

∂xi
uniformly on Qd, (4.5)

where, for every x ∈ Qd,

αij(x) := γij(x)− xiβj(x)− xjβi(x).

Proof. On account of Theorem 1.5.2 in [4], (4.5) will be proved once we show that,
for every i, j = 1, . . . , d,

(a) lim
n→∞

nMn,µ(pri ◦Ψx)− βi = 0 uniformly on Qd;

(b) lim
n→∞

nMn,µ((pri ◦Ψx)(prj ◦Ψx))− 2αij = 0 uniformly on Qd;
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(c) sup
n≥1,x∈Qd

nMn,µ(d2x)(x) < +∞;

(d) lim
n→∞

nMn,µ(d4x)(x) = 0 uniformly w.r.t. x ∈ Qd.

In order to prove statement (a), we first observe that, for any n ≥ 1, h ∈ Nd,
0 ≤ h ≤ nd and x ∈ Qd,

ωnd,h((pri ◦Ψx), µ) = ωnd,h(pri, µ)− xi;

this, together with assumption (4.2), completes the proof.
We pass now to prove statement (b). It is, indeed, a consequence of (4.2) and

(4.3), once one notices that

ωnd,h((pri ◦Ψx)(prj ◦Ψx, µ) = (ωnd,h(priprj , µ)− xixj)
− xi(ωnd,h(prj , µ)− xj)− xj(ωnd,h(pri, µ)− xi).

Statement (c) follows directly from (4.1).
Finally, we have to prove statement (d). We recall that for the sequence (Bn)n≥1

of the Bernstein operators (3.4), one has that

lim
n→∞

nBn(d4x)(x) = 0

uniformly w.r.t. x ∈ Qd (see [2, Formula (5), p. 434 and Proposition 6.2.3]).
Under assumption (4.4), as for every x ∈ Qd,

nMn,µ(d4x)(x) = nBn(d4x)(x) + n
(
Mn,µ(d4x)(x)−Bn(d4x)(x)

)
≤ nBn(d4x)(x) + n|Mn,µ(d4x)(x)−Bn(d4x)(x)| ≤ nBn(d4x)(x)

+ n
∑
h∈Nd

0d≤h≤nd

∣∣∣∣∣∣ωnd,h(d4x, µ)−
d∑

i,j=1

(
hi
n
−xi

)2(
hj
n
−xj

)2
∣∣∣∣∣∣
(
nd
h

)
xh(1d − x)nd−h,

we easily get that limn→∞ nMn,µ(d4x)(x) = 0 uniformly w.r.t. x ∈ Qd, and this finishes
the proof. �

Remark 4.2. As we have shown in (3.15), some estimates for the rate of convergence
in (3.16), in terms of the K-functionals for Lp-spaces, are available. A more difficult
question is to establish the rate of convergence of Mn,µ with respect to the uniform
norm. Under the assumptions (i)-(ii) of Theorem 4.1, we can give a partial answer to
this question.

From [10, Theorem 2], we infer the general estimate in terms of the second
modulus of continuity ω2(f, δ): for every n ≥ 1 and f ∈ C(Qd),

‖Mn,µ(f)− f‖∞ ≤ C
(
λn,∞‖f‖∞ + ω2(f, λ1/2n,∞)

)
,

where C is an absolute constant depending only on d, λn,∞ is defined by

λn,∞ := max{‖Mn,µ(1)− 1‖∞, ‖Mn,µ(pr1)− pr1‖∞,
. . . , ‖Mn,µ(prd)− prd‖∞, ‖Mn,µ(e2)− e2‖∞},

and e2 :=
∑d
i=1 pr

2
i .
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Assumption (i)-(ii) in Theorem 4.1 yield that there exists M > 0 such that, for every
i = 1, . . . , d

‖Mn,µ(pri)− pri‖∞ ≤
M

n
and ‖Mn,µ(e2)− e2‖∞ ≤

M

n
.

Hence, since Mn,µ(1) = 1, we have that

‖Mn,µ(f)− f‖∞ ≤ C
(
M

n
+ ω2(f,

√
M/n)

)
.

5. An example

In this last section, we discuss a concrete example where the previous results
apply. We begin to choose the measure µ. Let a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd

such that ai > −1 and bi > −1 for any i = 1, . . . , d. As measure µ we consider the
absolutely continuous measure µa,b ∈ M+

1 (Qd) with respect to the Borel-Lebesgue
measure λd on Qd with density the normalized Jacobi weight

wa,b(x) :=
xa(1− x)b∫

Qd
ya(1− y)b dy

(x ∈
◦
Qd).

Note that µa,b satisfies property (ii) in Theorem 3.1.
In such a case, the operators Mn,µa,b

turn into the so-called Bernstein-Durrmeyer
operators on Qd with Jacobi weights, which were introduced and studied in [3]. More
precisely, they are defined, for every n ≥ 1, f ∈ L1(Qd, µa,b) and x ∈ Qd, by setting

Mn(f)(x) :=
∑
h∈Nd

0d≤h≤nd

ωnd,h(f)

(
nd
h

)
xh(1d − x)nd−h,

where, for every n ≥ 1 and h = (h1, . . . hd) ∈ Nd, 0d ≤ h ≤ nd,

ωnd,h(f) :=
1∫

Qd
yh+a(1d − y)nd−h+b dy

∫
Qd

yh+a(1d − y)nd−h+bf(y) dy

=

d∏
i=1

Γ(n+ ai + bi + 2)

Γ(hi + ai + 1)Γ(n− hi + bi + 1)

∫
Qd

yh+a(1d − y)nd−h+bf(y) dy

and Γ(u) (u ≥ 0) denotes the classical Euler Gamma function.
The operators Mn,µa,b

satisfy assumptions (4.2)-(4.4); in particular, they verify

the following asymptotic formula: for every u ∈ C2(Qd),

lim
n→∞

n(Mn,µa,b
(u)− u) = A(u) uniformly on Qd,

where the differential operator A is defined by

A(u)(x) =

d∑
i=1

xi(1− xi)
∂2u

∂x2i
(x) + (ai + 1− (ai + bi + 2)xi)

∂u

∂xi
(x)

for every u ∈ C2(Qd) and x=(x1, . . . , xd) ∈ Qd.
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Note that such a differential operator falls into the category of so-called Fleming-
Viot operators. In [3], the authors proved that the operator A is closable and its closure
(pre)-generates a Markov semigroup (T (t))t≥0 on C(Qd) such that, if f ∈ C(Qd) and
t ≥ 0, then

T (t)(f) = lim
n→∞

M [nt]
n (f) uniformly on Qd ,

[nt] denoting the integer part of nt (n ≥ 1).

A similar relation holds true also in Lp(Qd, µa,b). An open problem should be to
understand under which conditions this holds true in the more general context of the
Bernstein-Durrmeyer operators Mn,µ with respect to arbitrary measures.
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