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Operator norms of Gauß-Weierstraß operators
and their left quasi interpolants

Ulrich Abel

Abstract. The paper deals with the Gauß–Weierstraß operators Wn and their left

quasi interpolants W
[r]
n . The quasi interpolants were defined by Paul Sablonnière

in 2014. Recently, their asymptotic behaviour was studied by Octavian Agratini,
Radu Păltănea and the author by presenting complete asymptotic expansions.

In this paper we derive estimates for the operator norms of Wn and W
[r]
n when

acting on various function spaces.
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1. Introduction

For 1 ≤ p ≤ +∞ and c > 0, let Lpc (R) denote the space of all locally integrable
functions f : R→ R, such that the weighted norm ‖fwc‖Lp(R)

‖f‖Lpc (R) :=

(∫ ∞
−∞
|f (t)|p wc (t) dt

)1/p

(1 ≤ p < +∞) ,

‖f‖L∞
c (R) := ess sup

t∈R
|f (t)|wc (t) (p = +∞)

is finite, where the weight function wc is given by

wc (t) := e−ct
2

.

In the particular case c = 0, we obtain the ordinary spaces Lp0 (R) = Lp (R) and
L∞0 (R) = L∞ (R), respectively.

This paper has been presented at the fourth edition of the International Conference on Numerical

Analysis and Approximation Theory (NAAT 2018), Cluj-Napoca, Romania, September 6-9, 2018.
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The nth Gauß–Weierstraß convolution operator Wn (see, e.g., [7, Section 5.2.9])
is defined by

(Wnf) (x) =

√
n

π

∫ ∞
−∞

e−n(t−x)
2

f (t) dt. (1.1)

Note that the integral on the right-hand side exists, for f ∈ Lpc (R), provided that
n > c. We have convergence lim

n→∞
(Wnf) (x) = f (x) in each continuity point x ∈ R of

f ∈ Lpc (R). The operator Wn played a key role in the original proof of the Weierstraß
approximation theorem. The properties of Wn have been studied by many authors
(we refer to [8] for details). What regards the local rate of convergence as n tends to
infinity the sequence (Wn) satisfies the Voronovskaja-type formula

lim
n→∞

n ((Wnf) (x)− f (x)) =
1

4
f ′′ (x) ,

provided that the derivative f ′′ (x) exists. For more smooth functions the operators
Wn possess the complete asymptotic expansion

(Wnf) (x) ∼ f (x) +

∞∑
k=1

1

4kk!nk
f (2k) (x) (n→∞) . (1.2)

This formula follows from [4, Theorem 5.1] where it was proved for a more general
sequence of operators introduced by Altomare and Milella [6, Eq. (2.5)]. Eq. (1.2)
is valid also with respect to simultaneous approximation [2, Proposition 3.4.] where
it turns out that the asymptotic expansion can be differentiated term-by-term. In
particular, for m = 0, 1, 2, . . ., we have

lim
n→∞

n
(

(Wnf)
(m)

(x)− f (m) (x)
)

=
1

4
f (m+2) (x) .

Eq. (1.2) was rediscovered, for polynomial functions, by Sablonnière [11, Theorem 1] in
2014. With this recent paper he renewed the interest in Gauß–Weierstraß operators.

Sablonnière defined left and right quasi-interpolants W
[r]
n and W

(r)
n , resp., of Wn,

presented their explicit integral representations and derived a plenty of nice properties.

In particular, Sablonnière [11, Theorem 5] expressed the operator norm of W
[r]
n with

respect to the uniform norm in terms of a certain integral which cannot be exactly
evaluated. He proved that r +

√
2 is an upper bound on this operator norm [11,

Theorem 6].

In this paper we considerably improve the upper bound. Furthermore, we study

the operator norms of Wn and W
[r]
n when acting on various function spaces.

2. The left quasi interpolants

The Gauß–Weierstraß operators possess the representation

Wn =
∑
k≥0

1

4kk!nk
D2k
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as a differential operator on the space of algebraic polynomials [11, Theorem 1]. Here
D denotes the differentiation operator. The inverse operator [11, Theorem 1] is given
by

Vn =
∑
k≥0

(−1)
k

4kk!nk
D2k.

Composition of the the partial sums V
[r]
n of order r and Wn defines the left quasi

interpolants

W [r]
n := V [r]

n ◦Wn =

r∑
k=0

(−1)
k

4kk!nk
D2kWn.

[11, Subsection 4.1].

By [11, Theorem 3] (where H̃2r (x− t) correctly reads H̃2r (
√
n (x− t)) in the

first representation), the left quasi-interpolantsW
[r]
n of the Gauß–Weierstraß operators

possess the integral representation(
W [r]
n f

)
(x) =

√
n

π

∫ ∞
−∞

H̃2r

(√
n (x− t)

)
e−n(t−x)

2

f (t) dt. (2.1)

The polynomials H̃2r are defined by

H̃2r (x) =

r∑
k=0

(−1)
k

4kk!
H2k (x) , (2.2)

where Hk denote the Hermite polynomials [11, p. 38]. Sablonnière proved the explicit
representation [11, Theorem 4]

H̃2r (x) =
(2r + 1)!

r!

r∑
k=0

(−1)
r−k

4kk! (2r − 2k + 1)!
x2(r−k). (2.3)

In the next section we frequently make use of the following Lemma.

Lemma 2.1. For r = 0, 1, 2, . . ., the polynomials H̃2r satisfy the relation∫ ∞
−∞

(
H̃2r (t)

)2
e−t

2

dt =
√
π

(
r + 1/2

r

)
. (2.4)

Furthermore, we have the estimate

2
√
r + 3/4 <

√
π

(
r + 1/2

r

)
≤ 2
√
r + 1 (r ≥ 0) (2.5)

and the asymptotic relation

√
π

(
r + 1/2

r

)
∼ 2
√
r (r →∞) . (2.6)

Remark 2.2. In other words, we have∥∥∥H̃2r

∥∥∥
L2

1(R)
=

√
√
π

(
r + 1/2

r

)
.
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Proof of Lemma 2.1. Taking advantage of the orthogonality of the Hermite polyno-
mials (see, e.g., [5, formula 22.2.14]) we obtain∫ ∞

−∞
H̃2

2r (t) exp
(
−t2

)
dt =

r∑
k=0

(−1)
k

4kk!

r∑
j=0

(−1)
j

4jj!

∫ ∞
−∞

H2k (x)H2j (x) e−t
2

dt

=

r∑
k=0

1

42k (k!)
2

∫ ∞
−∞

H2
2k (x) e−t

2

dt

=

r∑
k=0

1

42k (k!)
2

√
π22k (2k)!

=
√
π

r∑
k=0

1

4k

(
2k

k

)
.

Application of the well-known identity [10, formulas (1.108) and (1.109)]

r∑
k=0

1

4k

(
2k

k

)
=

(
r + 1/2

r

)
proves Eq. (2.4). The bounds from below and above are a consequence of the estimate
[12] √

y + 1/4 <
Γ (y + 1)

Γ (y + 1/2)
≤
√
y + 1/π (y ≥ 0) .

Using Γ (3/2) =
√
π/2, this implies

2√
π

√
r + 1/2 + 1/4 <

(
r + 1/2

r

)
=

Γ (r + 3/2)

Γ (3/2) Γ (r + 1)

≤ 2√
π

√
r + 1/2 + 1/π.

Application of the well-known formula [5, formula 6.1.47]) yields the asymptotic re-
lation

√
π

(
r + 1/2

r

)
= Γ (1/2)

Γ (r + 3/2)

Γ (3/2) Γ (r + 1)
∼ 2
√
r

(
1 +

2

r

)
∼ 2
√
r

as r →∞. �

3. The operator norms of Wn and W
[r]
n in the space L∞ (R)

We consider the operator norm of

W [r]
n : L∞ (R)→ L∞ (R)

with respect to the sup-norm on L∞ (R). Sablonnière [11, Theorem 5] gave the fol-
lowing result.



Operator norms of Gauß-Weierstraß operators 229

Proposition 3.1. The operator norm with respect to the sup-norm on L∞ (R) is given
by ∥∥∥W [r]

n

∥∥∥
(L∞(R),L∞(R))

=
1√
π

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣ e−t2dt.

Note that the value of
∥∥∥W [r]

n

∥∥∥
(L∞(R),L∞(R))

is independent of n. As in [11, Theorem 5]

we put, for the sake of brevity,

Nr :=
∥∥∥W [r]

n

∥∥∥
(L∞(R),L∞(R))

.

Remark 3.2. In the special case r = 0 we obtain the well-known operator norm
‖Wn‖(L∞(R),L∞(R)) = 1 of the Gauß–Weierstraß operator Wn, since H̃0 (x) = 1.

Since the proof given in [11] is not completely correct we present a proof.

Proof of Prop. 3.1. Let f ∈ L∞ (R). By Eq. (2.1), we have(
W [r]
n f

)
(x) =

1√
π

∫ ∞
−∞

H̃2r (t) e−t
2

f

(
x− t√

n

)
dt.

Hence, for all x ∈ R, ∣∣∣(W [r]
n f

)
(x)
∣∣∣ ≤ Nr · ‖f‖L∞(R)

which implies ∥∥∥W [r]
n f

∥∥∥
L∞(R)

≤ Nr.

The function f0 (t) = sgn
(
H̃2r (−

√
nt)
)

satisfies∥∥∥W [r]
n f0

∥∥∥
L∞(R)

≥
(
W [r]
n f0

)
(0) = Nr = Nr · ‖f0‖L∞(R)

which completes the proof. �

Using the well-known estimate |H2r (x)| ≤ 2r
√

(2r)!ex
2/2 (see, e.g., [9, Subsec-

tion 1.5.1, p. 31]), Sablonnière [11, Theorem 6] proves, for r = 0, 1, 2, . . ., the both
estimates

Nr ≤
√

2σr :=
√

2

1 +

r∑
p=1

√√√√ p∏
j=1

2j − 1

2j

 ≤ Cr := r +
√

2.

We improve these upper bounds as follows.

Theorem 3.3. For r = 0, 1, 2, . . ., the operator norm
∥∥∥W [r]

n

∥∥∥
(L∞(R),L∞(R))

= Nr satis-

fies the estimate

Nr ≤
(
r + 1/2

r

)1/2

=: Dr.



230 Ulrich Abel

Lemma 2.3 implies the asymptotic relation

Dr ∼ 4

√
4r

π
(r →∞)

and the following estimate.

Corollary 3.4. For r = 0, 1, 2, . . ., the operator norm
∥∥∥W [r]

n

∥∥∥
(L∞(R),L∞(R))

= Nr pos-

sesses the upper bound

Nr ≤ 4

√
4
r + 1

π
.

The next table shows some numerical values of Nr up to r = 10, its estimates√
2σr and Cr by Sablonnière, followed by the new estimate Dr from Theorem 3.3:

r Nr
√

2σr Cr Dr

1 1.14 2.41 2.41 1.22
2 1.22 3.28 3.41 1.37
3 1.28 4.07 4.41 1.48
4 1.33 4.81 5.41 1.57
5 1.37 5.51 6.41 1.65
6 1.40 6.18 7.41 1.71
7 1.43 6.83 8.41 1.77
8 1.45 7.46 9.41 1.83
9 1.47 8.07 10.41 1.88
10 1.49 8.66 11.41 1.92

Proof of Theorem 3.3. By Prop. 3.1, we have∥∥∥W [r]
n

∥∥∥
(L∞(R),L∞(R))

=
1√
π

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣√e−t2√e−t2dt.

Application of the Schwarz inequality implies that

Nr ≤
1√
π

√∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣2 e−t2dt√∫ ∞

−∞
e−t2dt =

(
r + 1/2

r

)1/2

,

where the last equality follows from Eq. (2.4) of Lemma 2.1. �

4. The operator norms of Wn and W
[r]
n in weighted spaces

4.1. Weighted spaces

In the following we suppose that c > 0. Put fc = w−c, i.e.,

fc (t) = ect
2

.

Then, for all n > c,

Wnfc =

√
n

n− c
fnc/(n−c).
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Note that, for c > 0, it holds c < nc/ (n− c). This means that the space L∞c (R) is not
invariant under the mapping Wn. The function fc ∈ L∞c (R) satifies ‖fc‖L∞

c (R) = 1.

However, Wnfc /∈ L∞c (R). Therefore, we consider the mapping Wn : L∞c (R) →
L∞γ (R), for some γ > c. Note that lim

n→∞
nc/ (n− c) = c implies that nc/ (n− c) < γ,

for sufficiently large integers n. More precisely, we haveWnfc ∈ L∞γ (R), for all integers
n satisfying

n > γc/ (γ − c) .
In the following we consider only such values of n.

4.2. The space L∞c (R) equipped with the weighted sup-Norm

Let c > 0. Suppose that f ∈ L∞c (R) and W
[r]
n f ∈ L∞γ (R), for some γ > c.

As we know, this is the case if n > γc/ (γ − c). For these n, the operator norm∥∥∥W [r]
n

∥∥∥ =
∥∥∥W [r]

n

∥∥∥
(L∞

c (R),L∞
γ (R))

is defined by

∥∥∥W [r]
n

∥∥∥ = sup
f∈L∞

c (R)
f 6=0

∥∥∥W [r]
n f

∥∥∥
L∞
γ (R)

‖f‖L∞
c (R)

= sup
f∈L∞

c (R)
‖f‖L∞

c (R)=1

∥∥∥W [r]
n f

∥∥∥
L∞
γ (R)

.

Theorem 4.1. Let r ∈ N. If 0 < c < γ, for all integers n > 2γc/ (γ − c), the operator

norm
∥∥∥W [r]

n

∥∥∥
(L∞

c (R),L∞
γ (R))

satisfies the estimate

∥∥∥W [r]
n

∥∥∥
(L∞

c (R),L∞
γ (R))

≤
(
r + 1/2

r

)1/2(
n (γ − c)

n (γ − c)− 2cγ

)1/4

.

Remark 4.2. By Eq. (2.5) of Lemma 2.1, we have the upper bound

‖Wn‖(L∞
c (R),L∞

γ (R)) ≤
4

√
4
r + 1

π

(
n (γ − c)

n (γ − c)− 2cγ

)
.

Remark 4.3. In the special case r = 0, we obtain the estimate

‖Wn‖(L∞
c (R),L∞

γ (R)) ≤
(

n (γ − c)
n (γ − c)− 2cγ

)1/4

for the classical Gauß–Weierstraß operators Wn = W
[0]
n .

Remark 4.4. The limit n→∞ leads for
∥∥∥W [r]

n

∥∥∥
(L∞

c (R),L∞
γ (R))

to the upper bound

Dr =

√(
r + 1/2

r

)
∼ 4

√
4r

π
(r →∞) .

Proof of Theorem 4.1. Let f ∈ L∞c (R). By Eq. (2.1), we have(
W [r]
n f

)
(x) =

√
n

π

∫ ∞
−∞

H̃2r

(√
n (x− t)

)
e−n(t−x)

2

w−c (t) · wc (t) f (t) dt.
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which can be estimated by∣∣∣(W [r]
n f

)
(x)
∣∣∣ ≤ √

n

π

∫ ∞
−∞

∣∣∣H̃2r

(√
n (x− t)

)∣∣∣ exp
(
−n (t− x)

2
)
w−c (t) dt

× sup
t∈R
|f (t)|wc (t) .

A change of variable replacing t with x− t/
√
n yields∣∣∣(W [r]

n f
)

(x)
∣∣∣ ≤ 1√

π

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣ e−t2+c(x−t/√n)

2

dt · ‖f‖L∞
c (R) .

Hence,∥∥∥W [r]
n f

∥∥∥
L∞
γ (R)

= sup
x∈R

∣∣∣(W [r]
n f

)
(x)
∣∣∣ e−γx2

≤ sup
x∈R

(
1√
π

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣ e−t2+c(x−t/√n)

2

dt · e−γx
2

)
· ‖f‖L∞

c (R) .

For fixed t, the expression ec(x−t/
√
n)

2

e−γx
2

attains (as a function of x) its maximum
at x = −ct/ (

√
n (γ − c)), such that

sup
x∈R

ec(x−t/
√
n)

2

e−γx
2

= exp

(
cγ

n (γ − c)
t2
)
.

Consequently,∥∥∥W [r]
n f

∥∥∥
L∞
γ (R)

≤ 1√
π

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣ exp

(
−
(

1− cγ

n (γ − c)

)
t2
)
dt · ‖f‖L∞

c (R) .

Hence,∥∥∥W [r]
n

∥∥∥
(L∞

c (R),L∞
γ (R))

≤ 1√
π

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣ exp

(
−
(

1− cγ

n (γ − c)

)
t2
)
dt.

Application of the Schwarz inequality yields∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣ exp

(
−
(

1− cγ

n (γ − c)

)
t2
)
dt

=

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣√e−t2 · √et2 exp

(
−
(

1− cγ

n (γ − c)

)
t2
)
dt

≤

√∫ ∞
−∞

(
H̃2r (t)

)2
e−t2dt

√∫ ∞
−∞

exp

(
−
(

1− 2cγ

n (γ − c)

)
t2
)
dt

=

√
√
π

(
r + 1/2

r

)√√
π

(
1− 2cγ

n (γ − c)

)−1/2
.

By Lemma 2.1, and using the well-known identity
∫∞
−∞ exp

(
−at2

)
dt =

√
π/a, for

a > 0, we obtain∥∥∥W [r]
n

∥∥∥
(L∞

c (R),L∞
γ (R))

≤

√(
r + 1/2

r

)(
1− 2cγ

n (γ − c)

)−1/2
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which completes the proof. �

4.3. The space L1
c (R)

Now we consider the case p = 1.

Theorem 4.5. Let f ∈ L1
c (R). Then, for all integers n > 2c and each real γ >

c (1− 2c/n)
−1

, it holds ∥∥∥W [r]
n

∥∥∥
(L1

c(R),L∞
γ (R))

≤ τr
√
n

π

and ∥∥∥W [r]
n

∥∥∥
(L1

c(R),L1
γ(R))

≤ τr

√
n− 2c

(1− 2c/n) γ − c
,

where

τr :=

r∑
j=0

1

2j

(
2j

j

)1/2

.

Proof. Let n > 2c. For f ∈ L1
c (R), we obtain∣∣∣(W [r]
n f

)
(x)
∣∣∣ ≤ Kn,c (x) ‖f‖L1

c(R)

with

Kn,c (x) =

√
n

π
sup
t∈R

∣∣∣H̃2r

(√
n (x− t)

)∣∣∣ exp
(
−n (t− x)

2
)
w−c (t)

≤
√
n

π
sup
u∈R

∣∣∣H̃2r (u)
∣∣∣ e−u2/2 · exp

(
sup
t∈R

(
ct2 − n

2
(t− x)

2
))

.

The well-known estimate |H2r (x)| ≤ 2r
√

(2r)!ex
2/2 (see, e.g., [9, Subsection 1.5.1, p.

31]) implies the estimate∣∣∣H̃2r (u)
∣∣∣ e−u2/2 ≤

r∑
j=0

1

2j

(
2j

j

)1/2

= τr

which was already remarked by Sablonnière [11, Page 42]. Elementary calculus shows

that
(
ct2 − n

2 (t− x)
2
)

attains its maximum at t = x (1− 2c/n)
−1

. Therefore,

Kn,c (x) ≤
√
n

π
τr exp

(
cx2

1− 2c/n

)
.

Hence, for n > 2c,∥∥∥W [r]
n

∥∥∥
(L1

c(R),L∞
γ (R))

≤
√
n

π
τr sup
x∈R

exp

(
−
(
γ − c

1− 2c/n

)
x2
)

=

√
n

π
τr

and ∥∥∥W [r]
n

∥∥∥
(L1

c(R),L1
γ(R))

≤
√
n

π
τr

∫ ∞
−∞

exp

(
−
(
γ − c

1− 2c/n

)
x2
)
dx

which implies the assertions. �
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4.4. The spaces Lpc (R) with p > 1

Now we turn to the case p > 1. As usual let q denote the conjugate number of
p satisfying 1/p+ 1/q = 1.

Theorem 4.6. Let p > 1, q = p/ (p− 1), and f ∈ Lpc (R). Then, for γ > c/ (p− 1) and
sufficiently large integers n, it holds

∥∥∥W [r]
n

∥∥∥
(Lpc (R),Lqγ(R))

≤
(n
π

) 1
2p

(
p

pγ − qc

) 1
2q

×
(∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣q exp

(
−qt2

)
exp

(
cqγ

(pγ − qc)n
t2
)
dt

)1/q

.

Remark 4.7. In the special case r = 0 (note that H̃0 (t) = 1) one can explicitly
calculate the integral∫ ∞

−∞
exp

(
−qt2

)
exp

(
cγq

(pγ − cq)n
t2
)
dt =

√
π

q − cγq
(pγ−cq)n

which tends to
√
π/q as n→∞. Hence, for the Gauß–Weierstrass operators Wn holds

‖Wn‖(Lpc (R),Lqγ(R)) ≤ n
1
2pπ

1
2−

1
p

(
p− 1

pγ − cq − cγ
n

) 1
2q

.

Proof. We estimate(
W [r]
n f

)
(x) =

√
n

π

∫ ∞
−∞

H̃2r

(√
n (x− t)

)
e−n(t−x)

2

w−c/p (t) · wc/p (t) f (t) dt

by Hölder’s inequality (note that 1
2 −

1
2q = 1

2p ):

∣∣∣(W [r]
n f

)
(x)
∣∣∣ ≤√n

π

(∫ ∞
−∞

∣∣∣H̃2r

(√
n (x− t)

)∣∣∣q e−nq(t−x)2wq−c/p (t) dt

)1/q

×
(∫ ∞
−∞

wpc/p (t) |f (t)|p dt
)1/p

=
n

1
2p

√
π

(∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣q exp

(
−qt2

)
w−cq/p

(
x− t√

n

)
dt

)1/q

‖f‖Lpc (R)

=: C (n, r, p, x) · ‖f‖Lpc (R)

Then, for γ > c/ (p− 1), we have∥∥∥W [r]
n f

∥∥∥
Lqγ(R)

≤ ‖C (n, r, p, ·)‖Lqγ(R) ‖f‖Lpc (R)



Operator norms of Gauß-Weierstraß operators 235

with

‖C (n, r, p, ·)‖Lqγ(R)

=
n

1
2p

√
π

(∫ ∞
−∞

(∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣q exp

(
−qt2

)
w−cq/p

(
x− t√

n

)
dt

)
wγ (x) dx

)1/q

=
n

1
2p

√
π

(∫ ∞
−∞

(∫ ∞
−∞

w−cq/p

(
x− t√

n

)
wγ (x) dx

) ∣∣∣H̃2r (t)
∣∣∣q exp

(
−qt2

)
dt

)1/q

.

A short calculation yields ∫ ∞
−∞

w−cq/p

(
x− t√

n

)
· wγ (x) dx

=

∫ ∞
−∞

exp

(
c
q

p

(
x− t√

n

)2

− γx2
)
dx

=

√
πp

pγ − cq
exp

(
cqγ

(pγ − qc)n
t2
)
.

Furthermore,

‖C (n, r, p, ·)‖Lqγ(R)

=
n

1
2p

√
π

(√
πp

pγ − qc

∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣q exp

(
−qt2

)
exp

(
cqγ

(pγ − qc)n
t2
)
dt

)1/q

.

The estimate now follows by noting that (
√
π)
−1+ 1

q = π−
1
2p . �

4.5. The special case p = q = 2

In the special case p = q = 2, we obtain, for γ > c and sufficiently large integers n,

‖C (n, r, 2, ·)‖L2
γ(R)

=

(
n

π (γ−c)

) 1
4
(∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣2 exp

(
−
(

2− cγ

(γ−c)n

)
t2
)
dt

)1/2

.

Note that
∣∣∣H̃2r (t)

∣∣∣2 = H̃2
2r (t). Therefore, one can explicitly evaluate the integrals for

each integer value r.

In particular, for r = 0, we obtain the explicit expression

‖C (n, r, 2, ·)‖L2
γ(R)

=

(
n

π (γ − c)

) 1
4

√ π

2− cγ
(γ−c)n

1/2

= 4

√
n

2 (γ − c)− cγ/n
.

Hence, Theorem 4.6 reduces to the next corollary.
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Corollary 4.8. Let f ∈ L2
c (R). Then, for γ > c and sufficiently large integers n, it

holds ∥∥∥W [r]
n

∥∥∥
(L2

c(R),L2
γ(R))

≤
(

n

(γ − c)π

) 1
4
(∫ ∞
−∞

∣∣∣H̃2r (t)
∣∣∣2 exp

(
−
(

2− cγ

(γ − c)n

)
t2
)
dt

)1/2

.

In particular, for r = 0, the operator norm of the classical Gauß–Weierstraß operators
satisfies the estimate

‖Wn‖(L2
c(R),L2

γ(R))
≤ 4

√
n

2 (γ − c)− cγ/n
.

Concluding remark. If we allow γ to depend on n, we can choose γ = n
n−cc ≡ γ (n),

such that exp
(
−
(

2− cγ
n(γ−c)

)
t2
)

= exp
(
−t2

)
, then∥∥∥W [r]

n

∥∥∥(
L2
c(R),L2

γ(n)
(R)

) ≤
(
n (n− c)
c2π

) 1
4 ∥∥∥H̃2r

∥∥∥
L2

1(R)
.

Finally, by Eq. (2.4) of Lemma 2.3,∥∥∥W [r]
n

∥∥∥(
L2
c(R),L2

γ(n)
(R)

) ≤ 4

√
n (n− c)

c2

(
r + 1/2

r

)1/2

.

By estimate (2.5), it follows that∥∥∥W [r]
n

∥∥∥(
L2
c(R),L2

γ(n)
(R)

) ≤ 4

√
4
n (n− c)
c2π

(r + 1).

Note that γ (n) tends to c (from above) as n→∞. For large values of n both norms
L2
c (R) and L2

γ(n) (R) are close together.
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