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1. Introduction

The general form of a linear and positive discrete operator attached to f : I → [0,+∞)
can be defined by

Dn(f)(x) =
∑
k∈In

pn,k(x)f(xn,k), x ∈ I, n ∈ N,

where pn,k(x) are various kinds of function basis on I with
∑
k∈In pn,k(x) = 1, In are

finite or infinite families of indices and {xn,k; k ∈ In} represents a division of I.
Based on the Open Problem 5.5.4, pp. 324-326 in [7], to each Dn(f)(x), can be

attached the max-product type operator defined by

L(M)
n (f)(x) =

∨
k∈In pn,k(x) · f(xn,k)∨

k∈In pn,k(x)
, x ∈ I, n ∈ N. (1.1)

Here
∨
k∈A ak = supk∈A ak.
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Thus, in a series of papers we have introduced and studied the so-called
max-product operators attached to the Bernstein polynomials and to other linear
Bernstein-type operators, like those of Favard-Szász-Mirakjan operators (truncated
and nontruncated case), Baskakov operators (truncated and nontruncated case),
Meyer-König and Zeller operators and Bleimann-Butzer-Hahn operators. All these
results were collected in the very recent research monograph [2].

Remark 1.1. The max-product operators can also be naturally called as possibilis-
tic operators, since they can be obtained by analogy with the Feller probabilistic
scheme used to generate positive and linear operators, by replacing the probability
(σ-additive), with a maxitive set function and the classical integral with the possi-
bilistic integral (see, e.g. [2], Chapter 10, Section 10.2). If, for example, pn,k(x), n ∈ N,

k = 0, . . . , n is a polynomial basis, then the operators L
(M)
n (f)(x) become piecewise

rational functions.

Now, to each max-product operator L
(M)
n , we can formally attach its Kantorovich

variant, defined by

LK(M)
n (f)(x) =

∨
k∈In pn,k(x) · (1/(xn,k+1 − xn,k)) ·

∫ xn,k+1

xn,k
f(t)dt∨

k∈In pn,k(x)
, (1.2)

with {xn,k; k ∈ In} a division of the finite or infinite interval I.
The goal of this paper is to study these Kantorovich-type versions for various

max-product operators. Firstly, we prove that these operators are subadditive, pos-
itively homogeneous and monotone. For continuous functions we prove quantitative
estimates, in most of the cases very good Jackson type estimates, shape preserving
properties and localization results.

2. Uniform and pointwise approximation

Keeping the notations in the formulas (1.1) and (1.2), let us denote

C+(I) = {f : I → R+; f is continuous on I},
where I is a bounded or unbounded interval and suppose that all pn,k(x) are con-
tinuous functions on I, satisfying pn,k(x) ≥ 0, for all x ∈ I, n ∈ N, k ∈ In and∑
k∈In pn,k(x) = 1, for all x ∈ I, n ∈ N.

In many cases, for the Kantorovich max-product operator K
(M)
n we could deduce

quantitative estimates in approximation, by using the elaborated methods we used
for the Bernstein-type max-product in the book [2]. However, here we will use a more
simple method, which will be based on the already obtained estimates for the original

type max-product operators denoted by L
(M)
n .

Firstly, we present the following result.

Lemma 2.1. (i) For any f ∈ C+(I), LK
(M)
n (f) is continuous on I.

(ii) If f ≤ g then LK
(M)
n (f) ≤ LK(M)

n (g).

(iii) LK
(M)
n (f + g) ≤ LK(M)

n (f) + LK
(M)
n (g).
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(iv) If f ∈ C+(I) and λ ≥ 0 then LK
(M)
n (λf) = λLK

(M)
n (f).

(v) If LK
(M)
n (e0) = e0, where e0(x) = 1, for all x ∈ I, then for any f ∈ C+(I),

we have ∣∣∣LK(M)
n (f)(x)− f(x)

∣∣∣ ≤ [1 +
1

δ
LK(M)

n (ϕx)(x)

]
ω1(f ; δ),

for any x ∈ I and δ > 0. Here, ϕx(t) = |t− x|, t ∈ I and

ω1(f ; δ) = sup{|f(x)− f(y)|; x, y ∈ I, |x− y| ≤ δ}.

(vi)
∣∣∣LK(M)

n (f)− LK(M)
n (g)

∣∣∣ ≤ LK(M)
n (|f − g|).

Proof. The proofs of (i)-(iv) are immediate from the definition of K
(M)
n . As for the

proof of (v) and (vi), we exactly follow the proof of e.g., Theorem 1.1.2, pp. 16-17 in
[2]. �

Lemma 2.2. With the notations in (1.1) and (1.2), suppose that, in addition,

|xn,k+1 − xn,k| ≤
C

n+ 1

for all k ∈ In, with C > 0 an absolute constant. Then, for all x ∈ I and n ∈ N, we
have

LK(M)
n (ϕx)(x) ≤ L(M)

n (ϕx)(x) +
C

n+ 1
.

Proof. If f ∈ C+(I), then by the integral mean value theorem, there exists ξn,k ∈
(xn,k, xn,k+1), such that∫ xn,k+1

xn,k

f(t)dt = (xn,k+1 − xn,k) · f(ξn,k),

which immediately leads to

LK(M)
n (f)(x) =

∨
k∈In pn,k(x) · f(ξn,k)∨

k∈In pn,k(x)
. (2.1)

Applying this form for f(t) = ϕx(t), we get

LK(M)
n (ϕx)(x) =

∨
k∈In pn,k(x) · |ξn,k − x|∨

k∈In pn,k(x)

≤
∨
k∈In pn,k(x) · |ξn,k − xn,k|∨

k∈In pn,k(x)
+ L(M)

n (ϕx)(x) ≤ C

n+ 1
+ L(M)

n (ϕx)(x),

which proves the lemma. �

Corollary 2.3. With the notations in (1.1) and (1.2) and supposing that, in addition,

|xn,k+1 − xn,k| ≤
C

n+ 1

for all k ∈ In, for any f ∈ C+(I), we have∣∣∣LK(M)
n (f)(x)− f(x)

∣∣∣ ≤ 2
[
ω1(f ;L(M)

n (ϕx)(x)) + ω1(f ;C/(n+ 1))
]

(2.2)

for any x ∈ I and n ∈ N.
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Proof. By using Lemma 2.2, from the estimate in Lemma 2.1, (v), we immediately
get ∣∣∣LK(M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1(f ;L(M)

n (ϕx)(x) + C/(n+ 1))

≤ 2
[
ω1(f ;L(M)

n (ϕx)(x)) + ω1(f ;C/(n+ 1))
]
,

which proves the corollary. �

This corollary shows that knowing quantitative estimates in approximation by
a given max-product operator, we can deduce a quantitative estimate for its Kan-
torovich variant. Also, this method does not worsen the orders of approximation of
the original operators. Let us exemplify below for several known max-product opera-
tors.

Firstly, let us choose pn,k(x) =
(
n
k

)
xk(1−x)n−k, I = [0, 1], In = {0, . . . , n−1} and

xn,k = k
n+1 . In this case, L

(M)
n in (1.1) become the Bernstein max-product operators.

Let us denote by BK
(M)
n their Kantorovich variant, given by the formula

BK(M)
n (f)(x) =

∨n
k=0

(
n
k

)
xk(1− x)n−k · (n+ 1)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨n

k=0

(
n
k

)
xk(1− x)n−k

. (2.3)

We can state the following result.

Theorem 2.4. (i) If f ∈ C+([0, 1]), then we have

|BK(M)
n (f)(x)− f(x)| ≤ 24ω1(f ; 1/

√
n+ 1) + 2ω1(f ; 1/(n+ 1)), x ∈ [0, 1], n ∈ N.

(ii) If f ∈ C+([0, 1]) is concave on [0, 1], then we have

|BK(M)
n (f)(x)− f(x)| ≤ 6ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

(iii) If f ∈ C+([0, 1]) is strictly positive on [0, 1], then we have

|BK(M)
n (f)(x)− f(x)| ≤ 2ω1(f ; 1/n) ·

(
nω1(f ; 1/n)

mf
+ 4

)
+ 2ω1(f ; 1/n),

for all x ∈ [0, 1], n ∈ N, where mf = min{f(x);x ∈ [0, 1]}.

Proof. (i) is immediate from Corollary 2.3 (with C = 1) and from Theorem 2.1.5, p.
30, in [2].

(ii) is immediate from Corollary 2.3 (with C = 1) and from Corollary 2.1.10, p.
36 in [2].

(iii) is immediate from Corollary 2.3 (with C = 1) and from Theorem 2.2.18, p.
63 in [2]. �

Now, let us choose pn,k(x) = (nx)k

k! , I = [0,+∞), In = {0, . . . , n, . . . , } and

xn,k = k
n+1 . In this case, L

(M)
n in (1.1) become the non-truncated Favard-Szász-

Mirakjan max-product operators. Let us denote by FK
(M)
n their Kantorovich variant
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defined by

FK(M)
n (f)(x) =

∨∞
k=0

(nx)k

k! · (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨∞

k=0
(nx)k

k!

. (2.4)

We can state the following result.

Theorem 2.5. (i) If f : [0,+∞) → [0,+∞) is bounded and continuous on [0,+∞),
then we have

|FK(M)
n (f)(x)− f(x)| ≤ 16ω1(f ;

√
x/
√
n) + 2ω1(f ; 1/n), x ∈ [0,+∞), n ∈ N.

(ii) If f : [0,+∞) → [0,+∞) is continuous, bounded, non-decreasing, concave func-
tion on [0,+∞), then we have

|FK(M)
n (f)(x)− f(x)| ≤ 4ω1(f ; 1/n), x ∈ [0,+∞), n ∈ N.

Proof. (i) is immediate from Corollary 2.3 (with C = 1) and from Theorem 3.1.4, p.
162, in [2].

(ii) is immediate from Corollary 2.3 (with C = 1) and from Corollary 3.1.8, p.
168 in [2]. �

If we choose pn,k(x) = (nx)k

k! , I = [0, 1], In = {0, . . . , n} and xn,k = k
n+1 . In

this case, L
(M)
n in (1.1) become the truncated Favard-Szász-Mirakjan max-product

operators. Let us denote by TK
(M)
n their Kantorovich variant given by the formula

TK(M)
n (f)(x) =

∨n
k=0

(nx)k

k! · (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨n

k=0
(nx)k

k!

. (2.5)

We can state the following result.

Theorem 2.6. (i) If f ∈ C+([0, 1]), then we have

|TK(M)
n (f)(x)− f(x)| ≤ 12ω1(f ; 1/

√
n) + 2ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

(ii) If f ∈ C+([0, 1]) is non-decreasing, concave function on [0, 1], then we have

|TK(M)
n (f)(x)− f(x)| ≤ 4ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

Proof. (i) is immediate from Corollary 2.3 (with C = 1) and from Theorem 3.2.5, p.
178, in [2].

(ii) is immediate from Corollary 2.3 (with C = 1) and from Corollary 3.2.7, p.
182 in [2]. �

Now, let us choose pn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k, I = [0,+∞), In =

{0, . . . , n, . . . , } and xn,k = k
n+1 . In this case, L

(M)
n in (1.1) become the non-truncated

Baskakov max-product operators. Let us denote by V K
(M)
n their Kantorovich variant

defined by

V K(M)
n (f)(x) =

∨∞
k=0

(
n+k−1

k

)
xk

(1+x)n+k · (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨∞

k=0

(
n+k−1

k

)
xk

(1+x)n+k

. (2.6)

We can state the following result.
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Theorem 2.7. (i) If f : [0,+∞) → [0,+∞) is bounded and continuous on [0,+∞),
then for all x ∈ [0,+∞) and n ≥ 3, we have

|V K(M)
n (f)(x)− f(x)| ≤ 24ω1(f ;

√
x(x+ 1)/

√
n− 1) + 2ω1(f ; 1/(n+ 1)).

(ii) If f : [0,+∞) → [0,+∞) is continuous, bounded, non-decreasing, concave func-
tion on [0,+∞), then for x ∈ [0,+∞) and n ≥ 3 we have

|V K(M)
n (f)(x)− f(x)| ≤ 4ω1(f ; 1/n).

Proof. (i) is immediate from Corollary 2.3 (with C = 1) and from Theorem 4.1.6, p.
196, in [2].

(ii) is immediate from Corollary 2.3 (with C = 1) and from Corollary 4.1.9, p.
206 in [2]. �

If we choose pn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k, I = [0, 1], In = {0, . . . , n} and

xn,k = k
n+1 , then in this case, L

(M)
n in (1.1) become the truncated Baskakov max-

product operators. Let us denote by UK
(M)
n their Kantorovich variant defined by

UK(M)
n (f)(x) =

∨n
k=0

(
n+k−1

k

)
xk

(1+x)n+k · (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨∞

k=0

(
n+k−1

k

)
xk

(1+x)n+k

. (2.7)

We can state the following result.

Theorem 2.8. (i) If f ∈ C+([0, 1]), then we have,

|UK(M)
n (f)(x)− f(x)| ≤ 48ω1(f ; 1/

√
n+ 1) + 2ω1(f ; 1/(n+ 1)), x ∈ [0, 1], n ≥ 2.

(ii) If f ∈ C+([0, 1]) is non-decreasing, concave function on [0, 1], then we have

|UK(M)
n (f)(x)− f(x)| ≤ 6ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

Proof. (i) is immediate from Corollary 2.3 (with C = 1) and from Theorem 4.2.6, p.
217, in [2].

(ii) is immediate from Corollary 2.3 (with C = 1) and from Corollary 4.2.9, p.
223 in [2]. �

Now, let us choose pn,k(x) =
(
n+k
k

)
xk, I = [0, 1], In = {0, . . . , n, . . .} and xn,k =

k
n+1+k . In this case, L

(M)
n in (1.1) become the Meyer-König and Zeller max-product

operators. Also, it is easy to see that |xn,k+1 − xn,k| ≤ 1
n+1 , for all k ∈ In. Let us

denote by ZK
(M)
n their Kantorovich variant defined by

ZK(M)
n (f)(x) =

∨∞
k=0

(
n+k
k

)
xk · (n+k+1)(n+k+2)

n+1

∫ (k+1)/(n+k+2)

k/(n+1+k)
f(t)dt∨∞

k=0

(
n+k
k

)
xk

. (2.8)

The following result holds.

Theorem 2.9. (i) If f ∈ C+([0, 1]), then for n ≥ 4, x ∈ [0, 1], we have

|ZK(M)
n (f)(x)− f(x)| ≤ 36ω1(f ;

√
x(1− x)/

√
n) + 2ω1(f ; 1/n).



Max-product operators of Kantorovich type 213

(ii) If f ∈ C+([0, 1]) is non-decreasing concave function on [0, 1], then for x ∈ [0, 1]
and n ≥ 2x we have

|ZK(M)
n (f)(x)− f(x)| ≤ 4ω1(f ; 1/n).

Proof. (i) is immediate from Corollary 2.3 (with C = 1) and from Theorem 6.1.4, p.
248, in [2].

(ii) is immediate from Corollary 2.3 (with C = 1) and from Corollary 6.1.7, p.
256 in [2]. �

In what follows, let us choose pn,k(x) = hn,k(x)-the fundamental Hermite-Fejér
interpolation polynomials based on the Chebyshev knots of first kind

xn,k = cos

(
2(n− k) + 1

2(n+ 1)
π

)
,

I = [−1, 1], and In = {0, . . . , n}. In this case, L
(M)
n in (1.1) become the Hermite-Fejér

max-product operators. Also, applying he mean value theorem to cos, it is easy to see

that |xn,k+1−xn,k| ≤ 4
n+1 , for all k ∈ In. Let us denote by HK

(M)
n their Kantorovich

variant defined by

HK(M)
n (f)(x) =

∨n
k=0 hn,k(x) · 1

xn,k−xn,k+1
·
∫ xn,k+1

xn,k
f(t)dt∨∞

k=0 hn,k(x)
, (2.9)

where xn,k = cos
(

2(n−k)+1
2(n+1) π

)
.

The following result holds.

Theorem 2.10. If f ∈ C+([−1, 1]), then for n ∈ N, x ∈ [−1, 1], we have

|HK(M)
n (f)(x)− f(x)| ≤ 30ω1(f ; 1/n).

Proof. It is immediate from Corollary 2.3 (with C = 4) and from Theorem 7.1.5, p.
286, in [2]. �

Now, let us consider choose pn,k(x) = e−|x−k/(n+1)|, I = (−∞,+∞), In = Z-

the set of integers and xn,k = k
n+1 . In this case, L

(M)
n in (1.1) become the Picard

max-product operators. Let us denote by PK(M)
n their Kantorovich variant defined

by

PK(M)
n (f)(x) =

∨∞
k=0 e

−|x−k/(n+1)| · (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨∞

k=0 e
−|x−k/(n+1)| . (2.10)

We can state the following result.

Theorem 2.11. If f : R → [0,+∞) is bounded and uniformly continuous on R, then
we have

|PK(M)
n (f)(x)− f(x)| ≤ 6ω1(f ; 1/n), x ∈ R, n ∈ N.

Proof. It is immediate from Corollary 2.3 (with C = 1) and from Theorem 10.3.1, p.
423, in [2]. �
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In what follows, let us choose pn,k(x) = e−(x−k/(n+1))2 , I = (−∞,+∞), In = Z-

the set of integers and xn,k = k
n+1 . In this case, L

(M)
n in (1.1) become the Weierstrass

max-product operators. Let us denote by WK
(M)
n their Kantorovich variant defined

by

WK(M)
n (f)(x) =

∨∞
k=0 e

−(x−k/(n+1))2 · (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨∞

k=0 e
−(x−k/(n+1))2

. (2.11)

We can state the following result.

Theorem 2.12. If f : R → [0,+∞) is bounded and uniformly continuous on R, then
we have

|WK(M)
n (f)(x)− f(x)| ≤ 4ω1(f ; 1/

√
n) + 2ω1(f ; 1/n), x ∈ R, n ∈ N.

Proof. It is immediate from Corollary 2.3 (with C = 1) and from Theorem 10.3.3, p.
425, in [2]. �

At the end of this section, let us choose pn,k(x) = 1
n2(x−k/n)2+1 , I = (−∞,+∞),

In = Z-the set of integers and xn,k = k
n+1 . In this case, L

(M)
n in (1.1) become the

Poisson-Cauchy max-product operators. Let us denote by CK(M)
n their Kantorovich

variant

CK(M)
n (f)(x) =

∨∞
k=0

1
n2(x−k/(n+1))2+1 · (n+ 1)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dt∨∞

k=0
1

n2(x−k/(n+1))2+1

. (2.12)

We can state the following result.

Theorem 2.13. If f : R → [0,+∞) is bounded and uniformly continuous on R, then
we have

|CK(M)
n (f)(x)− f(x)| ≤ 6ω1(f ; 1/n), x ∈ R, n ∈ N.

Proof. It is immediate from Corollary 2.3 (with C = 1) and from Theorem 10.3.5, p.
426, in [2]. �

Remark 2.14. All the Kantorovich kind max-product operators LK
(M)
n given by (1.2)

are defined and used for approximation of positive valued functions. But, they can be
used for approximation of lower bounded functions of variable sign too, by introducing
the new operators

N (M)
n (f)(x) = LK(M)

n (f + c)(x)− c,

where c > 0 is such that f(x) + c > 0, for all x in the domain of definition of f .

It is easy to see that the operators N
(M)
n give the same approximation orders as

LK
(M)
n .
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3. Shape preserving properties for the Bernstein-Kantorovich
max-product operators

In this section we deal with the shape preserving properties of the Bernstein-

Kantorovich max-product operators BK
(M)
n given by (2.3).

We can prove the following.

Theorem 3.1. Let f ∈ C+([0, 1]).
(i) If f is non-decreasing (non-increasing) on [0, 1], then for all n ∈ N,

BK
(M)
n (f) is non-decreasing (non-increasing, respectively) on [0, 1].

(ii) If f is quasi-convex on [0, 1] then for all n ∈ N, BK(M)
n (f) is quasi-convex on

[0, 1]. Here quasi-convexity on [0, 1] means that f(λx+ (1− λ)y) ≤ max{f(x), f(y)},
for all x, y, λ ∈ [0, 1].

Proof. (i) By using the formula (2.1) for LK
(M)
n , we can write BK

(M)
n (f) under the

form

BK(M)
n (f)(x) =

∨n
k=0

(
n
k

)
xk(1− x)n−k · f(ξn,k)∨n

k=0

(
n
k

)
xk(1− x)n−k

,

where ξn,k ∈ (xn,k, xn,k+1), for all k = 0, . . . , n.
Then, by analogy with the proofs for the Bernstein max-product operators (see

[2], pp. 39-41, the proofs for the Bernstein-Kantorovich max-product operators, will
be based on the properties of the functions

fk,n,j(x) =

(
n
k

)(
n
j

) · ( x

1− x

)k−j
· f(ξn,k).

Now, analyzing the proofs of Lemma 2.1.13, Corollary 2.1.14, Theorem 2.1.15 and
Corollary 2.1.16 in [2], pp. 39-41, it is easy to see that they work identically for the
above fk,n,j too and we immediately obtain the required conclusions.

(ii) Since as in the case of the max-product Bernstein operators in Corollary
2.1.18, p. 41 in [2], this point is based on the properties from the above point (i)
and on the properties in the above Lemma 2.1, (i)-(iv), we easily get the required
conclusion for this point too. �

In what follows, we will prove that BK
(M)
n preserves quasi-concavity too. This

property holds in the case of the operator B
(M)
n (By Theorem 5.1 in [5]). However,

it is difficult to adapt the proof to our case. Instead, we can prove this property by

finding a direct correspondence between the operators B
(M)
n and BK

(M)
n .

Let us notice that the operator BK
(M)
n can be obtained from the operator B

(M)
n .

Suppose that f is arbitrary in C+ ([0, 1]). Let us consider

fn(x) = (n+ 1)

∫ (nx+1)/(n+1)

nx/(n+1)

f(t)dt (3.1)

It is readily seen that B
(M)
n (fn)(x) = BK

(M)
n (f)(x), for all x ∈ [0, 1]. We also notice

that fn ∈ C+ ([0, 1]). What is more, if f is strictly positive then so is fn.
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A function f : [a, b] → R is quasi-concave if −f is quasi-convex. If f is contin-
uous, quasi-concavity equivalently means that there exists c ∈ [a, b] such that f is
nondecreasing on [a, c] and nonincreasing on [c, b].

We are now in position to prove that BK
(M)
n preserves quasi-concavity too.

Theorem 3.2. Let f ∈ C+([0, 1]). If f is quasi-concave on [0, 1] then BK
(M)
n (f) is

quasi-concave on [0, 1].

Proof. For some arbitrary n ≥ 1 let us consider the function fn given by (3.1). More-
over, let c ∈ [0, 1] such that f is nondecreasing on [0, c] and nonincreasing on [c, 1].
Then, let j(c) ∈ {0, . . . , n} such that

j(c)

n+ 1
≤ c ≤ j(c) + 1

n+ 1
.

Next, we consider the function gn which interpolates fn at all the knots k
n , k =

0, 1, . . . , n, and which is continuous on [0, 1] and affine on any interval
[
k
n ,

k+1
n

]
, k =

0, 1, . . . , n − 1. It means that gn is the continuous polygonal line which interpolates
fn at all the knots k

n , k = 0, 1, . . . , n. This easily implies that

B(M)
n (fn)(x) = B(M)

n (gn)(x), x ∈ [0, 1],

hence,

BK(M)
n (f)(x) = B(M)

n (gn)(x), x ∈ [0, 1].

Let us now choose arbitrary 0 ≤ k1 < k2 ≤ j(c)− 1. We have

gn

(
k1
n

)
= (n+ 1)

∫ (k1+1)/(n+1)

k1/(n+1)

f(t)dt

and

gn

(
k2
n

)
= (n+ 1)

∫ (k2+1)/(n+1)

k2/(n+1)

f(t)dt.

As k1+1
n+1 ≤

k2
n+1 and f is nondecreasing on [0, k2+1

n+1 ], we easily obtain (after applying

the mean value theorem) that gn
(
k1
n

)
≤ gn

(
k2
n

)
. The construction of gn easily im-

plies that gn is nondecreasing on
[
0, j(c)−1n

]
. By similar reasoning we get that gn is

nonincreasing on
[
j(c)+1
n , 1

]
. Now, suppose that f

(
j(c)
n+1

)
≥ f

(
j(c)+1
n+1

)
. The quasi-

concavity of f implies that f(x) ≥ f
(
j(c)+1
n+1

)
for any x ∈

[
j(c)
n+1 ,

j(c)+1
n+1

]
. Since there

exists x0 ∈
[
j(c)
n+1 ,

j(c)+1
n+1

]
such that

(n+ 1)

∫ (j(c)+1)/(n+1)

j(c)/(n+1)

f(t)dt = f(x0) = gn

(
j(c)

n

)
,

and since f
(
j(c)+1
n+1

)
≥ gn

(
j(c)+1
n

)
(this is true indeed as f is nondecreasing on[

j(c)+1
n+1 , 1

]
), we get that gn

(
j(c)
n

)
≥ gn

(
j(c)+1
n

)
. Therefore, gn is nonincreasing on[

j(c)
n , j(c)+1

n

]
. This implies that gn is nondecreasing on

[
0, j(c)−1n

]
and nonincreasing
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on
[
j(c)
n , 1

]
. But f is affine on

[
j(c)−1
n , j(c)n

]
which means that it is monotone on

this interval. Clearly this implies that gn is either nondecreasing on
[
0, j(c)−1n

]
and

nonincreasing on
[
j(c)−1
n , 1

]
or, it is nondecreasing on

[
0, j(c)n

]
and nonincreasing on[

j(c)
n , 1

]
. It means that gn is quasi-concave on [0, 1]. By similar reasonings we get to

the same conclusion if f
(
j(c)
n+1

)
≤ f

(
j(c)+1
n+1

)
. The only difference is that now gn is

either nondecreasing on
[
0, j(c)n

]
and nonincreasing on

[
j(c)
n , 1

]
or, it is nondecreasing

on
[
0, j(c)+1

n

]
and nonincreasing on

[
j(c)+1
n , 1

]
. Thus, we just proved that gn is quasi-

concave on [0, 1]. By Theorem 5.1 in [5] (see also Theorem 2.2.22 in the book, it

follows that B
(M)
n (gn) is quasi-concave on [0, 1]. As B

(M)
n (gn) = BK

(M)
n (f), it follows

that BK
(M)
n (f) is quasi-concave on [0, 1]. �

As an important side remark, let us note that in Theorem 5.1 of paper [5](see
also the book [2]), it is proved that if f is quasi-concave and c is a maximum point

of f then there exists a maximum point of B
(M)
n (f) such that |c− c′| ≤ 1

n+1 . By the
construction of gn it follows that one maximum point of gn is between the values
j(c)−1
n , j(c)

n or j(c)+1
n . If we denote this value with cn then one can easily check that

|cn − c| ≤ 2
n . Now, applying the afore mentioned property obtained in [5], let c′ be

a maximum point of B
(M)
n (gn) = BK

(M)
n (f), such that |c′ − cn| ≤ 1

n+1 . This easily

implies that |c′ − c| ≤ 3
n . So, we obtained a quite similar result for the operator

BK
(M)
n in comparison with the operator B

(M)
n .

4. Approximation of Lipschitz functions by Bernstein-Kantorovich
max-product operators

Let us return to the functions fn given in (3.1) and let us find now an upper
bound for the approximation of f by fn in terms of the uniform norm. For some

x ∈ [0, 1], using the mean value theorem, there exists ξx ∈
[
nx
n+1 ,

nx+1
n+1

]
such that

fn(x) = f(ξx). We also easily notice that |ξx − x| ≤ 1
n+1 . It means that

|f(x)− fn(x)| ≤ ω1(f ; 1/(n+ 1)), x ∈ R, n ∈ N. (4.1)

In particular, if f is Lipschitz with constant C then fn is Lipschitz continuous with
constant 3C. These estimation are useful to prove some inverse results in the case

of the operator BK
(M)
n by using analogue results already obtained for the operator

B
(M)
n .

Below we present a result which gives for the class of Lipschitz function the

order of approximation 1/n in the approximation by the operator BK
(M)
n , hence an

analogue result which holds in the case of the operator B
(M)
n .
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Theorem 4.1. Suppose that f is Lipschitz on [0, 1] with Lipschitz constant C and
suppose that the lower bound of f is mf > 0. Then we have∥∥∥BK(M)

n (f)− f
∥∥∥ ≤ 2C

(
C

mf
+ 5

)
· 1

n
, n ≥ 1.

Proof. The estimation is immediate using the estimation from Corollary 2.4, (iii),
taking into account that ω1(f ; 1/n) ≤ C/n. �

5. Localization results for Bernstein-Kantorovich max-product
operators

We firstly prove a very strong localization property of the operator BK
(M)
n .

Theorem 5.1. Let f, g : [0, 1] → [0,∞)be both bounded on [0, 1] with strictly positive
lower bounds and suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1 such that
f(x) = g(x) for all x ∈ [a, b]. Then for all c, d ∈ [a, b] satisfying a < c < d < b there

exists ñ ∈ N depending only on f, g, a, b, c, d such that BK
(M)
n (f)(x) = BK

(M)
n (g)(x)

for all x ∈ [c, d]and n ∈ N with n ≥ ñ.

Proof. Let us choose arbitrary x ∈ [c, d] and for each n ∈ N let jx ∈ {0, 1, . . . , n} be
such that x ∈ [jx/(n+ 1), (jx + 1)/(n+ 1)]. Then by relation (4.17) in [1] we have

BK(M)
n (f)(x) = B(M)

n (fn)(x) =

n∨
k=0

(fn)k,n,jx (x), (5.1)

where for k ∈ {0, 1, . . . , n} we have

(fn)k,n,jx =

(
n
k

)(
n
jx

) ( x

1− x

)k−jx
fn

(
k

n

)
. (5.2)

and each fn is given by (3.1). Let us denote with mf ,Mf and mfn ,Mfn respectively,
the minimums and maximum values of the functions f and fn, respectively. By the
mean value theorem, one can easily notice that for any x ∈ [0, 1] there exists ξn,x ∈
[0, 1] such that fn(x) = f(ξn,x). It means that 0 < mf ≤ mfn ≤ Mfn ≤ Mf . In
what follows, the proof is very similar to the proof of Theorem 2.1 in [6] (see also
Theorem 2.4.1 in [2]). However, as often we will use fn instead of f , especially since
the constants obtained in the proof of Theorem 2.1 in [6] depend on f , in our setting
these constants would depend on fn, hence, they would depend on n, if we would apply
directly the results in [6]. Therefore, there are some differences in the two proofs as
our intention is to obtain constants that do not depend on fn.

We need the set In,x = {k ∈ {0, 1, . . . , n} : jx − an ≤ k ≤ jx + an}, where

an =
[

3
√
n2
]

(here [a] denotes the integer part of a). Now, suppose that k /∈ In,x, and

let us discuss first the case when k < jx − an. If we look over the proof of Theorem
2.1 in [6], we observe that this proof is split in cases i) and ii). Case i) corresponds to
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the case when k < jx − an. Furthermore this case is divided in two subcases ia) and
ib). In subcase ia) the inequality

fjx,n,,jx(x)

fk,n,jx(x)
≥
(

1 +
an

nb− an

)an
· f(jx/n)

f(k/n)

is obtained which then gives

fjx,n,jx(x)

fk,n,jx(x)
≥
(

1 +
an

nb− an

)an
· mf

Mf
.

Applying this reasoning but considering fn instead of f , we get

(fn)jx,n,jx (x)

(fn)k,n,jx (x)
≥
(

1 +
an

nb− an

)an
· fn(jx/n)

fn(k/n)
.

But since mf ≤ mfn ≤Mfn ≤Mf , we get

(fn)jx,n,jx (x)

(fn)k,n,jx (x)
≥
(

1 +
an

nb− an

)an
· mf

Mf
.

We get the same conclusion all cases and subcases, that is, any lower bound for
fjx,n,,jx (x)
fk,n,jx (x)

is also a lower bound for
(fn)jx,n,jx

(x)

(fn)k,n,jx
(x) , for any k outside of In,x. Since

in..., we proved that there exists N0 ∈ N which may depend only on f, a, b, c, d, such
that for any n ≥ N0, k ∈ {0, 1, . . . , n}, with k < jx − an or k > jx + an, we have
fjx,n,,jx (x)
fk,n,jx (x)

≥ 1, it follows that
(fn)jx,n,jx

(x)

(fn)k,n,jx
(x) ≥ 1, for any n ≥ N0, k ∈ {0, 1, . . . , n},

with k < jx − an or k > jx + an. Combining this fact with relations (5.1)-(5.2), we
get that

BK(M)
n (f)(x) =

∨
k∈In,x

(fn)k,n,jx (x), x ∈ [c, d], n ≥ N0.

Using a similar reasoning as in the proof of Theorem 2.1 in [6], in what follows, we

will prove that N0 can be replaced if necessary with a larger value Ñ1 such that
[ k
n+1 ,

k+1
n+1 ] ⊆ [a, b] for any k ∈ In,x. Let us choose arbitrary x ∈ [c, d] and n ∈ N so

that n ≥ N0. If there exists k ∈ In,x such that k/ (n+ 1) /∈ [c, d] then we distinguish

two cases. Either k
n+1 < c or k

n+1 > d. In the first case we observe that

0 < c− k

n+ 1
≤ x− k

n+ 1
≤ jx + 1

n+ 1
− k

n+ 1
≤ jx + 1

n+ 1
− k

n+ 1
≤ an + 1

n+ 1
.

Since lim
n→∞

an+1
n+1 = 0, it results that for sufficiently large n we necessarily have an+1

n+1 <

c − a which clearly implies that k
n+1 ∈ [a, c]. In the same manner, when k

n+1 > d,

for sufficiently large n we necessarily have k
n+1 ∈ [d, b]. By similar reasoning it results

that for sufficiently large n we necessarily have k
n+1 ∈ [a, b].Summarizing, there exists

a constant Ñ1 ∈ N independent of any x ∈ [c, d] such that

BK(M)
n (f)(x) =

∨
k∈In,x

(fn)k,n,jx (x), x ∈ [c, d], n ≥ Ñ1
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and in addition for any x ∈ [c, d], n ≥ Ñ1 and k ∈ In,x, we have [ k
n+1 ,

k+1
n+1 ] ⊆ [a, b].

Also, it is easy to check that Ñ1 depends only on a, b, c, d, f.

Now, for k ∈ {0, 1, . . . , n} taking

(gn)k,n,jx =

(
n
k

)(
n
jx

) ( x

1− x

)k−jx
gn

(
k

n

)
,

applying the same reasoning, there exists Ñ2 ∈ N which may depend only on
a, b, c, d, g, such that

BK(M)
n (g)(x) =

∨
k∈In,x

(gn)k,n,jx (x), x ∈ [c, d], n ≥ Ñ2

and in addition for any x ∈ [c, d], n ≥ Ñ2 and k ∈ In,x, we have [ k
n+1 ,

k+1
n+1 ] ⊆ [a, b].

Since f(x) = g(x), x ∈ [a, b], we get that for any n ≥ ñ = max{Ñ1, Ñ2}, k ∈ In.x
and x ∈ [c, d], it holds that (fn)k,n,jx (x) = (gn)k,n,jx (x). Thus, for any n ≥ ñ and

x ∈ [c, d], we have BK
(M)
n (f)(x) = BK

(M)
n (g)(x). The proof is complete now. �

As in the case of the Bernstein max-product operator, we can present a local
direct approximation result as an immediate consequence of the localization result in
Theorem 5.1.

Corollary 5.2. Let f : [0, 1]→ [0,∞)be bounded on [0, 1] with the lower bound strictly
positive and 0 < a < b < 1 be such that f |[a,b] ∈ Lip [a, b] with Lipschitz constant C.
Then, for any c, d ∈ [0, 1]satisfying a < c < d < b, we have∣∣∣BK(M)

n (f)(x)− f(x)
∣∣∣ ≤ C

n
for all n ∈ N and x ∈ [c, d],

where the constant C depends only on f and a, b, c, d.

Proof. Let us define the function F : [0, 1]→ R,

F (x) =

 f(a) if x ∈ [0, a],
f(x) if x ∈ [a, b],
f(b) if x ∈ [b, 1].

The hypothesis immediately imply that F is a strictly positive Lipschitz function on
[0, 1]. Then, according to Theorem 4.1 and noting that the minimum of F is above
the minimum of f , mf , it results that∣∣∣BK(M)

n (F )(x)− F (x)
∣∣∣ ≤ 2C

(
C

mf
+ 5

)
· 1

n
, for all x ∈ [0, 1], n ∈ N.

Now, let us choose arbitrary c, d ∈ [a, b] such that a < c < d < b. Then, by Theorem
5.1 it results the existence of ñ ∈ N which depends only on a, b, c, d, f, F such that

BK
(M)
n (F )(x) = BK

(M)
n (f)(x) for all x ∈ [c, d]. But since actually the function F

depends on the function f , by simple reasonings we get that in fact ñ depends only
on a, b, c, d and f .
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Therefore, for arbitrary x ∈ [c, d] and n ∈ N with n ≥ ñ we obtain∣∣∣BK(M)
n (f)(x)− f(x)

∣∣∣ =
∣∣∣BK(M)

n (F )(x)− F (x)
∣∣∣ ≤ 2C

(
C

mf
+ 5

)
· 1

n
,

where C1 and ñ depend only on a, b, c, d and f .
Now, denoting

C2 = max
1≤n<ñ

{n · ‖BK(M)
n (f)− f‖[c,d]},

we finally obtain

|BK(M)
n (f)(x)− f(x)| ≤ C

n
, for all n ∈ N, x ∈ [c, d],

with C = max{2C
(
C
mf

+ 5
)
, C2} depending only on a, b, c, d and f . �

In a previous section we proved that BK
(M)
n preserves monotonicity and more

generally quasi-convexity. By the localization result in Theorem 5.1 and then applying
a very similar reasoning to the one used in the proof of Corollary 5.2, we obtain local
versions for these shape preserving properties. Indeed, in all cases it will suffice to
consider the same F as in the proof of Corollary 5.2 as this function will be monotone
or quasi-convex/quasi-concave, respectively, whenever f will be monotone or quasi-
convex/quasi-concave, respectively. For this reason we omit the proofs of the following
corollaries (see also the corresponding local shape preserving properties proved for the

operator B
(M)
n in [6]).

Corollary 5.3. Let f : [0, 1] → [0,∞)be bounded on [0, 1] with strictly positive lower
bound and suppose that there exists a, b ∈ [0, 1], 0 < a < b < 1, such that f is nonde-
creasing (nonincreasing) on [a, b]. Then for any c, d ∈ [a, b] with a < c < d < b, there

exists ñ ∈ N depending only on a, b, c, d and f , such that B
(M)
n (f) is nondecreasing

(nonincreasing) on [c, d] for all n ∈ N with n ≥ ñ.

Corollary 5.4. Let f : [0, 1]→ [0,∞)be a continuous and strictly positive function and
suppose that there exists a, b ∈ [0, 1], 0 < a < b < 1, such that f is quasi-convex on
[a, b]. Then for any c, d ∈ [a, b] with a < c < d < b, there exists ñ ∈ N depending only

on a, b, c, d and fsuch that B
(M)
n (f) is quasi-convex on [c, d] for all n ∈ N with n ≥ ñ.

Corollary 5.5. Let f : [0, 1]→ [0,∞)be a continuous and strictly positive function and
suppose that there exists a, b ∈ [0, 1], 0 < a < b < 1, such that f is quasi-concave
on [a, b]. Then for any c, d ∈ [a, b] with a < c < d < b, there exists ñ ∈ N depending

only on a, b, c, d and f , such that B
(M)
n (f) is quasi-concave on [c, d] for all n ∈ N with

n ≥ ñ.

Remark 5.6. As in the cases of Bernstein-type max-product operators studied in the
research monograph [2], for the the max-product Kantorovich type operators we can
find natural interpretation as possibilistic operators, which can be deduced from the
Feller scheme written in terms of the possibilistic integral. These approaches also offer
new proofs for the uniform convergence, based on a Chebyshev type inequality in the
theory of possibility.
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Remark 5.7. In the recently submitted paper [3], we have introduced the more gen-
eral Kantorovich max-product operators based on a generalized (ϕ,ψ)-kernel, by the
formula

K(M)
n (f ;ϕ,ψ)(x) =

1

b
·

∨n
k=0

ϕ(nx−kb)
ψ(nx−kb) ·

[
(n+ 1)

∫ (k+1)b/(n+1)

kb/(n+1)
f (v) dv

]
∨n
k=0

ϕ(nx−kb)
ψ(nx−kb)

, (5.3)

where b > 0, f : [0, b] → R+, f ∈ Lp[0, b], 1 ≤ p ≤ ∞ and ϕ and ψ satisfy some
properties specific to max-product operators and proved pointwise, uniform or Lp

convergence quantitative approximation results. For particular choices of (ϕ,ψ), we
have obtained approximation results for many other max-product Kantorovich oper-
ators, including for example the sampling operators based on sinc-type kernels.

Remark 5.8. In another recently in preparation paper [4], we have generalized the
max-product Kantorovich operators from the above Remark 2), by replacing the clas-
sical linear integral

∫
dv, by the nonlinear Choquet integral (C)

∫
dµ(v) with respect to

a monotone and submodular set function µ obtaining and studying the max-product
Kantorovich-Choquet operators given by the formula

K(M)
n (f ;ϕ,ψ)(x)

=
1

b
·

∨n
k=0

ϕ(nx−kb)
ψ(nx−kb) ·

[
(C)

∫ (k+1)b/(n+1)

kb/(n+1)
f (v) dµ(v)/µ

([
kb
n+1 ,

(k+1)b
n+1

])]
∨n
k=0

ϕ(nx−kb)
ψ(nx−kb)

, (5.4)

It is worth noting that the max-product Kantorovich-Choquet operators are doubly
nonlinear operators: firstly due to max and secondly, due to the Choquet integral.
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