Properties of absolute-*-k-paranormal operators and contractions for *- $\mathcal{A}(k)$ operators

Ilmi Hoxha, Naim L. Braha and Agron Tato

Abstract. First, we see if T is absolute-*-k-paranormal for $k \geq 1$, then T is a normaloid operator. We also see some properties of absolute-*-k-paranormal operator and *- $\mathcal{A}(k)$ operator. Then, we will prove the spectrum continuity of the class *- $\mathcal{A}(k)$ operator for k > 0. Moreover, it is proved that if T is a contraction of the class *- $\mathcal{A}(k)$ for k > 0, then either T has a nontrivial invariant subspace or T is a proper contraction, and the nonnegative operator

$$D = \left(T^* |T|^{2k} T\right)^{\frac{1}{k+1}} - |T^*|^2$$

is a strongly stable contraction. Finally if $T \in *-\mathcal{A}(k)$ is a contraction for k > 0, then T is the direct sum of a unitary and C_{0} (c.n.u) contraction.

Mathematics Subject Classification (2010): 47A10, 47B37, 15A18.

Keywords: Class *-A(k) operators, absolute-*-k-paranormal operators, normaloid operators, continuity spectrum, contractions.

1. Introduction

Throughout this paper, let H and K be infinite dimensional separable complex Hilbert spaces with inner product $\langle \cdot, \cdot \rangle$. We denote by L(H, K) the set of all bounded operators from H into K. To simplify, we put L(H) := L(H, H). For $T \in L(H)$, we denote by ker(T) the null space and by T(H) the range of T. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^* denotes its adjoint. We shall denote the set of all complex numbers by \mathbb{C} , the set of all non-negative integers by \mathbb{N} and the complex conjugate of a complex number λ by $\overline{\lambda}$. The closure of a set M will be denoted by \overline{M} and we shall henceforth shorten $T - \lambda I$ to $T - \lambda$. An operator $T \in L(H)$, is a positive operator, $T \ge O$, if $\langle Tx, x \rangle \ge 0$ for all $x \in H$. We write by $\sigma(T)$, $\sigma_p(T)$, and $\sigma_a(T)$ spectrum, point spectrum and approximate point spectrum respectively. Sets of isolated points and accumulation points of $\sigma(T)$ are denoted by iso $\sigma(T)$ and $\operatorname{acc}\sigma(T)$, respectively. We write r(T) for the spectral radius. It is well known that $r(T) \leq ||T||$. The operator T is called normaloid if r(T) = ||T||.

A contraction is an operator T such that $||Tx|| \leq ||x||$ for all $x \in H$. A proper contraction is an operator T such that ||Tx|| < ||x|| for every nonzero $x \in H$. A strict contraction is an operator such that ||T|| < 1 (*i.e.*, $\sup_{x\neq 0} \frac{||Tx||}{||x||} < 1$). Obviously, every strict contraction is a proper contraction and every proper contraction is a contraction. An operator T is said to be completely non-unitary (c.n.u) if T restricted to every reducing subspace of H is non-unitary.

An operator T on H is uniformly stable, if the power sequence $\{T^m\}_{m=1}^{\infty}$ converges uniformly to the null operator $(i.e., ||T^m|| \to O)$. An operator T on H is strongly stable, if the power sequence $\{T^m\}_{m=1}^{\infty}$ converges strongly to the null operator $(i.e., ||T^m x|| \to 0)$, for every $x \in H$).

A contraction T is of class C_0 . if T is strongly stable (*i.e.*, $||T^mx|| \to 0$ and $||Tx|| \leq ||x||$ for every $x \in H$). If T^* is a strongly stable contraction, then T is of class C_0 . T is said to be of class C_1 . if $\lim_{m\to\infty} ||T^mx|| > 0$ (equivalently, if $T^mx \neq 0$ for every nonzero x in H). T is said to be of class $C_{.1}$ if $\lim_{m\to\infty} ||T^mx|| > 0$ (equivalently, if $T^mx \neq 0$ for every nonzero x in H). T is said to be of class $C_{.1}$ if $\lim_{m\to\infty} ||T^mx|| > 0$ (equivalently, if $T^{*m}x \neq 0$ for every nonzero x in H). We define the class $C_{\alpha\beta}$ for $\alpha, \beta = 0, 1$ by $C_{\alpha\beta} = C_{\alpha} \cap C_{.\beta}$. These are the Nagy-Foiaş classes of contractions [21, p.72]. All combinations are possible leading to classes C_{00} , C_{01} , C_{10} and C_{11} . In particular, T and T^* are both strongly stable contractions if and only if T is a C_{00} contraction. Uniformly stable contractions are of class C_{00} .

For an operator $T \in L(H)$, as usual, $|T| = (T^*T)^{\frac{1}{2}}$. An operator T is said to be a normal operator if $T^*T = TT^*$ and T is said to be hyponormal, if $|T|^2 \ge |T^*|^2$. An operator $T \in L(H)$, is said to be paranormal [11], if $||T^2x|| \ge ||Tx||^2$ for every unit vector x in H. Further, T is said to be *-paranormal [1], if $||T^2x|| \ge ||T^*x||^2$ for every unit vector x in H.

In [13] authors Furuta, Ito and Yamazaki introduced the class \mathcal{A} operator, respectively the class $\mathcal{A}(k)$ operator defined as follows: For each k > 0, an operator T is from class $\mathcal{A}(k)$ operator if

$$(T^*|T|^{2k}T)^{\frac{1}{k+1}} \ge |T|^2,$$

(for k = 1 it defines class \mathcal{A} operator), and they showed that the class \mathcal{A} is a subclass of paranormal operators.

In the same paper, authors introduced the absolute-k-paranormal operators as follows: For each k > 0, an operator T is absolute-k-paranormal if

$$|||T|^k Tx|| \ge ||Tx||^{k+1}$$

for every unit vector $x \in H$. In case where k = 1 it defines the paranormal operator. The class $\mathcal{A}(k)$ operator is included in the absolute-k-paranormal operator for any k > 0, [13, Theorem 2]).

B. P. Duggal, I. H. Jeon, and I. H. Kim [5], introduced *-class \mathcal{A} operator. An operator $T \in L(H)$ is said to be a *-class \mathcal{A} operator, if $|T^2| \geq |T^*|^2$. A *-class \mathcal{A} is a generalization of a hyponormal operator, [5, Theorem 1.2], and *-class \mathcal{A} is a subclass of the class of *-paranormal operators, [5, Theorem 1.3]. We denote the set of *-class

 \mathcal{A} by \mathcal{A}^* . An operator $T \in L(H)$ is said to be a k-quasi-*-class \mathcal{A} operator [20], if $T^{*k} \left(|T^2| - |T^*|^2 \right) T^k > O.$

for a nonnegative integer k.

In [24] authors, S. Panayappan and A. Radharamani introduced the class $*-\mathcal{A}(k)$ operator and absolute-*-k-paranormal operator.

Definition 1.1. For each k > 0, an operator T is absolute-*-k-paranormal if

 $|||T|^k Tx|| \ge ||T^*x||^{k+1}$

for every unit vector $x \in H$.

In case where k = 1 it defines the *-paranormal operator.

Definition 1.2. For each k > 0, an operator T is class *-A(k), if

$$(T^*|T|^{2k}T)^{\frac{1}{k+1}} \ge |T^*|^2.$$

In case where k = 1 it defines the \mathcal{A}^* class operators.

In this paper, we shall show behavior of the class $*-\mathcal{A}(k)$ operator and absolute-*-k-paranormal operator.

2. Properties of absolute-*-k-paranormal operator and *- $\mathcal{A}(k)$ operator

Theorem 2.1. If T is an absolute-*-k-paranormal operator for k > 0, then T is a normaloid operator.

Proof. Let T be an absolute-*-k-paranormal operator. In case where k = 1, T is a *-paranormal operator, then by [1, Theorem 1.1] it follows that T is a normaloid operator. Following, it will be proved that for k > 1 the operator T is a normaloid operator, because for 0 < k < 1, it was proved in [3](Theorem 2.9). Without losing the generality, assume ||T|| = 1. Since T is an absolute-*-k-paranormal, then

$$||T^*x||^{k+1} \le ||T|^k Tx|| ||x||^k \le ||T|^{k-1} ||||T|Tx|| ||x||^k \le ||T^2x|| ||x||^k$$

for all $x \in H$. Therefore,

$$\frac{\|T^*x\|^{k+1}}{\|x\|^k} \le \|T^2x\| \le \|x\|$$
(2.1)

for all $x \in H$.

By definition of $||T^*||$, there exists a sequence $\{x_i\}$ of unit vectors such that

$$||T^*x_i|| \to ||T^*|| = ||T|| = 1.$$
 (2.2)

Put $x = x_i$ in (2.1), then we have.

$$\frac{\|T^*x_i\|^{k+1}}{\|x_i\|^k} \le \|T^2x_i\| \le \|x_i\| = 1$$
(2.3)

so, $||T^2x_i|| \to 1$, by (2.2) and (2.3), that is

$$||T^2|| = 1 = ||T||^2.$$

Let us now suppose that

$$||T^{n-1}x_i|| \to 1$$
, $||T^{n-2}x_i|| \to 1$ and $||T^{n-3}x_i|| \to 1$ for $n \ge 3$. (2.4)

Put $x = T^{n-2}x_i$ in (2.1), then we have

$$\frac{\|T^*T^{n-2}x_i\|^{k+1}}{\|T^{n-2}x_i\|^k} \le \|T^n x_i\| \le \|T^{n-2}x_i\|.$$
(2.5)

From Cauchy-Schwarz inequality we have

$$\frac{\|T^{n-2}x\|^2}{\|T^{n-3}x\|} \le \|T^*T^{n-2}x\|.$$
(2.6)

From relations (2.5) and (2.6) we have

$$\frac{\|T^{n-2}x_i\|^{k+2}}{\|T^{n-3}x_i\|^{k+1}} \le \frac{\|T^*T^{n-2}x_i\|^{k+1}}{\|T^{n-2}x_i\|^k} \le \|T^n x_i\| \le \|T^{n-2}x_i\|.$$

respectively:

$$\frac{\|T^{n-1}x_i\|^{k+2}}{\|T^{n-3}x_i\|^{k+1}} \le \frac{\|T^{n-2}x_i\|^{k+2}}{\|T^{n-3}x_i\|^{k+1}} \le \frac{\|T^*T^{n-2}x_i\|^{k+1}}{\|T^{n-2}x_i\|^k} \le \|T^nx_i\| \le \|T^{n-2}x_i\|.$$
(2.7)

Hence, $||T^n x_i|| \to 1$, by (2.4) and (2.7) that is $||T^n|| = 1 = ||T||^n$. Consequently

$$||T^n|| = 1 = ||T||^n$$

for all positive integers n by induction.

Example 2.2. An example of non-absolute-*-k-paranormal operator which is a normaloid operator. Let us denote by

$$T = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

Then $||T^n|| = ||T||^n$ for all positive integers n. However, the relation

$$|||T|^k T x|| \ge ||T^*x||^{k+1}$$

does not hold for the unit vector $e_3 = (0, 0, 1)$. With which was proved that T is a non-absolute-*-k-paranormal operator, but it is a normaloid operator.

It is known that there exists a linear operator T, so that T^n is compact operator for some $n \in \mathbb{N}$, but T itself is not compact. For instance, take any nilpotent noncompact operator (If $(e_n)_n$ is an orthonormal basis of H then the shift defined by $T(e_{2n}) = e_{2n+1}$ and $T(e_{2n+1}) = 0$ is not a compact operator for which $T^2 = O$).

In this context, we will show that in cases where an operator T is an absolute-*-k-paranormal operator and if its exponent T^n is compact, for some $n \in \mathbb{N}$, then T is compact too.

Theorem 2.3. If T is an absolute-*-k-paranormal operator for k > 0 and if T^n is compact for some $n \in \mathbb{N}$, then it follows that T is compact too.

122

 \Box

Proof. Compactness of T^n implies countable spectrum (consisting of mutually orthogonal eigenvalues ([26], Theorem 6)), this then implies T^n normal compact, hence T is normal compact.

Corollary 2.4. If T, R are absolute-*-k-paranormal operators for k > 0 and if T^n and R^m are compact for some $n, m \in \mathbb{N}$, then it follows that $T \oplus R$ is compact too.

Corollary 2.5. If T, R are absolute-*-k-paranormal operators for k > 0 and if T^n is a compact operator for some $n \in \mathbb{N}$ or R^m is a compact operator for some $m \in \mathbb{N}$, then it follows that $T \otimes R$ is compact too.

Lemma 2.6. [16, Hansen Inequality] If $A, B \in L(H)$, satisfying $A \ge O$ and $||B|| \le 1$, then

$$(B^*AB)^{\delta} \ge B^*A^{\delta}B$$
 for all $\delta \in (0,1]$

Lemma 2.7. [12, Löwner-Heinz Inequality] If $A, B \in L(H)$, satisfying $A \ge B \ge O$, then $A^{\delta} \ge B^{\delta}$ for all $\delta \in [0, 1]$.

A subspace M of space H is said to be nontrivial invariant(alternatively, T-invariant) under T if $\{0\} \neq M \neq H$ and $T(M) \subseteq M$.

Theorem 2.8. If T is a class *- $\mathcal{A}(k)$ operator for $0 < k \leq 1$ and M is its invariant subspace, then the restriction $T \mid_M$ of T to M is also a class *- $\mathcal{A}(k)$ operator.

Proof. Since M is an invariant subspace of T, T has the matrix representation

$$T = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$$
 on $H = M \oplus M^{\perp}$.

Let P be the projection of H onto M, where $A = T \mid_M$ and $\begin{pmatrix} A & O \\ O & O \end{pmatrix} = TP = PTP$. Since T is a class *- $\mathcal{A}(k)$ operator, we have

$$P\left(\left(T^*|T|^2T\right)^{\frac{1}{k+1}} - |T^*|^2\right)P \ge O.$$

By Hansen inequality, we have

$$\begin{pmatrix} |A^*|^2 & O\\ O & O \end{pmatrix} \leq \begin{pmatrix} |A^*|^2 + |B^*|^2 & O\\ O & O \end{pmatrix} \\ \leq (PT^*P|T|^{2k}PTP)^{\frac{1}{k+1}}.$$

Since

$$P|T|^{2k}P \le (P|T|^2P)^k,$$

then

$$PT^*P|T|^{2k}PTP \le PT^*(P|T|^2P)^kTP$$

By Löwner-Heinz inequality we have

$$(PT^*P|T|^{2k}PTP)^{\frac{1}{k+1}} \le (PT^*(P|T|^2P)^kTP)^{\frac{1}{k+1}}.$$

So, we have

$$\begin{pmatrix} |A^*|^2 & O\\ O & O \end{pmatrix} \leq \begin{pmatrix} (A^*|A^*|^{2k}A)^{\frac{1}{k+1}} & O\\ O & O \end{pmatrix}.$$

Hence, A is a class $*-\mathcal{A}(k)$ operator on M.

Theorem 2.9. If T is a class *- $\mathcal{A}(k)$ operator, has the representation $T = \lambda \oplus A$ on $\ker(T - \lambda) \oplus (\ker(T - \lambda))^{\perp}$, where $\lambda \neq 0$ is an eigenvalue of T, then A is a class *- $\mathcal{A}(k)$ operator with $\ker(A - \lambda) = \{0\}$.

Proof. Since $T = \lambda \oplus A$, then $T = \begin{pmatrix} \lambda & O \\ O & A \end{pmatrix}$ and we have:

$$\begin{aligned} (T^*|T|^{2k}T)^{\frac{1}{k+1}} - |T^*|^2 &= \begin{pmatrix} |\lambda|^{2(k+1)} & O\\ O & A^*|A|^{2k}A \end{pmatrix}^{\frac{1}{k+1}} - \begin{pmatrix} |\lambda|^2 & O\\ O & |A^*|^2 \end{pmatrix} \\ &= \begin{pmatrix} |\lambda|^2 & O\\ O & (A^*|A|^{2k}A)^{\frac{1}{k+1}} \end{pmatrix} - \begin{pmatrix} |\lambda|^2 & O\\ O & |A^*|^2 \end{pmatrix} \\ &= \begin{pmatrix} O & O\\ O & (A^*|A|^{2k}A)^{\frac{1}{k+1}} - |A^*|^2 \end{pmatrix} \end{aligned}$$

Since T is a class $*-\mathcal{A}(k)$ operator, then A is a class $*-\mathcal{A}(k)$ operator. Let $x_2 \in \ker(A - \lambda)$. Then

$$(T-\lambda)\begin{pmatrix}0\\x_2\end{pmatrix} = \begin{pmatrix}O & O\\O & A-\lambda\end{pmatrix}\begin{pmatrix}0\\x_2\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}$$

Hence $x_2 \in \ker(T - \lambda)$. Since $\ker(A - \lambda) \subseteq (\ker(T - \lambda))^{\perp}$, this implies $x_2 = 0$. Representation of T implies $A - \lambda$ is injective and by Theorem 2.8 A is *- $\mathcal{A}(k)$. \Box

3. Spectrum continuity on the set of class $*-\mathcal{A}(k)$ operator

Let $\{E_n\}_{n\in\mathbb{N}}$ be a sequence of compact subsets of \mathbb{C} . Let's define the inferior and superior limits of $\{E_n\}_{n\in\mathbb{N}}$, denoted respectively by $\liminf_{n\to\infty} \{E_n\}$ and $\limsup_{n\to\infty} \{E_n\}$ as it follows:

1) $\liminf_{n\to\infty} \{E_n\} = \{\lambda \in \mathbb{C} : \text{for every } \epsilon > 0, \text{ there exists } N \in \mathbb{N} \text{ such that } B(\lambda, \epsilon) \cap E_n \neq \emptyset \text{ for all } n > N\},\$ 2) $\limsup_{n\to\infty} \{E_n\} = \{\lambda \in \mathbb{C} : \text{for every } \epsilon > 0, \text{there exists } J \subseteq \mathbb{N} \text{ infinite such that } B(\lambda, \epsilon) \cap E_n \neq \emptyset \text{ for all } n \in J\}.$ If

$$\liminf_{n \to \infty} \{ E_n \} = \limsup_{n \to \infty} \{ E_n \},$$

then $\lim_{n\to\infty} \{E_n\}$ is said to exists and is equal to this common limit.

A mapping p, defined on L(H), whose values are compact subsets on \mathbb{C} is said to be upper semi-continuous at T, if $T_n \to T$ then $\limsup_{n\to\infty} p(T_n) \subset p(T)$, and lower semi-continuous at T, if $T_n \to T$ then $p(T) \subset \liminf_{n\to\infty} p(T_n)$. If p is both upper and lower semi-continuous at T, then it is said to be continuous at T and in this case $\lim_{n\to\infty} p(T_n) = p(T)$.

The spectrum $\sigma: T \to \sigma(T)$ is upper semi-continuous by [15, Problem 102], but it is not continuous in general, [25, Example 4.6]

We write $\alpha(T) = \operatorname{dim} \operatorname{ker}(T), \ \beta(T) = \operatorname{dim} \operatorname{ker}(T^*)$. An operator $T \in L(H)$ is called an upper semi-Fredholm, if it has closed range and $\alpha(T) < \infty$, while T is called a lower semi-Fredholm if $\beta(T) < \infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in L(H)$ is semi-Fredholm, then the index is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T).$$

An operator $T \in L(H)$ is said to be upper semi-Weyl operator if it is upper semi-Fredholm and $ind(T) \leq 0$, while $T \in L(H)$ is said to be lower semi-Weyl operator if it is lower semi-Fredholm and ind(T) > 0. An operator is said to be Weyl operator if it is Fredholm of index zero.

Lemma 3.1. [22] If $\{T_n\} \subset L(H)$ and $T \in L(H)$ are such that T_n converges, according to the operator norm topology, to T then

$$\operatorname{iso}\sigma(T) \subseteq \liminf_{n \to \infty} \sigma(T_n).$$

Lemma 3.2. [2] Let H be a complex Hilbert space. Then there exists a Hilbert space Y such that $H \subset Y$ and a map $\varphi : L(H) \to L(Y)$ with the following properties:

1. φ is a faithful *-representation of the algebra L(H) on Y, so:

$$\varphi(I_H) = I_Y$$
, $\varphi(T^*) = (\varphi(T))^*$, $\varphi(TS) = \varphi(T)\varphi(S)$

 $\varphi(\alpha T + \beta S) = \alpha \varphi(T) + \beta \varphi(S)$ for any $T, S \in L(H)$ and $\alpha, \beta \in \mathbb{C}$,

2. $\varphi(T) > 0$ for any T > 0 in L(H),

3. $\sigma_a(T) = \sigma_a(\varphi(T)) = \sigma_p(\varphi(T))$ for any $T \in L(H)$,

4. If T is a positive operator, then $\varphi(T^{\alpha}) = |\varphi(T)|^{\alpha}$, for $\alpha > 0$,

Lemma 3.3. If T is a class *-A(k) operator, then $\varphi(T)$ is a class *-A(k) operator.

Proof. Let $\varphi: L(H) \to L(K)$ be Berberian's faithful *-representation and let T be a class $*-\mathcal{A}(k)$ operator. Then, we have

$$\begin{aligned} \left((\varphi(T))^* |\varphi(T)|^{2k} \varphi(T) \right)^{\frac{1}{k+1}} - |(\varphi(T))^*|^2 &= \left(\varphi(T^*) \varphi(|T|^{2k}) \varphi(T) \right)^{\frac{1}{k+1}} - |\varphi(T^*)|^2 \\ &= \left(\varphi(T^*|T|^{2k}T)^{\frac{1}{k+1}} - \varphi(|T^*|^2) \right) \\ &= \varphi\left((T^*|T|^{2k}T)^{\frac{1}{k+1}} - |T^*|^2 \right) \ge 0 \end{aligned}$$

nus $\varphi(T)$ is a class *- $\mathcal{A}(k)$ operator.

thus $\varphi(T)$ is a class *- $\mathcal{A}(k)$ operator.

Theorem 3.4. The spectrum σ is continuous on the set of class *- $\mathcal{A}(k)$ operator for k > 0.

Proof of the theorem is based in idea's given in the paper [6].

Proof. Since the function σ is upper semi-continuous, if $\{T_n\} \subset L(H)$ is a sequence which converges, to $T \in L(H)$, by operator norm topology. Then $\limsup_{n\to\infty} \sigma(T_n) \subset$ $\sigma(T)$. Thus, to prove the theorem it would suffice to prove that if $\{T_n\}$ is a sequence of operators so that it belongs to class *- $\mathcal{A}(k)$ operator and $\lim_{n\to\infty} ||T_n - T|| = 0$ for some class *- $\mathcal{A}(k)$ operator T, then $\sigma(T) \subset \liminf_{n \to \infty} \sigma(T_n)$. From [25, Proposition

4.9] it would suffice to prove $\sigma_a(T) \subset \liminf_n \sigma(T_n)$. Since $\sigma(T) = \sigma(\varphi(T)), \sigma(T_n) = \sigma(\varphi(T)_n)$ and $\sigma_a(T) = \sigma_a(\varphi(T))$ we have

$$\sigma_a(T) \subset \liminf_{n \to \infty} \sigma(T_n) \Longleftrightarrow \sigma_a(\varphi(T)) \subset \liminf_{n \to \infty} \sigma(\varphi(T)_n).$$

Let $\lambda \in \sigma_a(\varphi(T))$. Then $\lambda \in \sigma_p(\varphi(T))$. By Theorem 2.9, $\varphi(T)$ has a representation

$$\varphi(T) = \lambda \oplus A \text{ on } H = \ker(\varphi(T) - \lambda) \oplus (\ker(\varphi(T) - \lambda))^{\perp} \text{ and } \ker(A - \lambda) = \{0\}$$

Therefore $A - \lambda$ is upper semi-Fredholm operator and $\alpha(A - \lambda) = 0$. There exists a $\epsilon > 0$ such that $A - (\lambda - \mu_0)$ is upper semi-Fredholm operator with $\operatorname{ind}(A - (\lambda - \mu_0)) = \operatorname{ind}(A - \lambda)$ and $\alpha(A - (\lambda - \mu_0)) = 0$ for every μ_0 such that $0 < |\mu_0| < \epsilon$. Let's set $\mu = \lambda - \mu_0$, and we have $\varphi(T) - \mu = (\lambda - \mu) \oplus (A - \mu)$ is upper semi-Fredholm operator, $\operatorname{ind}(\varphi(T) - \mu) = \operatorname{ind}(A - \mu)$ and $\alpha(\varphi(T) - \mu) = 0$.

Suppose the contrary, $\lambda \notin \liminf_{n\to\infty} \sigma(\varphi(T)_n)$. Then, there exists a $\delta > 0$, a neighborhood $\mathcal{D}_{\delta}(\lambda)$ of λ and a subsequence $\{\varphi(T)_{n_l}\}$ of $\{\varphi(T)_n\}$ such that $\sigma(\varphi(T)_{n_l}) \cap \mathcal{D}_{\delta}(\lambda) = \emptyset$ for every $l \geq 1$. This implies that $\varphi(T)_{n_l} - \mu$ is a Fredholm operator and $\operatorname{ind}(\varphi(T)_{n_l} - \mu) = 0$ for every $\mu \in \mathcal{D}_{\delta}(\lambda)$ and

$$\lim_{n \to \infty} \left\| (\varphi(T)_{n_l} - \mu) - (\varphi(T) - \mu) \right\| = 0.$$

It follows from the continuity of the index that $\operatorname{ind}(\varphi(T) - \mu) = 0$ and $\varphi(T) - \mu$ is a Fredholm operator. Since $\alpha(\varphi(T) - \mu) = 0$, $\mu \notin \sigma(\varphi(T))$ for every μ in a ϵ -neighborhood of λ . This contradicts Lemma 3.1, therefore we must have $\lambda \in \liminf_{n \to \infty} \sigma(\varphi(T)_n)$.

It is well known **Index Product Theorem**: "If S and T are Fredholm operators then ST is a Fredholm operator and ind(ST) = ind(S) + ind(T)". The converse of this theorem is not true in general. To see this, we have operators on l_2 :

 $T(x_1, x_2, x_3, \ldots) = (0, x_1, 0, x_2, 0, x_3, \ldots)$ and $S(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$.

We see ST = I, so ST is a Fredholm operator, but S and T are not Fredholm operators. However, if S and T are commuting operators and if ST is a Fredholm operator then S and T are Fredholm operators. This fact is not true in general if S and T are Weyl operators, see [19, Remark 1.5.3].

Theorem 3.5. If S and T are commuting class *- $\mathcal{A}(k)$ operators for $0 < k \le 1$, then S, T are Weyl operators \iff ST is Weyl operator.

Proof. If S and T are Weyl operators, by Index Product Theorem, we have that ST is a Weyl operator.

The converse, since ST = TS then

 $\ker S \cup \ker T \subseteq \ker(ST)$ and $\ker S^* \cup \ker T^* \subseteq \ker(ST)^*$,

then S and T are Fredholm operators.

Since S and T are class $*-\mathcal{A}(k)$ operators, from [26, theorem 2] S and T are class absolute- k^* -paranormal operators and by [26, theorem 6] we have $\operatorname{ind}(S) \leq 0$ and $\operatorname{ind}(T) \leq 0$. From

$$\operatorname{ind}(S) + \operatorname{ind}(T) = \operatorname{ind}(ST) = 0,$$

we have ind(S) = 0 and ind(T) = 0, so S and T are Weyl operators.

4. Contractions of the class $*-\mathcal{A}(k)$ operator

Definition 4.1. If the contraction T is a direct sum of the unitary and $C_{.0}$ (c.n.u) contractions, then we say that T has a Wold-type decomposition.

Definition 4.2. [9] An operator $T \in L(H)$ is said to have the Fuglede-Putnam commutativity property (**PF property** for short) if $T^*X = XJ$ for any $X \in L(K, H)$ and any isometry $J \in L(K)$ such that $TX = XJ^*$.

Lemma 4.3. [8, 23] Let T be a contraction. The following conditions are equivalent:

- 1. For any bounded sequence $\{x_n\}_{n\in\mathbb{N}\cup\{0\}}\subset H$ such that $Tx_{n+1}=x_n$ the sequence $\{\|x_n\|\}_{n\in\mathbb{N}\cup\{0\}}$ is constant,
- 2. T has a Wold-type decomposition,
- 3. T has the **PF** property.

Fugen Gao and Xiaochun Li [14] have proved that if a contraction $T \in \mathcal{A}^*$ has no nontrivial invariant subspace, then (a) T is a proper contraction and (b) The nonnegative operator $D = |T^2| - |T^*|^2$ is a strongly stable contraction. In [17] the authors proved: if T belongs to k-quasi-*-class \mathcal{A} and is a contraction, then T has a Wold-type decomposition and T has the PF property. In this section we extend these results to contractions in class $*-\mathcal{A}(k)$.

Lemma 4.4. [4, Hölder-McCarthy inequality] Let T be a positive operator. Then, the following inequalities hold for all $x \in H$:

- 1. $\langle T^r x, x \rangle \leq \langle T x, x \rangle^r ||x||^{2(1-r)}$ for 0 < r < 1, 2. $\langle T^r x, x \rangle \geq \langle T x, x \rangle^r ||x||^{2(1-r)}$ for $r \geq 1$.

Proof of the theorems below is based in idea's given in the paper [7].

Theorem 4.5. If T is a contraction of class *-A(k) operator, then the nonnegative operator

$$D = \left(T^* |T|^{2k} T\right)^{\frac{1}{k+1}} - |T^*|^2$$

is a contraction whose power sequence $\{D^n\}_{n=1}^{\infty}$ converges strongly to a projection P and $T^*P = O$.

Proof. Suppose that T is a contraction of class $*-\mathcal{A}(k)$ operator. Then

$$D = \left(T^* |T|^{2k} T\right)^{\frac{1}{k+1}} - |T^*|^2 \ge O.$$

Let $R = D^{\frac{1}{2}}$ be the unique nonnegative square root of D. Then for every x in H and any nonnegative integer n, we have

$$\begin{split} \langle D^{n+1}x,x\rangle &= \|R^{n+1}x\|^2 = \langle DR^nx,R^nx\rangle \\ &= \left\langle \left(T^*|T|^{2k}T\right)^{\frac{1}{k+1}}R^nx,R^nx\right\rangle - \left\langle |T^*|^2R^nx,R^nx\right\rangle \\ &\leq \left\langle T^*|T|^{2k}TR^nx,R^nx\right\rangle^{\frac{1}{k+1}}\|R^nx\|^{2(1-\frac{1}{k+1})} - \|T^*R^nx\|^2 \\ &= \||T|^kTR^nx\|^{\frac{2}{k+1}}\|R^nx\|^{2(1-\frac{1}{k+1})} - \|T^*R^nx\|^2 \\ &\leq \||T|^kT\|^{\frac{2}{k+1}}\|R^nx\|^2 - \|T^*R^nx\|^2 \\ &\leq \|R^nx\|^2 - \|T^*R^nx\|^2 \\ &\leq \|R^nx\|^2 = \langle D^nx,x\rangle \end{split}$$

Thus R (and so D) is a contraction (set n = 0), and $\{D^n\}_{n=1}^{\infty}$ is a decreasing sequence of nonnegative contractions. Then, $\{D^n\}_{n=1}^{\infty}$ converges strongly to a projection, say P. Moreover

$$\sum_{n=0}^{m} \|T^*R^nx\|^2 \le \sum_{n=0}^{m} \left(\|R^nx\|^2 - \|R^{n+1}x\|^2\right) = \|x\|^2 - \|R^{m+1}x\|^2 \le \|x\|^2,$$

for all nonnegative integers m and for every $x \in H$. Therefore $||T^*R^nx|| \to 0$ as $n \to \infty$. Then, we have

$$T^*Px = T^* \lim_{n \to \infty} D^n x = \lim_{n \to \infty} T^* R^{2n} x = 0,$$

that $T^*P = O$

for every $x \in H$. So that $T^*P = O$.

Theorem 4.6. Let T be a contraction of class $*-\mathcal{A}(k)$ operator. If T has no nontrivial invariant subspace, then

- 1) T is a proper contraction:
- 2) The nonnegative operator

$$D = \left(T^* |T|^{2k} T\right)^{\frac{1}{k+1}} - |T^*|^2$$

is a strongly stable contraction.

Proof. Suppose that T is a class $*-\mathcal{A}(k)$ operator.

1) From [18, Theorem 3.6] we have

 $T^*Tx = ||T||^2x$ if and only if ||Tx|| = ||T|| ||x|| for every $x \in H$.

Put $M = \{x \in H : ||Tx|| = ||T|| ||x||\} = \ker(|T|^2 - ||T||^2)$, which is a closed subspace of H. In the following, we shall show that M is a T-invariant subspace. For all $x \in M$, we have

$$\begin{aligned} \|T(Tx)\|^2 &\leq \|T\|^2 \|Tx\|^2 &= \|T\|^4 \|x\|^2 = \|\|T\|^2 x\|^2 = \|T^*Tx\|^2 \\ &\leq \|\left(T^*|T|^{2k}T\right)^{\frac{1}{k+1}} Tx\|\|Tx\| \leq \|\left(T^*|T|^{2k}T\right)^{\frac{1}{k+1}} Tx\|\|T\|\|x\|. \end{aligned}$$

So.

$$||T||^{4}||x||^{2} \le ||\left(T^{*}|T|^{2k}T\right)^{\frac{1}{k+1}}Tx|||T|||x||,$$

thus,

$$||T||^{3}||x|| \le ||(T^{*}|T|^{2k}T)^{\overline{k+1}} Tx|$$

and

$$\begin{aligned} \left\| \left(T^* |T|^{2k} T \right)^{\frac{1}{k+1}} Tx \right\| &= \left\langle \left(T^* |T|^{2k} T \right)^{\frac{2}{k+1}} Tx, Tx \right\rangle^{\frac{1}{2}} \\ &\leq \left\langle \left(T^* |T|^{2k} T \right)^2 Tx, Tx \right\rangle^{\frac{1}{2(k+1)}} \|Tx\|^{(1-\frac{1}{k+1})} \\ &= \left\| T^* |T|^{2k} TTx \right\|^{\frac{1}{k+1}} \|Tx\|^{(1-\frac{1}{k+1})} \\ &\leq \|T\|^{\frac{2k+3}{k+1}} \|x\|^{\frac{1}{k+1}} \|T\|^{\frac{k}{k+1}} \|x\|^{\frac{k}{k+1}} \\ &= \|T\|^3 \|x\|. \end{aligned}$$

Hence,

$$||T||^{3}||x|| = ||(T^{*}|T|^{2k}T)^{\frac{1}{k+1}}Tx||.$$
(4.1)

From relation (4.1) we have

$$\begin{split} \|T\|^{3}\|x\| &= \left\| \left(T^{*}|T|^{2k}T\right)^{\frac{1}{k+1}}Tx \right\| \\ &= \left\langle \left(T^{*}|T|^{2k}T\right)^{\frac{2}{k+1}}Tx, Tx \right\rangle^{\frac{1}{2}} \\ &\leq \left\langle \left(T^{*}|T|^{2k}T\right)^{2}Tx, Tx \right\rangle^{\frac{1}{2(k+1)}}\|Tx\|^{(1-\frac{1}{k+1})} \\ &= \|T^{*}|T|^{2k}TTx\|^{\frac{1}{k+1}}\|Tx\|^{(1-\frac{1}{k+1})} \\ &\leq \|T^{*}|T|^{2k}\|^{\frac{1}{k+1}}\|T(Tx)\|^{\frac{1}{k+1}}\|Tx\|^{(1-\frac{1}{k+1})} \end{split}$$

Then,

$$||T||^{2}||x|| \le ||T(Tx)|| \Longrightarrow ||T||^{2}||x|| = ||T(Tx)||,$$

respectively,

$$||T(Tx)|| = ||T||^2 ||x|| = ||T|| ||Tx||.$$

Thus, M is a T-invariant subspace.

Now, let T be a contraction, i.e., $||Tx|| \leq x$, for every $x \in H$. If ||T|| < 1, thus T is a strict contraction, then it is trivially a proper contraction. If ||T|| = 1, thus T is nonstrict contraction, then $M = \{x \in H : ||Tx|| = ||x||\}$. Since T has no nontrivial invariant subspace, then the invariant subspace M is trivial: either $M = \{0\}$ or M = H. If M = H then T is an isometry, and isometries have invariant subspaces. Thus $M = \{0\}$ so that ||Tx|| < ||x|| for every nonzero $x \in H$. So T is proper contraction.

2) Let T be a contraction of class $*-\mathcal{A}(k)$ operator. By the above theorem, we have D is a contraction, $\{D^n\}_{n=1}^{\infty}$ converges strongly to a projection P, and $T^*P = O$. So, PT = O. Suppose T has no nontrivial invariant subspaces. Since ker P is a nonzero invariant subspace for T whenever PT = O and $T \neq O$, it follows that ker P = H. Hence P = O, and so $\{D^n\}_{n=1}^{\infty}$ converges strongly to null operator O, so D is a strongly stable contraction. Since D is self-adjoint, then $D \in C_{00}$.

Corollary 4.7. Let T be a contraction of the class *-A(k) operator. If T has no nontrivial invariant subspace, then both T and the nonnegative operator

$$D = \left(T^* |T|^{2k} T\right)^{\frac{1}{k+1}} - |T^*|^2$$

are proper contractions.

Proof. Since a self-adjoint operator T is a proper contraction if and only if T is a C_{00} contraction.

Theorem 4.8. If T is a contraction and class *-A(k) operator for k > 0, then T has a Wold-type decomposition.

Proof. Since T is a contraction operator, the decreasing sequence $\{T^n T^{*n}\}_{n=1}^{\infty}$ converges strongly to a nonnegative contraction. We denote by

$$S = \left(\lim_{n \to \infty} T^n T^{*n}\right)^{\frac{1}{2}}.$$

The operators T and S are related by $T^*S^2T = S^2$, $O \leq S \leq I$ and S is self-adjoint operator. By [10] there exists an isometry $V : \overline{S(H)} \to \overline{S(H)}$ such that $VS = ST^*$, and thus $SV^* = TS$, and $||SV^mx|| \to ||x||$ for every $x \in \overline{S(H)}$. The isometry V can be extended to an isometry on H, which we still denote by V.

For an $x \in \overline{S(H)}$, we can define $x_n = SV^n x$ for $n \in \mathbb{N} \cup \{0\}$. Then for all nonnegative integers m we have

$$T^{m}x_{n+m} = T^{m}SV^{m+n}x = SV^{*m}V^{m+n}x = SV^{n}x = x_{n},$$

and for all $m \leq n$ we have

$$T^m x_n = x_{n-m}$$

Since T is class $*-\mathcal{A}(k)$ operator for k > 0 and nontrivial $x \in \mathcal{A}(H)$ we have

$$\begin{aligned} \|x_n\|^4 &= \|Tx_{n+1}\|^4 \le \|T^*Tx_{n+1}\|^2 \|x_{n+1}\|^2 \\ &\le \|\left(T^*|T|^{2k}T\right)^{\frac{1}{k+1}} Tx_{n+1}\| \|Tx_{n+1}\| \|x_{n+1}\|^2 \\ &\le \left\langle \left(T^*|T|^{2k}T\right)^2 Tx_{n+1}, Tx_{n+1}\right\rangle^{\frac{1}{2(k+1)}} \|Tx_{n+1}\|^{(1-\frac{1}{k+1})} \|Tx_{n+1}\| \|x_{n+1}\|^2 \\ &= \|T^*|T|^{2k}TTx_{n+1}\|^{\frac{1}{k+1}} \|x_n\|^{(1-\frac{1}{k+1})} \|x_n\| \|x_{n+1}\|^2 \\ &\le \|TTx_{n+1}\|^{\frac{1}{k+1}} \|x_n\|^{\frac{2k+1}{k+1}} \|x_{n+1}\|^2 \\ &= \|x_{n-1}\|^{\frac{1}{k+1}} \|x_n\|^{\frac{2k+1}{k+1}} \|x_{n+1}\|^2 \end{aligned}$$

hence

$$\|x_n\| \le \|x_{n-1}\|^{\frac{1}{2k+3}} \|x_{n+1}\|^{\frac{2k+2}{2k+3}} \le \frac{1}{2k+3} \left(\|x_{n-1}\| + (2k+2)\|x_{n+1}\| \right).$$

Thus

$$(2k+2)(\|x_{n+1}\| - \|x_n\|) \ge \|x_n\| - \|x_{n-1}\|$$

Put, $b_n = ||x_n|| - ||x_{n-1}||$, and we have

$$(2k+2)b_{n+1} \ge b_n. \tag{4.2}$$

Since $x_n = T(x_{n+1})$, then

$$|x_n|| = ||Tx_{n+1}|| \le ||x_{n+1}|| \text{ for every } n \in \mathbb{N},$$

then sequence $\{||x_n||\}_{n \in \mathbb{N} \cup \{0\}}$ is increasing. From

$$SV^n = SV^*V^{n+1} = TSV^{n+1}$$

we have

$$||x_n|| = ||SV^n x|| = ||TSV^{n+1} x|| \le ||SV^{n+1} x|| \le ||x||,$$

for every $x \in \overline{S(H)}$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{\|x_n\|\}_{n \in \mathbb{N} \cup \{0\}}$ is bounded. From this we have $b_n \geq 0$ and $b_n \to 0$ as $n \to \infty$.

It remains to check that all b_n equal zero. Suppose that there exists an integer $i \ge 1$ such that $b_i > 0$. Using inequality (4.2) we get $b_{i+1} \ge \frac{b_i}{2k+2} > 0$, so $b_{i+1} > 0$. From that and using again inequality (4.2), we can show by induction that $b_n > 0$ for all n > i. This is contradictory with that $b_n \to 0$ as $n \to \infty$. So $b_n = 0$ for all $n \in \mathbb{N}$ and thus $||x_{n-1}|| = ||x_n||$ for all $n \ge 1$. Thus the sequence $\{||x_n||\}_{n \in \mathbb{N} \cup \{0\}}$ is constant. From Lemma 4.3, T has a Wold-type decomposition.

Acknowledgment. The authors want to thank referees for valuable comment and suggestion given in the paper.

References

- Arora, S.C., Thukral, J.K., On a class of operators, Glas. Math. Ser. III, Vol 21, 41(1986), 381-386.
- [2] Berberian, S.K., Approximate proper vectors, Proc. Amer. Math. Soc., 10(1959), 175-182.
- [3] Braha, N.L., Hoxha, I., Mecheri, S., On class A(k^{*}) operators, Ann. Funct. Anal., 6(2015), no. 4, 90-106.
- [4] Mc Carthy, C.A., Cp, Israel J. Math., 5(1967) 249-271.
- [5] Duggal, B.P., Jeon, I.H., Kim, I.H., On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl., 436(2012), no. 5, 954-962.
- [6] Duggal, B.P., Jeon, I.H., Kim, I.H., Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl., 370(2010), 584-587.
- [7] Duggal, B.P., Jeon, I.H., Kim, I.H., Contractions without non-trivial invariant subspaces satisfying a positivity condition, J. Inequal. Appl., 2016, Paper No. 116, 8 pp.
- [8] Duggal, B.P., Cubrusly, C.S., Paranormal contractions have property PF, Far East J. Math. Sci., 14(2004), 237-249.
- [9] Duggal, B.P., On Characterising contractions with C_{10} pure part, Integral Equations Operator Theory, **27**(1997), 314-323.
- [10] Durszt, E., Contractions as restricted shifts, Acta Sci. Math. (Szeged), 48(1985), 129-134.
- [11] Furuta, T., On the class of paranormal operators, Proc. Jap. Acad., 43(1967), 594-598.
- [12] Furuta, T., Invitation to Linear Operators, Taylor and Francis Group, 2001.
- [13] Furuta, T., Ito, M., Yamazaki, T., A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math., 1(1998), no. 3, 389-403.
- [14] Gao, F., Li, X., On *-class A contractions, J. Inequal. Appl., 2013, 2013:239.

- [15] Halmos, P.R., A Hilbert Space Problem Book, Springer-Verlag, New York, 1982
- [16] Hansen, F., An operator inequality, Math. Ann., 246(1980) 249-250.
- [17] Hoxha, I., Braha, N.L., The k-quasi-*-class A contractions have property PF, J. Inequal. Appl., 2014, 2014:433.
- [18] Kubrusly, C.S., Levan, N., Proper contractions and invariant subspace, Internat. J. Math. Sci., 28(2001), 223-230.
- [19] Lee, W.Y., Lecture Notes on Operator Theory, Seoul 2008.
- [20] Mecheri, S., Spectral properties of k-quasi-*-class A operators, Studia Math., 208(2012), 87-96.
- [21] Nagy, B. Sz., Foiaş, C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
- [22] Newburgh, J.D., The variation of Spectra, Duke Math. J., 18(1951), 165-176
- [23] Pagacz, P., On Wold-type decomposition, Linear Algebra Appl., 436(2012), 3065-3071.
- [24] Panayappan, S., Radharamani, A., A note on p-*-paranormal operators and absolutek*-paranormal operators, Int. J. Math. Anal., 2(2008), no. 25-28, 1257-1261.
- [25] Sanchez-Perales, S., Cruz-Barriguete, V.A., Continuity of approximate point spectrum on the algebra B(X), Commun. Korean Math. Soc., **28**(2013), no. 3, 487-500.
- [26] Yang, C., Shen, J., Spectrum of class absolute-*-k-paranormal operators for $0 < k \le 1$, Filomat, **27**(2013), no. 4, 672-678.

Ilmi Hoxha Faculty of Education, University of Gjakova "Fehmi Agani" Avenue "Ismail Qemali" nn, Gjakovë, 50000, Kosova e-mail: ilmihoxha011@gmail.com

Naim L. Braha (Corresponding author) Department of Mathematics and Computer Sciences, University of Prishtina Avenue "George Bush" nn, Prishtinë, 10000, Kosova e-mail: nbraha@yahoo.com

Agron Tato Department of Mathematics Polytechnic University of Tirana, Albania e-mail: agtato@gmail.com