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1. Introduction

Fractional derivation and integration are as old as ordinary derivation and inte-
gration. The history of fractional calculus date back to 1695. In that time, L’Hospital
asked to Leibniz ”"what would be the one-half derivative of x?” After this conversation,
many mathematicians tried to give a coherent definition of fractional derivative and
integral operators. By the beginning of 20th century, some definitions of fractional
derivative are introduced called Riemann-Liouville, Caputo, and Griinwald-Letnikov
derivatives and so on. Fractional derivatives and integrals are studied widely in dif-
ferent branches of sciences like engineering, physics etc. For more knowledge about
the history and applications, we refer to [7, 9, 20].

The definitions we considered above mostly use the integral forms to define the
fractional derivative. Riemann-Liouville and Caputo fractional derivatives use the
Riemann-Liouville fractional integral defined by

xT

Jgf(x):ﬁ/(x—t)a_lf(t)dt, m—1<a<m, a€R.

And so, Riemann-Liouville and Caputo fractional derivatives are defined as
Dgf(z) = D™J" (=),

and
DS f(x) = J] D™ f(=),
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respectively, where m = [a]|, and in the right hand of the definitions operator
D™ represents the ordinary derivative order m.

Apart from the linearity property, Riemann-Liouville or any of other fractional
derivatives do not satisfy all properties of ordinary derivative. For example, Caputo
derivative does not satisfy well-known formula of the product of two functions

D(f(t)g(t)) = g(t)Df(t) + f(t)Dg(t),
and Riemann-Liouville derivative does not satisfy
Dlc] =0, cis constant.

Because of this facts, recently some mathematicians gave their efforts to give new
definitions for fractional derivatives. To handle these difficulties, in 2014 Khalil et al.
[15] gave a new definition of fractional derivative as

To(F)(t) = i L) = f ()

e—0 £

This definition, called conformable fractional derivative, satisfies many properties of
ordinary derivatives like product rule, chain rule etc.

Because of inequalities were often used in the theoretical and applied mathemat-
ics, mathematicians studied about their extensions, generalizations and discretiza-
tions, see [2, 3, 12, 17, 18] and references cited therein. And in the last decade authors
started to transfer those inequalities known in the classical settings into fractional set-
tings, both continuous and discrete cases, to make contributions to the development
of fractional calculus theory [4, 5, 8, 10, 11, 21].

In this paper, we shall give the fractional analogues of Wirtinger type inequalities
given below:

Theorem 1.1 (Wirtinger’s Inequality). For any function y € C1[0,1] such that
y(0) =y(1) =0,

we have
1 1
Jwwraz= [y
0 0

Remark 1.2. Although Fourier series are used for the proof of Theorem 1.1, this proof
also can be made with Schwarz inequality. Then, in the second case, we have inequality

/(y’(t))th > /yz(t)dt, (1.1)
0 0

where condition y(1) = 0 is not needed.

In 1975, Hinton and Lewis [14] gave a generalized Wirtinger type inequality
using Schwarz inequality:
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Theorem 1.3. For any positive M € C'([a,b]) with M'(t) # 0, and y € C([a,b]) with
y(a) = y(b) = 0, we have

/ﬁi(gl = 4/'M' v

a

In 1999, Pena [19] gave the discrete analogue of the inequality established by
Hinton and Lewis:

Theorem 1.4. For a positive sequence {Mn}0<n<N+1 satisfying either AM > 0 or
AM <0 on[0,NINZ

N
MMn+1
JANTS >— AM,

holds for any sequence {yn}0<n<1\,+1 with yo = yn+1 = 0, where

1/272
v (anans) | (anmn)
=( su sup ————
7 O<n£N Mn+1 OSnEN |AMTL+1|
For more discussion about the Wirtinger inequality, see [13, 16, 22] and references
cited therein.

2. Preliminaries

In this section, we give basic definitions and fundamental results for conformable
fractional operators, so the paper is self-contained.

Definition 2.1. The conformable fractional derivative of a function f : [0,00) — R of
order 0 < o < 1 is defined by

L)l L) =)

e—0 I3

for all ¢ > 0.

We note that if the conformable fractional derivative of function f of order «
exists, we say f is a-differentiable.

Theorem 2.2. Let o € (0,1] and functions f and g be a-differentiable at point t > 0.
Then following properties are hold:

(1) Tolaf +bg)(t) = aTa(f)(t) + bTa(g)(t), for all a,b € R.
(#1) To(t™) = mt™~, for all m € R.

(#i1) To(c) =0, for all constant functions f(t) = c.

(

(

0,
w) Ta(f9)(t) = g(t)Ta (f)(t) + f (1) Ta(g)(t)-

0T, ( ) () = 9(O)Ta(f)(1) = F(O)Tal9)(?)

(9(1))?

(vi) If, in addition, f is differentiable, then T, (f)(t) =

df
o2
dt
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Now, we give conformable fractional derivative of some functions:
1) T, (t™) = mt™~ <, for all m € R.

6) Tn(cosat) = —at'~*sinat, a € R.

)

) Ta(

) Ta(

) Tal ~

5) Ty (sinat) = at'~*cosat, a € R.
) Tal =

) To(sin 1t*) = cos L=

) Tal )

= —gin 1¢@.
«

Definition 2.3. The conformable fractional integral of a function f : [0,00) — R of
order 0 < o < 1 is defined by

@ =1 = [ s,

a

where the integral is the usual Riemann improper integral, and « € (0,1).

Theorem 2.4. T,I%(f)(t) = f(t), for t > a, where f is any continuous function in
the domain of 1.

Example 2.5. For a = 0 and o = 1/2, the conformable integral of function

f(t) = Vtcost

is
t

I?/Q(\/icost) = /cossds = sint.
0

For more information and applications on conformable fractional operators, we
refer to [1, 6, 15, 21] and papers cited therein.

3. Wirtinger type inequalities
In this section, we will state Wirtinger type inequalities using conformable frac-
tional operators.
We start giving the fractional analogue of the inequality given in (1.1).
Theorem 3.1. For any function f € C“([a,b]) such that f(a) =0, we have
b

O[2 /
[T = o [0 (31)

a

where C represents the family of a—differentiable functions, and fjg(s)das denotes
the conformable fractional integral.
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Proof. From [1], we know
15T f(t) = (1) — f(a).
Using the condition f(a) =0, we have f(t) = I¢T,f(t), so on

(03

D) < / (T £(5)] docs.

Applying Schwarz inequality to the right side of (3.2), we find

. 12, 1/2
( / das> ( / |Taf<s>|2das)

g2 [ g i
(<) (/ |Taf<s>|2das)

(o> — a‘l)l/2 / .
Co | e

()]

IA

IA

39

(3.3)

After squaring the inequality (3.3) and taking its conformable integral from a to b,

the desired result is obtained.

O

Secondly, we state the fractional analogue of the inequality given in Theorem 1.3.

Theorem 3.2. For any positive function M € C* ([a, b)) satisfying either To,[M(t)] > 0

or T,[M(t)] <0 on [a,b], we have

b
Mz()
) D1 T pacy (el O) dat 2 5 /'T “(Bdat

for any function y € C* ([a, b]) with y(a) = y(b) = 0.
Proof. Suppose that T,[M(t)] > 0. Then we have

b b
= M(b)y*(b) — M(a)y*(a) — Q/M(t)y(t)Ta[y(t)]dat = —2/M(t)y(t)Ta

b b
<2 [ MO WOT O dot =2 [\ 20 1T o) VBT (e

(3.4)

)| dat.
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Using Schwarz inequality, we have

I = / T [M ()] 32 (t)dot
a
[ Ny -
M=t 2
< 2 /7Tayt dat /TaMty2tdat
Tty Telvo) (M ()] (0)
a a
= 2 11]27
where
b
M?2(t) 2
I :/7 Tuly(t)])? dat.
) ey T
Dividing both sides of the above inequality by /I;, we obtain
VI <2V
Hence )
IQ 2 le
The proof is complete. O

Remark 3.3. If we take & = 1 in (3.1), we have
b

b
Juroraz o= [iroPa,

a

a =0, b=1 with a =1, we have

IF@)Fdt > [ |F@)] dt,
firora= |

and this is the inequality given in (1.1).
Secondly, if we take a =1 in (3.4), we have

b

b
M2(t) / 2 1 , 2
/ |M(¢))| (y'(¢)"dt > 4a/M (t)y*(t)dt,

a

i.e., we have the inequality given in Theorem 1.3.

References
[1] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015),
57-66.

[2] Agarwal, R.P., Difference Equations and Inequalities. Theory, Methods, and Applica-
tions, Marcel Dekker, 1992.



Wirtinger type inequalities via fractional integral operators 41

[3] Agarwal, R.P., O’Regan, D., Saker, S., Dynamic Inequalities on Time Scales, Springer,
2014.

[4] Akin, E., Ashiytice, S., Giivenilir, A.F., Kaymakcalan, B., Discrete Griiss type inequality
on fractional calculus, J. Inequal. Appl., (2015), 2015:174, 7 pp.

[5] Anastassiou, G.A., Multivariate fractional representation formula and Ostrowski type
inequality, Sarajevo J. Math., 22(2014), no. 1, 27-35.

[6] Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open
Math., 13(2015), 889-898.

[7] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J., Fractional Calculus. Models and
Numerical Methods. Series on Complexity, Nonlinearity and Chaos, World Scientific
Publishing, 2012.

[8] Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Griiss type for double integrals,
Stud. Univ. Babes-Bolyai Math., 62(2017), no. 2, 163-173.

[9] Diethelm, K., The Analysis of Fractional Differential Equations. An Application-
Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, 2010.

[10] Ferreira Rui, A.C., A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc.,
140(2012), no. 5, 1605-1612.

[11] Giivenilir, A.F., Kaymakgalan, B., Peterson, A.C., Tas, K., Nabla discrete fractional
Griiss type inequality, J. Inequal. Appl., (2014), 2014:86, 9 pp.

[12] Hardy, G.H., Littlewood, J.E., Pélya, G., Inequalities, Cambridge University Press, 1988.

[13] Hilscher, R., A time scales version of a Wirtinger-type inequality and applications. Dy-
namic equations on time scales, J. Comput. Appl. Math., 141(2002), no. 1-2, 219-226.

[14] Hinton, D.B., Lewis, R.T., Discrete spectra criteria for singular differential operators
with middle terms, Math. Proc. Cambridge Philos. Soc., 77(1975), 337-347.

[15] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional
derivative, J. Comput. Appl. Math., 264(2014), 65-70.

[16] Liu, K., Fridman, E., Wirtinger’s inequality and Lyapunov-based sampled-data stabiliza-
tion, Automatica J. IFAC, 48(2012), no. 1, 102-108.

[17] Mitrinovié, D.S., Pecarié, J.E., Fink, A.M., Classical and New Inequalities in Analysis,
Kluwer Academic Publishers, 1993.

[18] Pachpatte, B.G., Mathematical Inequalities, Elsevier B.V., 2005.

[19] Pena, S., Discrete spectra criteria for singular difference operators, Math. Bohem.,
124(1999), no. 1, 35-44.

[20] Podlubny, 1., Fractional Differential Equations. An Introduction to Fractional Deriva-
tives, Fractional Differential Equations, to Methods of Their Solution and Some of Their
Applications, Academic Press, 1999.

[21] Sarikaya, M.Z., Gronwall type inequalities for conformable fractional integrals, Konuralp
J. Math., 4(2016), no. 2, 217-222.

[22] Seuret, A., Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay
systems, Automatica J. IFAC, 49(2013), no. 9, 2860-2866.



42 Serkan Asliyiice

Serkan Asliyiice

Amasya University

Faculty of Sciences and Arts

05100 Ipekkdy, Amasya, Turkey

e-mail: serkan.asliyuce@amasya.edu.tr, s.asliyuce@gmail.com



