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1. Introduction

As it is well known, there are two main types of dynamical systems: differential
equations and discrete-time equations. Differential equation describes the continuous
time evaluation of the system, whereas discrete-time equation describes the discrete
time evaluation of the system. The theory of discrete dynamical systems and difference
equations developed greatly during the last decades (see [8, 18, 34] and references cited
there).

In 1969, F.S. de Blasi and F. Iervolino [5] begun studying of set-valued differential
equations in semilinear metric spaces. Later, the development of calculus in metric
spaces became an object of attention of many researchers (see [7, 19, 20, 22, 30,
31, 27, 32, 40] and the references therein) and transformed into the theory of set-
valued equations as an independent discipline. Set-valued equations are useful in other
areas of mathematics. For example, set-valued differential equations are used as an
auxiliary tool to prove the existence results for differential inclusions [19, 22, 27, 40].
Also, one can employ set-valued differential equations in the investigation of fuzzy
differential equations [20, 30]. Moreover, set-valued differential equations are a natural
generalization of usual ordinary differential equations in finite (or infinite) dimensional
Banach spaces [40]. Clearly, in many cases, when modeling real-world phenomena,
information about the behavior of a dynamical system is uncertain and one has to
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consider these uncertainties to gain better understanding of the full models. The set-
valued equations can be used to model dynamical systems subjected to uncertainties.

This article deals with discrete set-valued dynamical systems, where time is
measured by the number of iterations carried out, the dynamics are not continuous and
values at each iteration is a set. In applications this would imply that the solutions are
observed at discrete time intervals and also under uncertainty or interference effects
[9, 13, 24, 35, 36, 38, 41]. Recurrence relations can be used to construct mathematical
models of discrete systems under uncertainty. They are also used extensively to solve
many differential equations with set-valued right-hand side which do not have an
analytic solution; the set-valued differential equations are represented by recurrence
relations (or difference equations) that can be solved numerically on a computer [1,
4, 24, 41].

Averaging theory for ordinary differential equations has a rich history, dating to
back to the work of N.M. Krylov and N.N. Bogoliubov [17]. Also is well known, the
averaging methods combined with the asymptotic representations began to be applied
as the basic constructive tool for solving the complicated problems of analytical dy-
namics described by the differential equations [3, 27, 37] and the references therein.
The possibility of using some averaging schemes for set-valued equations was studied
in [11, 12, 14, 15, 16, 22, 23, 25, 30, 26, 29, 27, 39]. Throughout the years, many
authors have published papers on averaging methods for different kinds of differential
systems and discrete-time system [2, 21, 28]. The bulk of this article is concerned with
the averaging method for nonlinear discrete-time set-valued systems.

2. Preliminaries

Let conv(Rn) be a space of all nonempty convex compact subsets of Rn with
the Hausdorff metric

h(A,B) = min
r≥0
{B ⊂ Sr(A), A ⊂ Sr(B)}

where A,B ∈ conv(Rn), Sr(A) be a r-neighborhood of the set A.
The usual set operations, i.e., well-known as Minkowski addition and scalar

multiplication, are defined as follows

A+B = {a+ b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A, λ ∈ R}.

Lemma 2.1. [32] The following properties hold:

1. (conv(Rn), h) is a complete metric space,
2. h(A+ C,B + C) = h(A,B),
3. h(λA, λB) = |λ|h(A,B) for all A,B,C ∈ conv(Rn) and λ ∈ R.

For any A ∈ conv(Rn), it can be seen A + (−1)A 6= {0} in general, thus the
opposite of A is not the inverse of A with respect to the Minkowski addition unless
A = {a} is a singleton. To partially overcome this situation, the Hukuhara difference
has been introduced [10].

Definition 2.2. [10] Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z
is called a Hukuhara difference of the sets X and Y and is denoted by X hY.
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An important property of Hukuhara difference is that AhA = {0}, ∀A ∈
conv(Rn) and (A + B)hB = A, ∀A,B ∈ conv(Rn); Hukuhara difference is unique,

but a necessary condition for AhB to exist is that A contains a translate {c}+B of
B.

Now consider the non-autonomous set-valued discrete-time equations

Xi+1 = Xi + F (i,Xi), (2.1)

and

Xi+1 = Xi
h
F (i,Xi), (2.2)

where i ∈ I = {0, 1, ..., N}, Xi ∈ conv(Rn), F : I × conv(Rn) → conv(Rn). If
one starts with an initial value, say, X0, then iteration of (2.1) (or (2.2)) leads to a
sequence of the form

{Xi : i = 0 toN} = {X0, X1, ..., XN}.

Definition 2.3. A solution to the set-valued discrete-time equation (2.1) (or (2.2)) is a
discrete-time set-valued trajectory, {Xi}Ni=0, that satisfies this equation at any point
i ∈ I.

Remark 2.4. It is obvious that the solution of (2.1) exists for any X0 ∈ conv(Rn) and
I.

Remark 2.5. Obviously, the differences in (2.2) may not always exist. For example,

1) let n ≥ 1, X0 = {a ∈ Rn : ‖a‖ ≤ 1}, F (i,Xi) = (i+ 2)Xi, i.e. F (0, X0) = {b ∈
Rn : ‖b‖ ≤ 2}. In this case, the difference in (2.2) does not exist for i = 0;

2) let n = 2, X0 = {a ∈ R2 : |ak| ≤ 1, k = 1, 2},

K(i) =

(
cos(i+ 1) sin(i+ 1)
−sin(i+ 1) cos(i+ 1)

)
,

F (i,Xi) = K(i)Xi. Also, the difference in (2.2) does not exist for i = 0.

Let CC(Rn) (n ≥ 2) be a space of all nonempty strictly convex closed sets of
Rn and all elements of Rn [33].

Remark 2.6. If A,B ∈ CC(Rn) and A+ C = B then C ∈ CC(Rn) [33].

Remark 2.7. If A,B ∈ CC(Rn) and there exists c ∈ Rn such that A + c ⊂ B, then
there exists C ∈ CC(Rn) such that A+ C = B, i.e. C = B hA [33].

Then the following theorem holds.

Theorem 2.8. Let the following conditions hold:
1) F (i,X) ∈ CC(Rn) for any i ∈ I and X ∈ CC(Rn);
2) the following inequality

|C(X,ψ) + C(X,−ψ)| ≥ |C(F (i,X), ψ) + C(F (i,X),−ψ)|
holds for all ψ ∈ Rn (‖ψ‖ = 1), i ∈ I and X ∈ CC(Rn), where

C(A,ψ) = max
a∈A

(a1ψ1 + ...+ anψn), A ∈ CC(Rn).

Then the solution of (2.2) exists for any X0 ∈ CC(Rn) and I.
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Proof. We put any set X0 ∈ CC(Rn). By condition 1) of the theorem, we have
F (0, X0) ∈ CC(Rn). By condition 2) of the theorem, we obtain

|C(X0, ψ) + C(X0,−ψ)| ≥ |C(F (0, X0), ψ) + C(F (0, X0),−ψ)|
for all ψ ∈ Rn, ‖ψ‖ = 1. Then, there exists c ∈ Rn such that F (0, X0) + c ⊂ X0

[33]. By remark 2.7, we have the set C ∈ CC(Rn) such that F (0, X0) + C = X0.
Therefore, X1 = C = X0

hF (0, X0) and X1 ∈ CC(Rn). Further, applying the method

of mathematical induction, we obtain Xi+1 = Xi
hF (i,Xi) and Xi+1 ∈ CC(Rn) for

all i ∈ I. The theorem is proved. �

3. The method of averaging

Now consider the non-autonomous set-valued discrete-time equations with a small
parameter

Xi+1 = Xi + εF (i,Xi), (3.1)

and

Xi+1 = Xi
h
εF (i,Xi), (3.2)

where ε > 0 be a small parameter, L > 0 is any real number, N = [Lε−1], [·] is floor
function.

3.1. Case (3.1).

In the beginning we consider the equation (3.1). We associate with the equation
(3.1) the following averaged set-valued discrete-time equation with a small parameter

Xi+1 = Xi + εF (i,Xi), (3.3)

where F (i,X) such that

lim
n→∞

h

(
1

n

n−1∑
i=0

F (i,X),
1

n

n−1∑
i=0

F (i,X)

)
= 0. (3.4)

The main theorem of this subsection is on averaging for set-valued discrete-time
equation with a small parameter. It establishes nearness of solutions of (3.1) and (3.3),
and reads as follows.

Theorem 3.1. Let in the domain Q = { (i,X) : i ∈ I,X ⊂ B ⊂ Rn } the following
conditions hold:

1) mappings F (i,X) and F (i,X) satisfy a Lipschitz condition, i.e. there is a
constant λ > 0 such that

h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”), h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”),

whenever (i,X ′), (i,X”) ∈ Q;
3) there exists γ > 0 such that h(F (i,X), {0}) ≤ γ, h(F (i,X), {0}) ≤ γ for

every (i,X) ∈ Q;
4) limit (3.4) exists uniformly with respect to X in the domain B;
5) the solution of the problem (3.3) together with a ρ−neighborhood belong to the

domain B for ε ∈ (0, ε̄].
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Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈ (0, ε̄] such that for all
ε ∈ (0, ε0] and i ∈ I the following inequality holds

h(Xi, Xi) < η (3.5)

where {Xi}Ni=0, {Xi}Ni=0 are the solutions of initial and averaged problems.

Proof. We write the equations (3.1) and (3.3) in the form

Xi+1 = X0 + ε

i∑
j=0

F (j,Xj), (3.6)

Xi+1 = X0 + ε

i∑
j=0

F (j,Xj). (3.7)

By (3.6) and (3.7), we have

h(Xi+1, Xi+1) = h

ε i∑
j=0

F (j,Xj), ε

i∑
j=0

F (j,Xj)


≤ ε

i∑
j=0

h(F (j,Xj), F (j,Xj)) + εh

 i∑
j=0

F (j,Xj),

i∑
j=0

F (j,Xj)


≤ λε

i∑
j=0

h(Xj , Xj) + φ, (3.8)

where

φ = εh

 i∑
j=0

F (j,Xj),

i∑
j=0

F (j,Xj)

 .

Now we will estimate φ on I. Divide the interval I into partial intervals by the points
tk = kl(ε), k = 0,m, tm−1 < Lε−1 ≤ tm, where l(ε) is integer and

lim
ε→0

l(ε) =∞, lim
ε→0

εl(ε) = 0. (3.9)

Let kl(ε) < i ≤ (k + 1)l(ε). Then we have

φ = εh

 i∑
j=0

F (i,Xi),

i∑
j=0

F (j,Xj)


≤ ε

k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xj)


+εh

 i∑
j=kl(ε)

F (j,Xj),

i∑
j=kl(ε)

F (j,Xj)


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≤ ε
k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xζl(ε))


+ε

k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε)),

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε))


+ε

k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=hζ+1

F (j,Xζl(ε)),

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xj)


+ε

i∑
j=kl(ε)

h(F (j,Xj), F (j,Xj)). (3.10)

Now we will estimate terms in (3.10)

εh

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xζl(ε))


≤ ε

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

h(F (j,Xj), F (j,Xζl(ε))) ≤ λ
(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

h(Xj , Xζl(ε))

≤ ε2 λ
(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

j−1∑
r=kζ

∥∥F (Xj)
∥∥ ≤ ε2λγl(ε)2/2. (3.11)

Also, we obtain

εh

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε))

 ≤ ε2λγl(ε)2/2. (3.12)

Obviously,

ε

i∑
j=kl(ε)

δ(F (j,Xkl(ε)), F (j,Xkl(ε))) ≤ 2εγl(ε). (3.13)

From the condition 4) of the theorem there exists an increasing function µ(l), such
that

1) lim
t→∞

µ(t) = 0;

2) ε
k−1∑
ζ=0

h

(
(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε)),
(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε))

)
≤ mεl(ε)µ(l(ε)) ≤ Lµ(l(ε)). (3.14)

Combining (3.10) – (3.14), we obtain

φ ≤ εl(ε)γ(λL+ 2) + Lµ(l(ε)). (3.15)

By (3.9), we take ε0 ∈ (0, ρ] such that

eλL[εl(ε)γ(λL+ 2) + Lφ(l(ε))] < η (3.16)
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for all ε ∈ (0, ε0].

From (3.8), (3.15), (3.16) we obtain (3.5). The theorem is proved. �

Remark 3.2. If F (i,Xi) = ∆ · G(t0 + i∆, Xi), G : R × conv(Rn) → conv(Rn),
Xi = X(t0 + i∆), discrete-time equation (2.1) is a Euler polygonal curve for the
differential equation with Hukuhara derivative [6]

DhX(t) = G(t,X(t)), X(t0) = X0,

where X : R → conv(Rn) is set-valued mapping, DhX(t) is Hukuhara derivative
[6, 10]. Thus, Theorem 3.1 is a discrete analogue of the first Bogolyubov theorem for
a differential equation with derivative Hukuhara [15, 16, 25, 30, 27].

3.2. Case (3.2).

We associate with the equation (3.2) the following averaged set-valued discrete-
time equation with a small parameter

Xi+1 = Xi
h
εF (i,Xi), (3.17)

where F (i,X) such that limit (3.4) exists.

Theorem 3.3. Let in the domain Q = { (i,X) : i ∈ I,X ∈ CC(Rn), X ⊂ B ⊂ Rn }
the following conditions hold:

1) mappings F (i,X), F (i,X) ∈ CC(Rn) for any (i,X) ∈ Q;

2) the inequality

|C(X,ψ) + C(X,−ψ)| ≥ |C(εF (i,X), ψ) + C(εF (i,X),−ψ)|,

|C(X,ψ) + C(X,−ψ)| ≥ |C(εF (i,X), ψ) + C(εF (i,X),−ψ)|
are true for all ψ ∈ Rn (‖ψ‖ = 1), ε ∈ (0, ε̄], i ∈ I and X ⊂ B;

3) mappings F (i,X) and F (i,X) satisfy a Lipschitz condition

h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”), h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”),

with a Lipschitz constant λ > 0;

4) there exists γ > 0 such that h(F (i,X), {0}) ≤ γ, h(F (i,X), {0}) ≤ γ for
every (i,X) ∈ Q;

5) limit (3.4) exists uniformly with respect to X in the domain B;

6) the solution of the problem (3.17) together with a ρ−neighborhood belong to
the domain B for ε ∈ (0, ε̄].

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈ (0, ε̄] such that for all
ε ∈ (0, ε0] and i ∈ I the inequality (3.5) holds.

Proof. We write the equations (3.2) and (3.17) in the form

Xi+1 = X0
h
ε

i∑
j=0

F (j,Xj), and Xi+1 = X0
h
ε

i∑
j=0

F (j,Xj). (3.18)
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By (3.18), we have

h(Xi+1, Xi+1) = h

ε i∑
j=0

F (j,Xj), ε

i∑
j=0

F (j,Xj)

 .

Further, Theorem 3.3 is proved similarly to Theorem 3.1. This concludes the proof. �

Remark 3.4. If F (i,X) ≡ F (X), i.e.

lim
n→∞

h

(
1

n

n−1∑
i=0

F (i,X),
1

n

n−1∑
i=0

F (X)

)
= 0,

then the validity of the full averaging scheme for (3.1) and (3.2) follows from the
theorems 3.1 and 3.3.
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