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Variable Hardy and Hardy-Lorentz spaces and
applications in Fourier analysis

Ferenc Weisz

Abstract. We summarize some results about the variable Hardy and Hardy-
Lorentz spaces Hp(·)(Rd) and Hp(·),q(Rd) and about the θ-summability of multi-
dimensional Fourier transforms. We prove that the maximal operator of the θ-
means is bounded from Hp(·)(Rd) to Lp(·)(Rd) and from Hp(·),q(Rd) to Lp(·),q(Rd).
This implies some norm and almost everywhere convergence results for the Riesz,
Bochner-Riesz, Weierstrass, Picard and Bessel summations.
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1. Introduction

It was proved in Stein, Taibleson and Weiss [27] that the Bochner-Riesz means

σαT f(x) :=

∫ T

−T

(
1−

(
|t|
T

)2
)α

f̂(t)e2πıxt dt (x ∈ R, T > 0)

converge almost everywhere to f , whenever the one-dimensional function f ∈ Lp(Rd)
(1 ≤ p < ∞, 0 < α < ∞). Here f̂ denotes the Fourier transform of f . Moreover, the
maximal operator σθ∗ of the Bochner-Riesz means is bounded from the Hardy space
Hp(R) to Lp(R) if p > 1/(α+ 1) (see also Grafakos [12] and Lu [20] or Weisz [33]).

In this paper, we generalize these results to multi-dimensional functions, to
Lebesgue and Hardy spaces with variable exponents and to a general method of
summation, to the θ-summability. The θ-summation is generated by a single function
θ and includes all well known summations. This topic is studied intensively in the lit-
erature (see e.g. Butzer and Nessel [2], Trigub and Belinsky [29], Gát [8, 9], Goginava
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[10, 11], Persson, Tephnadze and Wall [22], Simon [24, 25] and Feichtinger and Weisz
[7, 31, 32, 33] and the references therein).

Let p(·) : Rn → (0,∞) be a variable exponent function satisfying the globally
log-Hölder condition and 0 < q ≤ ∞. We introduce the variable Lebesgue, Lorentz,
Hardy and Hardy-Lorentz spaces Lp(·)(Rd), Lp(·),q(Rd), Hp(·)(Rd) and Hp(·),q(Rd).
These spaces are investigated very intensively in the literature nowadays (see e.g.
Cruz-Uribe and Fiorenza [5], Diening at al. [6], Kempka and Vybral [16], Nakai and
Sawano [21, 23], Jiao at al. [14, 15], Yan at al. [35] and Liu at al. [18, 19]). We give
the atomic decomposition of these Hardy spaces just mentioned. If p(·) is a constant,
then we get back the classical Lebesgue and Hardy spaces. Under some conditions on
θ, we will prove that the maximal operator σθ∗ is bounded from Hp(·)(Rd) to Lp(·)(Rd)
and from Hp(·),q(Rd) to Lp(·),q(Rd) for all p(·) > p0. As a consequence, we obtain
some norm and almost everywhere convergence results for the θ-means. As special
cases of the θ-summation, we consider the Riesz, Bochner-Riesz, Weierstrass, Picard
and Bessel summations. This paper was the base of my talk given at the 12th Joint
Conference on Mathematics and Computer Science, Cluj-Napoca, June 2018.

2. θ-summability of Fourier transforms

For a constant p, the Lp(Rd) space is equipped with the quasi-norm

‖f‖Lp(Rd) :=

(∫
Rd

|f(x)|p dx
)1/p

(0 < p <∞),

with the usual modification for p =∞. Here we integrate with respect to the Lebesgue
measure λ. The Lebesgue measure of a set H will be denoted also by |H|.

The Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(x) :=

∫
Rd

f(t)e−2πıx·t dt (x ∈ Rd),

where ı =
√
−1 and x · t :=

∑d
k=1 xktk. Suppose first that f ∈ Lp(Rd) for some

1 ≤ p ≤ 2. The Fourier inversion formula

f(x) =

∫
Rd

f̂(t)e2πıx·t dt (x ∈ Rd)

holds if f̂ ∈ L1(Rd). This motivates the definition of the Dirichlet integral sT f defined
by

sT f(x) :=

∫
Rd

χ{|t|≤T}f̂(t)e2πıx·t dt (x ∈ Rd). (2.1)

It is known that, when d = 1 and 1 < p < ∞, for any one-dimensional function
f ∈ Lp(R),

lim
T→∞

sT f = f in the Lp(R)-norm and almost everywhere. (2.2)

The almost everywhere convergence result in (2.2), due to Carleson [3] and Hunt [13]
(see also Grafakos [12]), is one of the deepest results in harmonic analysis. It is also
known that the convergence in (2.2) does not hold true for any higher dimensional
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function f ∈ Lp(Rd), except the norm convergence for p = 2 (see Stein and Weiss
[28] or Grafakos [12]). On the other hand, the convergence in (2.2) does not hold true
for p = 1 even when d = 1. This motivates one to replace the Dirichlet integrals by
some summability means, which are defined via replacing the characteristic function in
(2.1) by various functions with higher regularity. Via this replacement of the Dirichlet
integrals by some summability means, we will extend (2.2) to the case p ≤ 1.

Now we introduce the definition of θ-summability, which is a general summation
generated by a single function θ : [0,∞)→ R. Let θ0(x) := θ(|x|) and suppose that

θ ∈ C0[0,∞), θ(0) = 1, θ0 ∈ L1(Rd), θ̂0 ∈ L1(Rd), (2.3)

where C0[0,∞) denotes the spaces of continuous functions vanishing at infinity and |·|
denotes the Euclidean norm. For T > 0, the T th θ-mean of the function f ∈ Lp(Rd)
(1 ≤ p ≤ 2) is given by

σθT f(x) :=

∫
Rd

θ

(
|t|
T

)
f̂(t)e2πıx·t dt (x ∈ Rd, T > 0).

This integral is well defined because θ0 ∈ Lp(Rd) and f̂ ∈ Lp′(Rd), where

1/p+ 1/p′ = 1.

For an integrable function f , it is known that we can rewrite σθT f as

σθT f(x) =

∫
Rd

f(x− t)Kθ
T (t) dt = f ∗Kθ

T (x) (x ∈ Rd, T > 0),

where ∗ denotes the convolution and the T th θ-kernel is given by

Kθ
T (x) :=

∫
Rd

θ

(
|t|
T

)
e2πıx·t dt = T dθ̂0(Tx) (x ∈ Rd, T > 0).

We can extend the θ-means to all function spaces investigated in this paper by

σθT f := f ∗Kθ
T (T > 0).

The maximal θ-operator is introduced by

σθ∗f := sup
T>0

∣∣σθT f ∣∣ .
3. One-dimensional Hardy spaces Hp(R)

For a Schwartz function ψ ∈ S(R) with
∫
R ψ dλ 6= 0 and a tempered distribution

f ∈ S′(R) let the maximal function f+ be defined by

f+(x) := sup
0<t<∞

|(f ∗ ψt)(x)| (x ∈ R),

where

ψt(x) := t−1ψ(x/t) (t > 0).

A tempered distribution f ∈ S′(Rd) is in the Hardy spaces Hp(R) (0 < p ≤ ∞) if

‖f‖Hp(R) := ‖f+‖Lp(R) <∞.
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For different Schwartz functions ψ, we get the same Hardy space with equivalent
norms. The following theorem is well known (see e.g. Stein [26] or Weisz [33]).

Theorem 3.1. If 1 < p ≤ ∞, then the Hardy space Hp(R) is equivalent to Lp(R), i.e.,

Hp(R) ∼ Lp(R).

The atomic decomposition is a useful characterization of the Hardy spaces by
the help of which some boundedness results, duality theorems, inequalities and in-
terpolation results can be proved. The atomic decomposition of Hardy spaces were
proved e.g. in Latter [17], Lu [20], Wilson [34], Stein [26] and Weisz [33].

Definition 3.2. Let 0 < p < ∞ and fix an integer 1/p − 1 < s < ∞. A measurable
function a is called a p-atom if there exists an interval B ⊂ R such that

(a) supp a ⊂ B,

(b) ‖a‖L∞(R) ≤ |B|−1/p,
(c)

∫
R a(x)xαdx = 0 for all natural numbers α ≤ s.

Every function from the Hardy space Hp(R) (0 < p ≤ 1) can be decomposed
into the sum of atoms.

Theorem 3.3. Let 0 < p ≤ 1. A tempered distribution f ∈ S′(R) is in Hp(R) if and
only if there exist a sequence {ai}i∈N of p-atoms and a sequence {λi}i∈N of positive
numbers such that

f =
∑
i∈N

λiai in S′(R).

Moreover,

‖f‖Hp(R) ∼ inf

(∑
i∈N

λpi

)1/p

, (3.1)

where the infimum is taken over all decompositions of f as above.

In the present form the theorem does not hold for 1 < p <∞ and it cannot be
extended to variable Hardy spaces. However, using the following ideas, we will extend
the atomic decomposition to all 0 < p < ∞ and to variable Hardy spaces in Section
5. First of all observe that (ii) of Definition 3.2 is the same as

‖a‖L∞(R) ≤
1

‖χB‖Lp(R)
.

Secondly, for 0 < p ≤ 1, (3.1) can be written as

‖f‖Hp(R) ∼ inf

(∑
i∈N

λpi

)1/p

= inf

∥∥∥∥∥∥
(∑
i∈N

(
λiχBi

‖χBi
‖Lp(R)

)p)1/p
∥∥∥∥∥∥
Lp(R)

,

where Bi is the support of the p-atom ai. This form of the atomic decomposition can
already be extended to variable Hardy spaces.

It is an important problem as to whether a sublinear operator V is bounded
from the Hardy space Hp(R) to Lp(R). If this boundedness holds for at least one p
with p < 1 and for at least one p with p > 1, then we obtain by interpolation that V
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is of weak type (1, 1), which is a basic inequality in harmonic analysis. The following
(falls) theorem can be found several times in the literature.

Theorem 3.4. Suppose that 0 < p ≤ 1, V is a sublinear operator and

‖V a‖Lp(R) ≤ Cp (3.2)

for all p-atoms a. Then

‖V f‖Lp(R) ≤ Cp‖f‖Hp(R) (f ∈ Hp(R)).

Here, we give a typical proof of this theorem. Usually, we take an atomic decom-
position

f =
∑
i∈N

λiai,

where each ai is a p-atom and(∑
i∈N

λpi

)1/p

≤ Cp‖f‖Hp(R).

Then

|V f | ≤
∑
i∈N

λi|V ai| (3.3)

and

‖V f‖pp ≤
∑
i∈N

λpi ‖V ai‖
p
p ≤ Cp‖f‖

p
Hp(R) (0 < p ≤ 1).

The problem is that this proof is falls because the inequality (3.3) does not necessarily
hold. Indeed, Bownik [1] have given an operator V for which (3.3) and Theorem 3.4
do not hold.

Now we present one correct version of Theorem 3.4 (see Weisz [33]). In summa-
bility theory, we investigate often the operators

Vtf(x) = f ∗Kt(x) :=

∫
R
f(u)Kt(x− u) du (t > 0),

where Kt ∈ L1(R) are summability kernels. Then Vt : L1(R) → L1(R) are bounded
linear operators. Set

V∗f := sup
t>0
|Vtf |.

Let us denote by 2I the interval with the same center as I and the radius of 2I is two
times the radius of I.

Theorem 3.5. Let 0 < p ≤ 1, Kt ∈ L1(R) and Vtf = f ∗Kt. Suppose that∫
R\2B

|V∗a|p dλ ≤ Cp (3.4)

for all p-atoms a with support B. If V∗ is bounded from L∞(R) to L∞(R), then

‖V f‖Lp(R) ≤ Cp‖f‖Hp(R) (f ∈ Hp(R)).
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It is easy to see that (3.4) implies (3.2). Indeed, using (ii) of Definition 3.2 and
the boundedness of V∗ on L∞(R), we obtain∫

R
|V∗a|p dλ ≤

∫
2B

|V∗a|p dλ+ Cp ≤ Cp.

One of the most investigated summability is the Bochner-Riesz summability,
defined by

θ0(t) =

{
(1− |t|2)α, if |t| > 1;
0, if |t| ≤ 1

(t ∈ R),

where 0 < α <∞. It was introduced already in the Introduction. The next result was
proved in Stein, Taibleson and Weiss [27], Grafakos [12] and Lu [20]. [27] contains a
counterexample which shows that the theorem is not true for p ≤ 1/α+ 1.

Corollary 3.6. If 1
α+1 < p <∞, then for the Bochner-Riesz means we have∥∥σθ∗f∥∥Lp(R)

. ‖f‖Hp(R) (f ∈ Hp(R)).

In the next sections, we will generalize these theorems to higher dimensional
functions and to Hardy spaces with variable exponents.

4. Variable Lebesgue and Lorentz spaces

We are going to generalize the Lp(R) spaces. A measurable function p(·) : Rd →
(0,∞) is called a variable exponent if

0 < p− := ess inf
x∈Rd

p(x) and p+ := ess sup
x∈Rd

p(x) <∞.

The variable Lebesgue space Lp(·)(Rd) contains all measurable functions f , for which

‖f‖Lp(·)(Rd) := inf

{
ρ ∈ (0,∞) :

∫
Rd

(
|f(x)

ρ

)p(x)
dx ≤ 1

}
<∞.

If p(·) is a constant, then we get back the Lp(Rd) spaces. Usually, we cannot compute
exactly the Lp(·)(Rd)-norm of a function or even of a characteristic function. However,
we know the following inequalities due to Cruz-Uribe and Fiorenza [5, Corollary 2.23]:(∫

Rd

|f(x)|p(x) dx
)1/p+

≤ ‖f‖Lp(·)(Rd) ≤
(∫

Rd

|f(x)|p(x) dx
)1/p−

if ‖f‖Lp(·)(Rd) ≥ 1 and(∫
Rd

|f(x)|p(x) dx
)1/p−

≤ ‖f‖Lp(·)(Rd) ≤
(∫

Rd

|f(x)|p(x) dx
)1/p+

if ‖f‖Lp(·)(Rd) ≤ 1.
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We denote by C log(Rd) the set of all variable exponents p(·) satisfying the so-
called globally log-Hölder continuous condition, namely, there exist two positive con-
stants Clog(p) and C∞, and p∞ ∈ R such that, for any x, y ∈ Rd,

|p(x)− p(y)| ≤ Clog(p)

log(e+ 1/|x− y|)
(4.1)

and

|p(x)− p∞| ≤
C∞

log(e+ |x|)
.

It is easy to see that a Lipschitz function of order α (0 < a ≤ 1) satisfies (4.1).

Given a locally integrable function f , the Hardy-Littlewood maximal operator M
is defined by

Mf(x) := sup
x∈B

1

|B|

∫
B

|f(y)|dy (x ∈ Rd),

where the supremum is taken over all balls B of Rd containing x. It is known that M
is bounded on Lp(Rd) if 1 < p < ∞ and is of weak type (1, 1). This is extended to
the variable Lebesgue spaces as follows (Cruz-Uribe and Fiorenza [5, Theorem 3.16]).

Theorem 4.1. Suppose that p(·) ∈ C log(Rd) and f ∈ Lp(·)(Rd). If p− ≥ 1, then

sup
ρ∈(0,∞)

(
ρ
∥∥χ{x∈Rd:Mf(x)>ρ}

∥∥
Lp(·)(Rd)

)
≤ ‖f‖Lp(·)(Rd).

If in addition p− > 1, then

‖Mf‖Lp(·)(Rd) ≤ C‖f‖Lp(·)(Rd). (4.2)

We recall the Fefferman-Stein vector-valued inequality on variable Lebesgue
spaces, which is a generalization of inequality (4.2) and is used in the proof of Theorem
6.1 (for the proof see Cruz-Uribe at al. [4, Corollary 2.1]).

Theorem 4.2. If p(·) ∈ C log(Rd) with p− > 1 and 1 < r <∞, then∥∥∥∥∥∥∥
 ∞∑
j=1

(Mfj)
r

1/r
∥∥∥∥∥∥∥
Lp(·)(Rd)

≤ C

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |r
1/r

∥∥∥∥∥∥∥
Lp(·)(Rd)

.

The variable Lorentz spaces were introduced and investigated by Kempka and
Vybral [16]. Lp(·),q(Rd) is defined to be the space of all measurable functions f such
that

‖f‖Lp(·),q(Rd) :=


(∫ ∞

0

ρq
∥∥χ{x∈Rd: |f(x)|>ρ}

∥∥q
Lp(·)(Rd)

dρ

ρ

)1/q

, if 0 < q <∞;

sup
ρ∈(0,∞)

ρ
∥∥χ{x∈Rd: |f(x)|>ρ}

∥∥
Lp(·)(Rd)

, if q =∞

is finite. If p(·) is a constant, we get back the classical Lorentz spaces and Lp,p(Rd) =
Lp(Rd). This last equality is not true for variable spaces.
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5. Variable Hardy and Hardy Lorentz spaces

Now we introduce the variable Hardy and Hardy-Lorentz spaces and give their
atomic decompositions. Denote by S(Rd) the space of all Schwartz functions and by
S′(Rd) the space of all tempered distributions. For t ∈ (0,∞) and x ∈ Rd, let

ψt(x) := t−dψ(x/t).

Let ψ ∈ S(Rd) be a fixed Schwartz function with
∫
Rd ψ dλ 6= 0. The maximal

function of a tempered distribution f ∈ S′(Rd) is defined by

f+(x) := sup
0<t<∞

|f ∗ ψt(x)| (x ∈ Rd).

The variable Hardy and Hardy-Lorentz spacesHp(·)(Rd) andHp(·),q(Rd) are consisting

of all tempered distributions f ∈ S′(Rd) such that

‖f‖Hp(·)(Rd) := ‖f+‖Lp(·)(Rd) <∞, ‖f‖Hp(·),q(Rd) := ‖f+‖Lp(·),q(Rd) <∞,

respectively. It is known that different functions ψ give the same space with equivalent
norms. Moreover, all f ∈ Hp(·)(Rd) and f ∈ Hp(·),q(Rd) are bounded distributions,

i.e. f ∗ φ ∈ L∞(Rd) for all φ ∈ S(Rd).

Theorem 5.1. If p− > 1, then

Hp(·)(Rd) ∼ Lp(·)(Rd), Hp(·),q(Rd) ∼ Lp(·),q(Rd).

For variable Hardy and Hardy-Lorentz spaces see the references Nakai and
Sawano [21, 23], Yan at al. [35], Liu at al. [18, 19] and Jiao at al. [15]. If p(·) is
a constant, then we get back the classical Hardy and Hardy-Lorentz spaces Hp(Rd)
and Hp,q(Rd).

The atomic decomposition of variable Hardy spaces were studied in Nakai and
Sawano [21, 23], Yan at al. [35], Liu at al. [18, 19] and Jiao at al. [15].

Definition 5.2. Let p(·) ∈ P(Rd) and fix an integer d(1/p−−1) < s <∞. A measurable
function a is called a p(·)-atom if there exists a ball B ⊂ Rd such that

(a) supp a ⊂ B,

(b) ‖a‖L∞(Rd) ≤
1

‖χB‖Lp(·)(Rd)

,

(c)
∫
Rd a(x)xαdx = 0 for all multi-indices α with |α| ≤ s.

Theorem 5.3. Let p(·) ∈ C log(Rd). A tempered distribution f ∈ S′(Rd) is in Hp(·)(Rd)
if and only if there exist a sequence {ai}i∈N of p(·)-atoms with support {Bi}i∈N and
a sequence {λi}i∈N of positive numbers such that

f =
∑
i∈N

λiai in S′(Rd).

Moreover,

‖f‖Hp(·)(Rd) ∼ inf

∥∥∥∥∥∥
(∑
i∈N

(
λiχBi

‖χBi
‖Lp(·)(Rd)

)p)1/p
∥∥∥∥∥∥
Lp(·)(Rd)

,
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where the infimum is taken over all decompositions of f as above.

Here we use the notation p = min{p−, 1}.

Theorem 5.4. Let p(·) ∈ C log(Rd) and 0 < q ≤ ∞. A tempered distribution f ∈ S′(Rd)
is in Hp(·),q(Rd) if and only if there exist a sequence {ai,j}i∈Z,j∈N of p(·)-atoms with
support {Bi,j}i∈Z,j∈N such that

f =
∑
i∈Z

∑
j∈N

λi,jai,j in S′(Rd),

where
∑
j∈N χBi,j (x) ≤ A for all x ∈ Rd and i ∈ Z and λi,j := C2i‖χBi,j‖Lp(·)(Rd)

(i ∈ Z, j ∈ N) with A and C being positive constants. Moreover,

‖f‖Hp(·),q(Rd) ∼ inf

∑
i∈Z

∥∥∥∥∥∥∥
∑
j∈N

(
λi,jχBi,j

‖χBi,j‖Lp(·)(Rd)

)p1/p
∥∥∥∥∥∥∥
q

Lp(·)(Rd)


1/q

,

where the infimum is taken over all decompositions of f as above.

6. Summability in Hp(·)(Rd) and Hp(·),q(Rd)

In this section, we will investigate the boundedness of some operators from
Hp(·)(Rd) to Lp(·)(Rd) and from Hp(·),q(Rd) to Lp(·),q(Rd) (see Weisz [30]).

Theorem 6.1. Let p(·) ∈ C log(Rd), 0 < q < ∞, γ > 1 and p− > 1/γ. For each t > 0
let Kt ∈ L1(Rd) and Vtf = f ∗Kt. Suppose that

|V∗a(x)| ≤ C ‖χB‖−1Lp(·)(Rd) |MχB(x)|γ (x /∈ 2B) (6.1)

for all p(·)-atoms a with support B. If V∗ is bounded from L∞(Rd) to L∞(Rd), then

‖V∗f‖Lp(·)(Rd) ≤ C ‖f‖Hp(·)(Rd) (f ∈ Hp(·)(Rd))

and
‖V∗f‖Lp(·),q(Rd) . ‖f‖Hp(·),q(Rd) (f ∈ Hp(·),q(Rd)).

Using Theorem 4.1, we can show easily that (6.1) implies (3.4). Now let us apply
the result for the summability of Fourier transforms. It is known that σθT is bounded
from L1(Rd) to L1(Rd) for all T > 0 and σθ∗ is bounded from L∞(Rd) to L∞(Rd) (see
e.g. Weisz [31]). The next theorem shows that the additional condition (6.2) implies
(6.1) (see Weisz [30]).

Theorem 6.2. Let (2.3) be satisfied. Assume that θ̂0 is (N +1)-times differentiable for
some N ∈ N and there exists d+N < β ≤ d+N + 1 such that∣∣∣∂i11 . . . ∂idd θ̂0(x)

∣∣∣ ≤ C|x|−β (x 6= 0) (6.2)

whenever i1 + . . .+ id = N or i1 + . . .+ id = N + 1. If p(·) ∈ C log(Rd), then∣∣σθ∗a(x)
∣∣ ≤ C ‖χB‖−1Lp(·)(Rd) |MχB(x)|β/d
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for all p(·)-atoms a and all x /∈ 2B, where the ball B is the support of the atom.

The following result follows from Theorems 6.1 and 6.2. Note that β > d.

Corollary 6.3. Let (2.3) and (6.2) be satisfied. If p(·) ∈ C log(Rd), 0 < q < ∞ and
p− > d/β, then ∥∥σθ∗f∥∥Lp(·)(Rd)

. ‖f‖Hp(·)(Rd) (f ∈ Hp(·)(Rd))

and ∥∥σθ∗f∥∥Lp(·),q(Rd)
. ‖f‖Hp(·),q(Rd) (f ∈ Hp(·),q(Rd)).

Note that if p(·) is a constant, then we get back the classical result (see Weisz
[31, 32] as well as Corollary 3.6). Using Corollary 6.3 and a usual density argument,
we obtain the next convergence results (see Weisz [30]).

Corollary 6.4. Suppose that (2.3) and (6.2) are satisfied, p(·) ∈ C log(Rd), 0 < q <∞
and p− > d/β. If f ∈ Hp(·)(Rd) (resp. f ∈ Hp(·),q(Rd)), then σθT f converges almost

everywhere as well as in the Lp(·)(Rd)-norm (resp. in the Lp(·),q(Rd)-norm) as T →∞.

Corollary 6.5. Suppose that (2.3) and (6.2) are satisfied, p(·) ∈ C log(Rd) and 1 ≤ q <
∞. If p− > 1 and f ∈ Lp(·)(Rd) (resp. f ∈ Lp(·),q(Rd)), then

lim
T→∞

σθT f(x) = f(x) for a.e. x ∈ Rd

as well as in the Lp(·)(Rd)-norm (resp. in the Lp(·),q(Rd)-norm). The almost every-

where convergence holds also if f ∈ Lp(·)(Rd) with p− ≥ 1.

7. Some summability methods

As special cases, we consider some summability methods.

7.1. Riesz summation

The function

θ0(t) =

{
(1− |t|γ)α, if |t| > 1;
0, if |t| ≤ 1

(t ∈ Rd)

defines the Riesz summation if 0 < α < ∞ and γ is a positive integer. It is called
Bochner-Riesz summation if γ = 2 and Fejr summation if α = γ = 1. The following
result follows from Corollaries 6.3–6.5.

Corollary 7.1. If p(·) ∈ C log(Rd), 0 < q <∞ and

α >
d− 1

2
,

d

d/2 + α+ 1/2
< p− <∞,

then ∥∥σθ∗f∥∥Lp(·)(Rd)
. ‖f‖Hp(·)(Rd) (f ∈ Hp(·)(Rd))

and ∥∥σθ∗f∥∥Lp(·),q(Rd)
. ‖f‖Hp(·),q(Rd) (f ∈ Hp(·),q(Rd)).

Moreover, the corresponding Corollaries 6.4–6.5 hold as well.
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7.2. Weierstrass summation

The Weierstrass summation is defined by

θ0(t) = e−|t|
2/2 or θ0(t) = e−|t| (t ∈ Rd).

Corollary 7.2. If p(·) ∈ C log(Rd) and 0 < q <∞, then∥∥σθ∗f∥∥Lp(·)(Rd)
. ‖f‖Hp(·)(Rd) (f ∈ Hp(·)(Rd))

and ∥∥σθ∗f∥∥Lp(·),q(Rd)
. ‖f‖Hp(·),q(Rd) (f ∈ Hp(·),q(Rd)).

Moreover, the corresponding Corollaries 6.4–6.5 hold as well.

7.3. Picard–Bessel summation

Corollary 7.2 holds for the summability method defined by

θ0(t) = (1 + |t|2)−(d+1)/2 (t ∈ Rd).
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