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Existence and stability of Langevin equations
with two Hilfer-Katugampola fractional
derivatives
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Abstract. In this note, we debate the existence, uniqueness and stability results
for a general class of Langevin equations. We suggest the generalization via the
Hilfer-Katugampola fractional derivative. We introduce some conditions for ex-
istence and uniqueness of solutions. We utilize the concept of fixed point theo-
rems (Krasnoselskii fixed point theorem (KFPT), Banach contraction principle
(BCP)). Moreover, we illustrate definitions of the Ulam type stability. These
definitions generalize the fractional Ulam stability.
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1. Introduction

The field of an arbitrary calculus (fractional calculus) is the extension of the
ordinary calculus of fractional powers. It plays a significant field in the mathematical
analysis. In addition, it is more than three centuries old, yet it only receives much
attention and interest in last three decades [7, 17, 20]. The Langevin equation de-
scribes the stochastic problem in many fluctuating situations. A modified type of this
equation used in various functional approaches of fractal mediums. Another modifi-
cation requires replacing of ordinary differential equations into fractional differential
equations (FDE), which yields the fractional Langevin equation [2, 4, 5, 6, 3, 21].

In recent times, Katugampola [13] introduced a new fractional differential op-
erator which studied extensively by many researchers [14, 15, 25, 26]. Moreover,
this operator has been compounded with Hilfer fractional differential operator in-
troduced by Hilfer [7] to develop a new fractional differential operator, so called
Hilfer-Katugampola fractional differential operator [19]. For the wide knowledge of
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fractional differential operators, one can refer to [22, 23, 24]. Rassias imposed the
Hyers-Ulam stability (UHS) for both cases linear and nonlinear studies. This out-
come of Rassias attracted many investigators worldwide who began to be motivated
to study the stability problems of differential equations [1, 12, 18, 29]. The fractional
Ulam stability (FUS) introduced by Wang [28], [27] and Ibrahim [8]-[11]. In our in-
vestigation, we focus on the following fractional differential equation containing two
Hilfer-Katugampola fractional differential operators

{poﬁ (PD2F 4 \) z(t) = f(t,2(t), teJ:=(a,b],

I'z(a) = 2, 7= (o1 +a2)(1-5)+p. (1.1)

where P D8 and D8 is Hilfer-Katugampola fractional differential operator of
orders a1 and as and type 3, p > 0 and A is any real number. Let f: J X R — R is
given continuous function.

The effort is systematic as follows: In Section 2, we submit preliminaries that
utilized throughout the paper. In Section 3, we set up the existence and uniqueness
for a special formula of multi-power FDE covering the Hilfer-Katugampola fractional
differential operator. In Section 4, we discuss some types of fractional Ulam stability.

2. Preliminaries

Some basic definitions and results introduced in the recent section. The following
observations selected from [17, 14, 19]. Let C/a, b] be a space of all continuous functions
subject to the sup. norm|[¢|| = sup {|¢)(¢)| : t € J}. The weighted space C, ,[a,b] of
functions f on (a,b] is defined by

tP —a”

C, pla,b] = {f:(a,b]ﬁR: < >7f(x) EC’[a,b]},OS’y< 1,

with the norm
(55 s, e (5) e

Let 0, = (t”%) and for n € N, the notion C’g”ﬂ[a,b], be the Banach space of all
functions f which are continuously differentiable. YSuppose that the operator ¢,, is on
[a,b] of (n — 1)—order and the derivative &, f of n—order on (a,b] such that dy f €
C, pla, b]. This leads to

C3. la,b) = {55 f € Cla,b],6)f € C, pa,b],k =0,1,...,n -1}

= Imax

o Iy 7007p[aab] = C[a7 b]

lglle,, =

with the norm

n—1 n
17les, , = 2 1% llo + 19 flle, - WHlley, = > mael3, /@)

For n = 0, we have
Cs

Py

[a,b] = C, ,la,b].
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Definition 2.1. Let a, ¢ € R with o > 0 and f € X?(a,b), where f € XP(a,b) consists
of the Lebesgue measurable functions. The generalized left-sided fractional integral
PI, f of order a € C(R(«a)) is defined by

11—«

o £ t — ") s, f(5)ds a
CIzn) ) = s [ = s, > a (21)

The extended fractional derivative analog to the extended fractional integral
(2.1), is given by

oz 0= (o) [t @)

Definition 2.2. The Hilfer-Katugampola fractional operator with respect to ¢, of order
p > 0, is defined by

d —B)(1-a
(PDZ‘ff) (t) = <£’Ig; <tp1dt> (A0 )> (t) (2.3)
= (#r12:0,/ 170 0) @),

e The operator ”DZ‘;B can be written as
, - 1— 1-a
pDf = PPN oy — P NepY oy — g B aB.

e The fractional derivative pDZY;’B is considered as interpolation, with the conve-
nient parameters, of the following fractional derivatives, Hilfer fractional opera-
tor when p — 1, Hilfer-Hadamard operator when p — 0, generalized fractional
operator when § = 0, Caputo-type fractional derivative when 8 = 1, Riemann-
Liouville fractional derivative when § = 0,p — 1, Hadamard operator when
B =0,p — 0, Caputo operator when g =1, p — 1, Caputo-Hadamard operator
when 8 =1, p — 0, Liouville fractional derivative when 8 =0,p — 1,a =0 and
Hadamard fractional derivative when 8 = 0,p — 1,a = —oco. We consider the
following parameters «, 3,7, i,

y=a+B—-af, ,0< u<l, a>0, f<1,0<y<1.
The following results can be found in [19]:

Lemma 2.3. Let a,>0,0<a<b< oo, p,ce R, 1<p<ooandp>c. Then, for
f € XP(a,b) the semi group property is valid. This is,

(I8 I ) (@) = (P17 (),

and

("Dg P15 f)(x) = f(x).
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Lemma 2.4. Assume that x > a, P12, and P D, are according on Eq. (2.1) and (2.2),
respectively. Then

o [t —a " it i W N (5)
pa+< P > (1})( P > W,OLZO,

tr—ar\P !
st+ < ) (33) = 07 S (Oa 1)7 ﬂ € (0,00)

p
Lemma 2.5. Let 0 < a < 1,0<~y < 1. If f € Cy[a,b] and PI,7*f € Clla,b], then

pTOC P _ o (pliza )(a) ¥ —a” o
CL D) (@) = f(o) - e D ()

for all x € (a,b].
Lemma 2.6. Let 0 < a <b<oo,a>0,0<~vy<1and feC,,lab]l Ifa>r, then
PI® f is continuous on [a,b] and
(T2 f) (@) = T (°T% f) (t) = 0.
t—at
We present some spaces as follows:

Pl Jlab] = {f € €1y la,b],” D3 f € G plasb]}

and
C’L%p[a,b] = {f € Cr1—ypla,b],”D]. f € Cl,%p[a,b]}.
Clearly, we have

Cy_, la b € 8 a,b].
Lemma 2.7. If C]__[a,b], then

PINPDY, f =PI DY f (2.4)
and

D), PIS f = DI . (2.5)

Lemma 2.8. If prJ(rlfa)f exists on L'(a,b), then
Dsfgs, f = A=) g

Lemma 2.9. Let 0 < a<1,0< g <1landy=a+p—ap. If f € Ci_[a,b] and
pfizﬂ(l_a) € Cl_,[a,b], then pDSfIg; exists on (a,b] and
DI S = ]

Lemma 2.10. [19] Let vy = a+ 8 —af. If f : (a,b] X R — R is a function such that
f(2() € Ciy pla,b] for all x € C1—, yla,b] then a function x € CY_, [a,b] is the
outcome of the problem

{PDji’B (ﬂDgiﬂ n )\) 2(t) = f(t, (1)), t € (a,b],

PI; Va(a) = Ta,
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if and only if x achieves the following formula:

o) =5 (t;) o (= ) S ale)ds

1 t tp_sp arptaz—1 o1 d
+F(a1+a2)/a ( ; ) sP7 f(s,x(s))ds.

The proof of the lemma is similar ([30], Lemma 3.1).

Theorem 2.11. (KFPT) Suppose that ¥ is a Banach space, © is a closed, bounded
and convex subset of ¥ and two functions I'1,T's : © — X such that T'yx + T'en € ©
for all x,n € ©. If 'y is a contraction function and I's is completely continuous, then
[1x 4+ Tox = x admits a solution in ©.

Theorem 2.12. (Arzela-Ascoli theorem) [16] A subset F of C(X) is relatively compact
if and only if it is closed, bounded and equicontinuous.

3. Existence and uniqueness results

For our setting, we deliver the following assumptions:

(H1) Let f(-,z(.)) € Cfﬁlvjpa) la,b] for any x € Ci_, ,la,b]. There exists a positive

constant ¢ such that

lf(t,x) = ftm)| < Lllx—n|, forallx,neR.
(H2) The constant
o _ gp\ @1t o _ qP\ 2
0— {B(v, a1 + az) <b a ) N AB (v, az) (b a > .
oy + ag) p [(az) P

(H3) There exist a nondecreasing function ¢ : J — RT and A, > 0 such that for
telJ,

PIZIT20(t) < App(t).
By applying Theorem 2.11, we have the following result:

Theorem 3.1. (Existence) Suppose that [H1] and [H2] are achieved. Then, Eq. (1.1)
[a,b] € C7° [a,b].

admits at least one outcome in C] 2p

1—v,p

Proof. Define the operator N : C1_, pla,b] = C1_4 ,[a,b], it is well defined and given
by

(Nz)(t) =

Set f(s) = f(s,0) and

b —aP\ T By, 0 + ag) T
w = F ||f||cl_’¥:/’ + 1‘\
D (o1 + az) ()
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Consider the ball B, = {X € Ciqpla,b] : Ixlle, ., < r}.
Now we subdivide the operator N into two operator A and B on B, as follows:

(0 = prra [ (50) o s atonas

(B2)(0) = 575 (t,_o> -~ o / (= ) " als)ds.

The proof is as follows:
Step 1. Ax + By € B, for every z,y € B,.

(a(e (£ )

tP — P 1- t ai+az—1
§< P > (o1 T oa) / ( > s x f(s,x(s))ds

B 1y t aj+oaz—1
< (tp pap) a1 Ta2) (tp p8p> 7 (1 (5, 2(5))~F (5, O HF (,0))) ds

g(“’;“”)l alm/(” )wrlsp—l(6|x<s>|+]f<s>\)ds

tr — P\ B( fy,al + 042 tp — gr\ @1ttt
p Ty + as) Cinp

This gives
%041 +ag) (b — e
lAz]e, < ( > Cle,_,, + |7l ) 62

I(ag + a2)

and

For operator B

wow (=)

T P —aP\1 A /t (t" _ Sp)o‘2—1
<2 4 s?"Ta(s)ds
L'(7) < p > T(as) J, p (=)

~T'(v) p I(az) p Crmp”

Thus, we obtain

Zq AB(v,az) (b —a?\ ™
H(Bz)||01—w§r('y)+ T(az) ( p ) Fle,., 33)

Linking (3.2) and (3.3), for every =,y € B,, we get

|Az+Byle, . <llAalle,  +IByle, . <Or+w.



Hilfer-Katugampola fractional derivative 297

Step 2. A is a contraction mapping.
For any x,y € B,., we observe the conclusion

((A2)(®) = (Ap)®)) (tp pap>

() e [ ST e st — st as

tp _ ap 1—v E tp _ ap artas+y—1
= ( p ) [(on + o) ( p > b= sler..,

This gives

(B(7y, a1+ ag) [(bP —aP\ 12
Az)— (A < — .
R e e~ vle, .,

In view of [H2], the operator A is a contraction mapping.

Step 3. The operator B is completely compact.
According to Step 1, we know that

Zq AB(v,az) (b —a?\ ™
B < .
1BDler STy T ) e,

Thus, the operator B is uniformly bounded. Next, we show that the operator B is
Tq

compact. A calculation implies
(1) ()
I'(7) p p

By, 02) <t> ) (t)
P P

+ “T(as) lzlle, .,
which is tending to zero as t; — t2. Thus B is equicontinuous. Hence, in virtue of the
Theorem 2.12, the operator B is compact on B,.. It leads by Krasnoselskii fixed point
theorem, that the problem (1.1) admits a solution. O

[(Bz)(t1) — (Bx)(t2)] <

3

Theorem 3.2. If hypothesis (H1) and (H2) are fulfilled. Then, Eq. (1.1) admits a
unique solution.

4. Stability outcomes

In the recent section, we shall give the definitions and the criteria of (UHS)
and (UHRS) for the generalized Langevin Eq. (1.1). Now for ¢ > 0 and a continuous
function ¢ : J — R' , we theorize the next inequalities:

’PD;M (”Dg‘fﬁ + /\> (1) — f(t, z(t))( <e tel, (4.1)

‘pD:};B (ijivﬁ n /\> (t) — f(t, z(t))‘ <ep(t), tel, (4.2)
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’PDZ‘}r’ﬁ (Ppgzﬂ n A) 2t) — f(t,2(0)| < o), te (4.3)

Qualifier

The Eq. (1.1) is UHS if there occurs a number Cy > 0 and € > 0 such that
for all outcome z € C1_, ,[a,b] of the inequality (4.1) there occurs an outcome z €
Ci—+,pla,b] of Eq. (1.1) satisfying

|z(t) —x(t)| < Cre, teld

The Eq. (1.1) is generalized UHS if there occurs a function ¢ € Ci_, ,a,b],
©r(0) = 0 such that for all outcome z € Ci_, pla,b] of the inequality (4.1) there
occurs an outcome x € C1_ ,[a,b] of Eq. (1.1) achieving

|z(t) —z(t)| < pre ted

The Eq. (1.1) is UHRS esteeming by ¢ € C1_ ,[a,b] if there occurs a number
Cy > 0 for all € > 0 and for every outcome z € C_, ,[a,b] of the inequality (4.2)
there occurs an outcome z € C1_, y[a,b] of Eq. (1.1) filing

|2(t) —z(t)] < Cfp ep(t), ted

The Eq. (1.1) is generalized UHRS corresponding to ¢ € Ci_, ,la,b] if there
occurs a real number Cy, > 0 whenever for every outcome z € Ci_, ,[a,b] of the
inequality (4.3) there occurs an outcome = € C1_ ,[a, b] of Eq. (1.1) satisfying

[2(t) —2(t)] < Crep), tel

Remark 4.1. A function z € C1_, ,[a,b] is an outcome of the inequality (4.1) if and
only if there exists a function g € Ci_, ,[a, b] such that

D (7D +A) () — f(t2(0)| <€ e,
if and only if there occurs a function g € Ci_, ,[a,b] such that
(i) lg(t) <ete .
(i) D" (pD;jiﬂ + A) 2(t) = f(t,2(8)) + g(t), t € J.
Similarly, for the inequalities (4.2) and (4.3).

Remark 4.2. If z is an outcome of (4.1), then z is an outcome of the following formula:

)~ 1) (t;> * o / (= ) T als)ds

1 t /ip _ op\ @1tae—1
_r(a1+a2)/ (t ps ) 7 (o 2(s))ds

1 b — P\ T
< €.
Mo +a2+1) ( P )

It is clear that

ol (ijiﬁ + A) 2(t) = f(t,2(t) + g(t), t € J.
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0m iy (552 iy (5
: ) / (tp ) >+ 7 (f(s,2(5) + gls) ds.

+
F(Ozl + (%)

Then

Consequently, we obtain

“) - r?%) (tp> * o / (= ) T als)ds

w a1 tas—1
< 5 ) sP71f(s, 2(s))ds

tp a1tag—1
s""Yg(s)| ds
ra1+a2 [ (=) 9(s)

bP — al+az
< €.
- F a1 + (65) + 1 ( )

We have similar remarks for the inequality (4.2) and (4.3).

_F a1+a2

IN

Our main result is as follows:

Theorem 4.3. Suppose that the hypotheses [H1] and [H3] achieved. Then Eq. (1.1) is
a generalized UHRS.

Proof. Let z be a solution of 4.3. In view of Theorem 3.2, there x is a unique outcome
of the problem satisfying

eDi? ("D 4 A) alt) = f(t, (1)),
I a(a) = 1172 (a).

Then we have

") = 535 (:) - o / & ) o als)ds

1 e g\t .
+F(a1+a2)/a( p ) sP7f(s,x(s))ds.

By differentiating inequality (4.3), we have

0~ ) <tp> v | (55 ) T ao)ds

t P _ P ar1taz—1
_F(a11+042)/ <t PS ) "7 f(s,2(s))ds
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1 Lo gp o1taz—1
p—1 d
v (7)o

Hence it follows that,

|2(t) — 2(1)]

<20 - 15 (t,_o) * o / (= ) T ale)ds

1 to/ap _ op\ @1ta2—1
_m/ (t ps> sP7Lf(s,2(s))ds

S <t;> * o / (= ) T a(s)ds

7;) /: <tp - S”)mm 1 (s, 2(s))ds

< App(t)-

I'(o + a2 p
torp _gp\ 21

 — (v >+ 7 £5,2(s) = Fls.2(s)) | ds

A A be — gP\ 2 ! b — P\ T
< t S

By Lemma 2.5, there occurs a constant M* > 0 independent of A,p(t), achieving
|2(t) — ()] < M p(t).
Thus, Eq. (1.1) is generalized UHRS. O
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