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Inequalities for the area balance of absolutely
continuous functions

Sever S. Dragomir

Abstract. We introduce the area balance function associated to a Lebesgue inte-
grable function f : [a,b] — C by

ABj (a,b,-) : [a,b] = C, ABy (a, b, z) [/f t)dt — / f@ dt}
We show amongst other that, if f: I — C is an absolutely continuous function

on the interval I and [a,b] C I, where I is the interior of I and such that f is of
bounded variation on [a,b], then we have the inequality

= (50 =2) o= L0 ()’ o]

1 2 a b 2 b /
[4(ba) +(xf ; ) \a/(f)
for any z € [a, b] .

If there exists the real numbers m, M such that

<

1
4

m< f (t) < M for ae. t € [a,b],

then also
2
AB; (a,b,7) (a;rbfm)f(x)fmZM J’;b) +i(ba)2}
1 2 a+b 2

for any z € [a, b] .
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1. Introduction

For a Lebesgue integrable function f : [a,b] — C and a number x € (a,b) we

can naturally ask how far the integral f; f(t)dt is from the integral [ f(¢)dt. If f
is nonnegative and continuous on [a, ], then the above question has the geometrical
interpretation of comparing the area under the curve generated by f at the right of
the point x with the area at the left of x. The point z will be called a median point, if

/:f(t)dt/jf(t)dt

Due to the above geometrical interpretation, we can introduce the area balance func-
tion associated to a Lebesgue integrable function f : [a,b] — C defined as

ABy (a,b,-) : [a,b] = C, ABy (a,b,z) :== [/f dt—/ f(t dt]

Utilising the cumulative function notation F : [a,b] — C given by

:/:f(t)dt

AB; (a,bz) = %F(b)—F(x), 2 €lab].

then we observe that

b
If f is a probability density, i.e. f is nonnegative and / f(t)dt =1, then

ABf(a,b,x):%—F(x), x € [a,b].

In this paper we obtain some inequalities concerning the area balance for absolutely
continuous. Applications for differentiable functions whose derivatives are Lipschitzian
functions are provided. Bounds involving the Jensen difference

9(0) 1) _g<a;b>

are also established.
We notice that Jensen difference is closely related to the Hermite-Hadamard
type inequalities where various bounds for the quantities

fla)+f@® —a_/f

/ £t dt— (a+b>

and

are provided, see [1]-[6] and [ -[18
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2. Preliminary results
The following representation result holds:

Theorem 2.1. Let f : [a,b] — C be an absolutely continuous function on [a,b]. Then
we have the representation

ABy (a,b,) = <“;b x) f (@) 2.1)
T b
+% /a (t—a)f’(t)dt—k/w (b—t)f’(t)dt]

and

PRI (CE iGN ICES{ON )

—f/ t— ol 1 (¢

for any x € [a,b], where the integrals in the right hand side are taken in the Lebesgue
sense.

Proof. Since f is absolutely continuous on [a, b], then f is differentiable almost every-
where (a.e.) on [a,b] and the Lebesgue integrals in the right hand side of the equations
(2.1) and (2.2) exist.

Utilising the integration by parts formula for the Lebesgue integral, we have

T b
/ (t—a)f’(t)dt—i—/ (b—1) f (1) dt (2.3)

x b
=(t—a)f(t>|i§—/ f<t>dt+<b—t>f<t>|i+/ oy
b
w—a)f /f b dt - (a:)—l—/f(t)dt

=2z—-a—-10)f(zx)+2ABy (a,b,x)

for any « € [a,b].
Dividing (2.3) by 2 and rearranging the equation, we deduce (2.1).
Integrating by parts, we also have

b
[ 1=l s @ @4
T b

:/ (q;—t)f’(t)dt—i—/ (t—a) f'(t)dt

a x

T b
=(x—t)f(t)|§+/ f(t)dt+<t—x>f<t>\’;—/ £ (1)t

— —(@—a)f(a) + (b—2) f (b) — 24B; (a,b,2)
— bf (8) +af (@) — [f () + f (a)] « — 2AB; (a,b,2)
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for any x € [a,b].
Dividing (2.4) by 2 and rearranging the equation, we deduce (2.2). O

Corollary 2.2. Let f : [a,b] — R be an absolutely continuous function on [a,b].
If f'(t) > 0 for a.e. t € [a,b], then

S
bf(b);af(a) 3 f(b);f(a)xZABf (a,b, z) (2.5)

> (a;b—x>f(w)

for any x € [a,b].
In particular,

1 b

100 0) - 7@] = a8; (0. °5) 20 (26)
The constant % 1s a best possible constant in the sense that it cannot be replaced by a
smaller quantity.

Proof. The inequalities (2.5) follow from the representations (2.1) and (2.2) by taking
into account that f’ (¢) > 0 for a.e. t € [a, b].

The inequality (2.6) follows by (2.5) for z = 2£2.

Assume that the first inequality in (2.6) holds for a constant C' > 0, i.e.

a+b
Co-a)lf )~ 1 @) = 4By (a.“3) 2.7
Consider the function f, : [-1,1] — R given by
0 iftel-1,0]
fat)=2 nt ifte(0,1)

1 ifte [+ 1]

where n > 2, a natural number. This functions is absolutely continuous and f, (¢) > 0
for any ¢t € (—1,1). We have for a = -1,b=1

C(b—a)[fu(b) = fn(a)] =2C

and

ABy, (a,b,a;rb> - [/Olfn(t)dt— Ofn(t)dt]

Il
N = N~ N

7N
N
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Replacing these values in (2.7) we get

1 1
20> - (1—-— 2.8
2 ( Qn) (28)
for any n > 2.
Taking the limit for n — oo in (2.8) we get C' > %, which proves that § is best
possible in the first inequality in (2.6) O

Remark 2.3. Let f : [a,b] — R be an absolutely continuous function on [a,b]. If
f'(t) > 0 for ae. t € [a,b], then ABy (a,b,z) >0 for x € [a, 2$2] ([2£2,0]).
Moreover, if f (b) # —f (a) and

bf (b) +af (a)

0T 7@ € [a, b] (2.9)
then bf (8) + af (a)
+af (a

Also, if f (a), f (b) > 0, then (2.9) holds and the inequality (2.10) is valid.

Corollary 2.4. Let f : [a,b] — C be an absolutely continuous function on [a,b] and
~v € C. Then we have the representation
b
+ (CH_ - a:) f(x) (2.11)

2

1 b\’ 1
ABf(a,b,a:):nyl(x—a; ) +1(b—a)2

. b
+% / (t—a)(f’(t)—v)dwr/x(b—t)(f’(t)—v)dt]
and
D e
2
o[-y o]

for any x € [a,b].

Proof. Let e (t) = t,t € [a,b]. If we write the equality (2.1) for the function f — e
we have

ABjy_re (a,b,z) = (

L ) (f (&) - 7o) (2.13)

[e—awo-na+ [ o-ouw-ya

for any « € [a,b].
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Observe that

ABj_+c(a,b,2) = ABf (a,b,x) — vAB. (a,b,x)

b x
/ tdt — / tdt
z a

and

AB. (a,b,x) =

N TN

N~ N

AB; (a,b,x) = <“;b - :c) (f (z) — o) + %v (a2 +b $2> (2.14)

for any x € [a,b].
Since

24+0° b\* 1
xzf(a+b)x+a —2|_ (xa;_ > +=(b-a)’

then from (2.14) we deduce the desired equality (2.11).

From (2.2) we have

2 2
ABf_Vﬁ(a”l%x): bf(b)+af(a) 77b _;_a B f(b);f(a)z*l“’ya;_b%

2
b
A S CACERL

and since

ABjf_e(a,b,x) = ABy (a,b,x) — yAB. (a,b, z)
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then

ABy (a,b,x) =

1 [a®+b? bf (b) +af (a)
(52 ) o

b2+a f(®)+ f(a) a+b
— — 2 T+ 7y 9 T

——/ t— | (' (£) — ) dt

b)+af(a) fO)+f(a)
2 2

a® +b?
2

—Ly {xz—(a—kb)m—i—

- }—i/ﬂbt—w'(t)—v)dt

which proves the desired equality (2.12). O

Remark 2.5. We have the following equalities

AB; (a,b, a;”’) = éw(b —a)? (2.16)
afb b
ty| [T o @-mas [ o-nw o=
and
A8y (a0, 2) = L0- 0 F 0 - @] - g 0-® 21D
b a
5[ -5 -

for any v € C.

3. Bounds for absolutely continuous functions

Now, for ,I' € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

o (1,T) = {f  [a,b] = C|Re [(r — () (m - 7)} >0 for each t € [a, b]}

and

Apugy (1T) = {f b = € ‘f (- 1L

1
5 < = |I'—~| for each te[a,b]}.
The following representation result may be stated.

Proposition 3.1. For any v,I" € C, v # I', we have that (_][a,b] (v,T) and A[a,b] (v,T)
are nonempty, convex and closed sets and

U[(L,b] (77 F) = A[a,b] (77 F) . (31)
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Proof. We observe that for any z € C we have the equivalence

’z—M’ gl‘r_ﬂ
2
if and only if

Re[(I'=z)(z2=7)] = 0.

This follows by the equality

1 v+T 2 _
$I0=af = = T =Rl - 2) -9
that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 3.2. For any v,I' € C, v # I', we have that
Ulag) (7, 1) ={f : [a,8] = C | (Rel' — Ref (t)) (Ref (t) — Rey) (3.2)
+ (ImI — Imf (¢)) (Imf (¢) — Imy) > 0 for each t € [a,b]}.
Now, if we assume that Re (I') > Re (7) and Im (T') > Im (), then we can define
the following set of functions as well:
Sfas) (1, 1) == {f : [a,0] = C | Re(T') > Ref (t) > Re(v) (3.3)
and Im (") > Imf (¢) > Im () for each ¢ € [a,b]}.
One can easily observe that S[G,b] (v,T) is closed, convex and
0 7é S[a,b] (771—‘) c U[a,b] (’Yvr) . (34)

Theorem 3.3. Let f : [a,b] — C be an absolutely continuous function on [a,b]. If there
exists v, I € C, v # I such that f" € Ujgyp (7,T) then

ABfmﬁﬂﬂ(a+bm>f@) (3.5)
_1}5 G—GQ€Y+iw—aﬁ

T —~| 1 5 a+b\>
< Z(b— _
< 1 b—a)+ |z 5

‘ABf (a,b,z) — + x (3.6)

and
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for any x € [a,b].
Proof. From the equality (2.11) we have
ABy (a,b,x) (3.7)

(m—a;—b>2+i(b—a)2 —(a;b—x)f(x)
/:(t—a)(f’(t) V;Lr>dt+/:(b—t)(f’(t) ”;F>dt1

for any x € [a, 0] . B
If ' € Uap) (7,1) = Ajap) (7, 1), then by taking the modulus in (3.7) we get

'ABf(a,b,x)( x)f(x)

(=) s Lomar
5[ - (ro- W;F)dw/:(b—t)(f’(t) ) a
;[/j(ta)<f’(t) ) a4 /:(bt)<f’(t) S ar
;Uj(ta) 70 - ”ﬂdm/:(bt)

< |F;7| l/:(t—a)dt+/:(b—t)dt]

P— [@=—a)’+ (-2 [F—9 |1 2 a+b\’
= [ ]z [4(b—a) +(x— )

_o+r
4

2

a+b

_a+D
4

1

IN

|

IN

") — ——|dt

4 2 4

for any « € [a,b], which proves the inequality (3.5).
From the equality (2.12) we have

ABy (o) - MOl O+, 6s)

aer 2 1 2
<:c 5 > +4(ba)]
1/b|tx| 7= a
2. 2
for any « € [a,b].

Taking the modulus in (3.8) and using the fact that
f €Uy (1,1) = Ay (7,T)

40

T
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we have
487 0. - O LS @), 020,
~+T a+b\? 1 9
+T (Z‘— 5 ) +4(b—a)]

_o+r
2

IN

@ ‘ dt

1 b
5[ lt-a

IN

4 2 4 4

for any « € [a,b], which proves the desired inequality (3.6).

|F;’Y| /abtxdt IFZWI [/az(mt)dtJr/:(tx)dt]

_ -1 l(mah(bx)g] ] [l(b—a)2+<x—

Remark 3.4. Let f : [a,b] — R be an absolutely continuous function on [a, b]. If there

exists the real numbers m, M such that
m< f'(t) < M for ae. t € [a,b],

then
a+b

‘AB“@&x)( x)f@)
(m—a;b>2+i(b—a)2]

L M-m [1(b—a)z+<m—a+b>2

m+ M
4

and

for any x € [a,b].

Corollary 3.5. With the assumptions of Theorem 3.3 we have

‘ABf (a,b,a+b) _ D g2 < B2

<
16 -

T (b—a)’

(3.9)

(3.10)

(3.11)
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and

1 v+T

{0-0U0 - r@l- 00— an; (an 50 a2

Theorem 3.6. Let f : I — R be an absolutely continuous function on the interval 1
and [a,b] C I, where I is the interior of I and such that [’ is of bounded variation on
[a,b] . Then we have the inequalities

‘AB]« (a,b,z) — (‘”b —x) f (@) (3.13)
*w (ma;b)eri(ba)Q]

11 ) a+b\?
<Z\|Z((p=— _
_4[4(b a)—f—(m 5 )

b
V()
and

+ x (3.14)

for any x € [a,b].

Proof. From (2.11) for v = M we have the representation

ABj (a,b, z) (3.15)
_7]0/(“);””(6) [(;p— a;rb>2+i(b—a)2] - (a;rb—x)f(:c)

+/:(b_ﬁ) <f,(t)_f’(a);rf’(b))dt1

for any « € [a,b].
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Taking the modulus in (3.15) we get

ABfm&Jﬂ—<a;b—m>f@) (3.16)

f'(a) + f' (b) a+b\? 1 2
4[<x 5 ) *4“’“)1

<3| a-alro- T 0
+/:(b—t) f’(t)—ﬁ(a)';f/(b)‘dt]

for any x € [a,b].
For t € [a,x] we have

f’(t)—W’ _ f’(t)—f’(a);rf’(t)—f’(b)‘
< U7 0~ F @I +176) - £ @)
1\

and similarly, for ¢ € [z, b] we have

and then by (3.16) we get

PBfmﬁﬂg—<a;b—x)fw)

—W [<x—a;b)2+1(b—a)2]

<3| [ e-ams [Comnal Vo

:% [i(b—af—i—( —a+b) \i/

for t € [a,b], and the inequality (3.13) is proved.
The second inequality goes along a similar way and we omit the details. O

Corollary 3.7. With the assumptions of Theorem 3.6 we have

a+b) _S@Ere),

AB —a)?
‘ f(”’b’ 2 16 @)

1 oy
StV e
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and
0= o) - @ - O EO 6oy (a0 ) eay

4. Bounds for Lipschitzian derivatives
We say that v is Lipschitzian with the constant L > 0, if
lv(t) —v(s)| < L[t — s

for any ¢, s € [a,b].

Theorem 4.1. Let f : I — R be an absolutely continuous function on the interval I
and [a,b] C I, where I is the interior of I and such that f’ is Lipschitzian with the

constant K > 0 on [a,b]. Then we have the inequalities

a+b

‘ABf (a,b, ) —( —a:) f(z)
_%f’(x) li(b—a)z—l- <x— “;b>2

< Bo-orfs(o- ) s Lo-o]

12

for any x € [a,b].
In particular, we have

a+b 1,/a+b 2

The constant 45 is best possible in (4.2).

Proof. We have from the equality (2.11) that
ABy (a,b,x)

—(“jb—x)f@o—;fcw[iw—af+(x—“;b)2

N b
_;V (t—a)[f/(t)*f/(:v)]dtJr/gC (bt)[f/(t)f’(xﬂdf]

for any « € [a,b].

(4.1)

(4.2)
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Taking the modulus on (4.3) we have

AB; (a,b,z) — (‘”b —a:) f (@)

,%ff(x) [i(ba)%(x“;bf

S%K [/ax(t—a)(x—t)dt—l—/b(b—t)(t—x)dt]

x

for any x € [a,b].
Since a simple calculation shows that

d 1
/(t—c)(d—t)dtzé(d—c)?’,

then
x b
/ (t—a)(a:—t)dzH—/ (b—1) (t—x)dt

é [(x —a)® + (b— 3:)3}

(l-'—b 2 1 2
=6(b—a)l3(a:— 5 ) —|—4(b—a)]
for any x € [a,b].

Utilising (4.4) we get the desired inequality (4.1).
Consider the function f : [a,b] — R,

—(t— ) ift e [a, 252)

—

(t—at2)?  ifee [22,p].

—2(t— k) ift € [a, %)
) =
2(t— b)) ifte [<Eb b,
_ Q‘t_a—H)
2
for ¢ € [a,b].
Since

) -1 (s)] = th_a;b‘_’S_a;b

210t — s

IN

x b
[/ <t—a>|f’<t>—f’<z>|dt+/ (b—t)f’(t)—f’(:c)ldt]
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for any ¢, s € [a,b] , we conclude that f’ is Lipschitzian with the constant K = 2.

‘We have
a+b 1 b 5t

ABf<ab ) 2[/Tf(t)dt— ]

b +

IRGCSETMGE S

2
10 a+b\> 1 3
= i/a (t— 9 ) dt—ﬂ(b—a)
If we replace these values in (4.2) we get in both sides the same quantity 2 (b — a)’.
O
The following result also holds:
Theorem 4.2. With the assumptions of Theorem 4.1 we have the inequalities
bf (b b
‘A3f<a,b,x>_ SO ofla) SO (), ws)
1, a+b\? 1 5
+§f (x) [(sc— 5 ) +i(b—a)
1 a+b\? 1 )
E(b—a)K l?) T-— ) +Z(b—a) ]

for any x € [a,b].
In particular, we have

To-alro-s@l- g (50) 0=t - as; (a0 50)| o
< % K (b—a).

The proof is similar to the above Theorem 4.1 and the details are omitted.

5. Inequalities for p-norms

For a Lebesgue measurable function f : [¢,d] — C we introduce the p-Lebesgue

norms as
/p

1 e.ap == (/ |f (t Ipdt> ifp>1

(e,d],00 1= €8S sup_|f (t)]
t€le,d]

and

provided these quantities are finite. We denote f € L, [¢,d] and f € Lo [c,d] .
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Proposition 5.1. Let f : [a,b] — C be an absolutely continuous function on [a,b]. Then

we have the inequalities

ABf(a,b,x)—(a+b—m>f(m)
T b
S;V (t=a)lf O+ [ 6=0lr (| = B @)

and

’bf(b)+af(a)_f(b)+f(a)x_AB (a,b, 2)
2 2 e

b
<5 [ le=allf Oldes= B2 @

for any x € [a,b].
Moreover, we have

[ 5@ = ) li0.000 if f' € Loc [a, 7]

if ' € Lg|a,x],

1
_ 1 141/
2 W(x—a) ||fl||[a,m],ﬂ i+%:1’a>1
(@ = a) |f lfau) 2
5 0= 120,00 if f' € Log [, ]
1 1+1 if f' € Ls [$7b]7
5 W(b_.’l;) Iy ||f/||[93,b],5 %+%:177>1
(0= 2) [/ NIz p1.1
and
2 .
3 (@ = a)" 1l 0,0,00 if ' € Loo [a, 2]
L if f' € Lg [a, ]
- 1 141/ B¢, )
S 2 m(x—a) ”f/”[a,w],,@ é+%:17f¥>1
(@ =a) [[f'ljq.011
2 .
3 (0= 1 w00 if ' € Los [, 0]
R if f' € Lg [z, ]
- 1 B 141/~ 5 450,
2 [CESVE (b—=x) I/ ||[rc,b],<5 % + % =1,y>1
=) 1"l 1.0

for any x € [a,b].

(5.1)

(5.2)

(5.3)

(5.4)
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Proof. From (2.1) and (2.2) we have by taking the modulus

‘ABf (a,b,2) — <a;rb x) f (@) (5.5)
1 “ ! b /
< 3 l j (t—a)f (t)dt‘—i— /x (b—t)f (t)dt‘|
1 T b
<s [/ t=a)lf @]+ [ (b—t)lf’(t)ldt]
and
<! / t—al | (1) dt
1 b
2[/ @=0lf O+ [ (tx)f’(t)ldt]
for any « € [a,b].
Using the Holder inequality we have
B1 (J})
3@ =) [ la.].o0 if f' € Log [a, 2]
1 oo if f' € Lg
< 3 X W(x—a)l-s—l/ 1" 0,21, if‘gz [ail
(== a) | ' la 211
3O =21 .00 if f' € Log [z, ]
1 if f' € Ls [2,b
+§ X W(b_x)l—‘rl/’y ||f ||xb]5 ii(l;e:él[’a;: i’l
O =2) [1F'400.1
O

and a similar inequality for Bs.
Remark 5.2. We observe that
1 1
(2= @ 1F lapoe + 7 0= 2 1 0 (5.7)

3
=04 300w {1y 1
1
2

[4 (b—a)®+ <x—“2+b)2

B1 (J}) <

IN

1M 1,00
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therefore
‘ABf (a,b,2) — (a;b$>]c(z) (5.8)
111 9 a+b 2 ,
< 5 [4 (b— a) —+ (:C— 2 > Hf ||[a,b],oo
for any x € [a,b].
Similarly,
’bf(b);af(a)_f(b);f(a)x—ABf(a,b,m) (5.9)
111 9 a+b\? /
! L R (e N [T
for any = € [a,b].
In particular, we have
a-+b 1
ABf (a7b7 2) ’ S g (b - a’>2 ||fl‘ [a,b],oo <510)
and
1 a+b 1
0=l 0) - @] - a8 (a0, 250) < g0 I g 62D

6. Applications for twice differentiable functions

If we write the equalities (2.11) and (2.12) for the function f = ¢’, where g :
I — R is a differentiable function on the interior of the interval I with the derivative
absolutely continuous on [a,b] C I, then we get

ABy (a,b,x) (6.1)

;VKI“QZ’)QQ@QV] (2 -0) @

z b
w51 o o-at [ o= o v)dt]
and
ABy (a,b,) = ) - ) o0 . 7o), (6.2)
2
(et o]
1 b
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and since

ABj (a,b,x) = %F (b) - F (),

where F (z) := /I f(t)dt, then

ABy(ab2) = 2lo0)—g(@)] - 9() +g(a)
IFICESIUN
and by (6.1) and (6.2) we get the representations
_9(@)+g(b)
g(@) = 127 (63)

and

g(x)= — + T (6.4)

b
+3 [ le=al - a

for any z € [a, b].
If we assume that ¢’ € U[a,b] (1, W) for some ¥,V € C, ¢ # VU, then, as above,
we have the inequalities

‘g(x) _9(a) ;rg(b) 65)
+$ ( —a;b)2+i(b— )? +(a;b— )g’(m)
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and
’g(x)_g(a);— g (b) bg'(@;ag’(a)_g’(b);g’(% (6.6)
Y+ a+b\* 1 2
N <— 5 ) +4(b—a)]
o — ] |1 9 a+b\?
§4l4<b‘a> +(o-15)
for any x € [a,b].
We have the particular inequalities
g(a—;b)_g(a);g(b)+¢;r6‘1’(b_a)2 (6.7)
§W(b—a)2
and
‘g (a;—b) _g(a);_g(b)—i—i(b—a) [¢' (b) — ¢ (a)] (6.8)
Y+ U 2
e 0
|¥ — | 2
ST(b_a)

Other similar results may be stated, however we do not present the details here.
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