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Generalizations of some fractional integral
inequalities for m-convex functions via
generalized Mittag-Leffler function
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Abstract. In this paper we are interested to present some general fractional in-
tegral inequalities for m-convex functions by involving generalized Mittag-Leffler
function. In particular we produce inequalities for several kinds of fractional inte-
grals. Also these inequalities have some connections with known integral inequal-
ities.
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1. Introduction

Inequalities play an essential role in mathematical and other kinds of analysis,
specially inequalities involving derivative and integral of functions are of great interest
for researchers.

Convex functions are very special in the study of functions defined on real line, a lot
of results, in particular inequalities in mathematical analysis based on their invention.
A convex function f: I — R is also equivalently defined by the Hadamard inequality

f(a—i—b) /f e < 1210

where a,b € I, a < b.
A close generalized form of convex functions is m-convex functions introduced by
Toader [23].

Definition 1.1. A function f : [0,b] — R, b > 0 is said to be m-convex function if for
all z,y € [0,b] and ¢t € [0,1]

[t +m(1—1t)y) <tf(z)+m(l—1)f(y)
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holds for m € [0,1].
Every m-convex function is not convex function.

Example 1.2. [16] Let f : [0,00] — R be defined by

1
g(t) = E(w‘l — 52° + 92?2 — 57)
16

is T7-convex function but it is not convex function.

For m = 1 the above definition becomes the definition of convex functions defined
on [0,b]. If we take m = 0, then we obtain the concept of starshaped functions on
[0,0]. A function f : [0,b] — R is said to be starshaped if f(tz) < tf(z) for all t € [0,1]
and z € [0, b].

If set of m-convex functions on [0, ] for which f(0) < 0 is denoted by K,,(b), then
we have

whenever m € (0,1). In the class K;(b) there are convex functions f : [0, — R for
which f(0) < 0 (see, [2]). There are a number of results and inequalities obtained via
m-convex functions for detail (see [2, 4, 7, 10]).

Recently, a number of authors are taking keen interest to obtain integral inequalities
of the Hadamard type via fractional integral operators of different kinds in the various
field of fractional calculus. For example one can see [5, 6, 11, 15, 17, 20, 22].

2. Preliminaries in fractional calculus and integral operators

Fractional calculus deals with the study of integral and differential operators
of non-integral order. Many mathematicians like Liouville, Riemann and Weyl made
major contributions to the theory of fractional calculus. The study on the fractional
calculus continued with contributions from Fourier, Abel, Lacroix, Leibniz, Grun-
wald and Letnikov. For detail (see, [11, 13, 15]). Riemann-Liouville fractional integral
operator is the first formulation of an integral operator of non-integral order.

Definition 2.1. [24] Let f € Lq[a,b]. Then Riemann-Liouville fractional integral of f
of order v is defined by

@) = g7 [ @0 0 2> a

I'(v
and
1P L
I f(z) = W/I (t— 2" f(t)dt, = < b.
In fact these formulations of fractional integral operators have been established
due to Letnikov [14], Sonin [21] and then by Laurent [12]. In these days a variety of
fractional integral operators have been produced and many are under discussion. A

number of generalized fractional integral operators are also very useful in generalizing
the theory of fractional integral operators [1, 11, 15, 18, 22, 24].
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Definition 2.2. [18] Let u,v,k,l,v be positive real numbers and w € R. Then the

generalized fractional integral operators containing Mittag-Leffler function e 6]; .
wvlw,a
7,0,k

w b for a real valued continuous function f is defined by:

and €

(Gt ad) @ = [ =0 B e — 00 0 2.1)
and

b
(68hen 1) @ = [ 6=y EpSH i - o) (0,

where the function EAY %, k is generalized Mittag-Leffler function defined as
o0 tn
E'y,é k _ (’Y)kn 7 929
[Llll() ;F(Mn‘i’l/)((s)ln ( )

(a)y, is the Pochhammer symbol, it defined as

(a)p =ala+1)(a+2)...(a+n—-1), (a)y=1.

v,0,k

L at reduces to an integral operator

If 6 =1 =11in (2.1), then integral operator €

Zilfw .+ containing generalized Mittag-Leffler function EW i ¥ introduced by Srivas-

tava and Tomovski in [22]. Along with 6 = [ = 1 in addition 1f k =1 then (2.1) reduces
to an integral operator defined by Prabhaker in [17] containing Mittag-Leffler function
E7 . For w =0 in (2.1), integral operator €, i”fw .+ reduces to the Riemann-Liouville
fractional integral operator [18].

In [18, 22] properties of generalized integral operator and generalized Mittag-
Leffler functions are studied in details. In [18] it is proved that EZif(t) is absolutely

convergent for k < [ + p. Let S be the sum of series of absolute terms of EZ,‘E;“( ).
We will use this property of Mittag-Leffler function in sequal.

Now a days a number of authors are working on inequalities involving fractional
integral operators and generalized fractional integral operators for example Riemann-
Liouville, Caputo, Hilfer, Canvati etc [8, 20]. Actually, fractional integral inequalities
are very useful to find the uniqueness of solutions for partial differential equations
of non-integral order. In this paper we give some fractional integral inequalities for
m-convex functions by involving generalized Mittag-Leffler function. Also we deduce
some main results of [3, 9, 19].

3. Fractional integral inequalities

First we prove the following lemma which would be helpful to obtain the main
results.

Lemma 3.1. Let f : I — R be a differentiable mapping on I, a,b € I with0 <a <b
and also let g : [a,mb] — R be a continuous function on [a,mb]. If f’',g € Lla, mb],
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then the following equality holds for v > 0
mb Sk v
</ 9($)EL (WS“)d8> [f(a) + f(mb)]
mb t v—1
o [T [ szt esas) OB @
a a

mb mb v—1
— 1// </ g(s)EZi;C (ws“)ds) g(t)EZ:if(wt“)f(t)dt
a t

- / " ( / t g(s)Ezjizﬂws“)ds)V f(t)dt

mb mb v
—/ </t g(s)EZ:if(ws"‘)ds) [/ (t)dt

where E;if is generalized Mittag-Leffler function.

Proof. One can have on integrating by parts

[ ([ sompstesnas) o

= ( / mbg(s)EZ;Z;?(ws“)ds) f(mb)

s
)

mb t v—1
—v / ( / g(s)Eg;if(wsﬂ)ds> gt EL T (wt*) f(t)dt.

And likewise

mb mb v
/a ( / g(s)E,z;i;ﬂws”)ds) £t

mb Y
- ( / g(s)EZ:i:f(wsws) ()

mb mb vl
v / ( / g(g)E;;ﬁ;f(wsﬂ)ds> g E) ) (wt?) f(t)dt.
a t

On substracting equation (3.3) from (3.2), we get the result.

We use Lemma 3.1 to establish the following fractional integral inequality.

(3.1)

(3.2)

Theorem 3.2. Let f: I — R be a differentiable mapping on I, a,b € I with0 <a <b
and also let g : [a,mb] — R be a continuous function on [a,mb]. If |f'| is m-convex
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function on [a,mb], then the following inequality holds

mb v
‘ ( / g(s)E:;izﬂws“)ds) (F(a) + f(mb)
mb t v—1
—v / ( / g(s)EZ;i:f(ws“)ds) g EY T (wt) f(t)dt

mb mb v—l
—v / ( / g(s)Egjif(wsﬂ)ds> gt BT (wt) f(t)dt
a t

(mb—a)y+1“g‘|gosu ’ /
< T (1f )|+ mls )

for k <1+ p, where || g ||co= sup |g(t)].

t€la,b]

Proof. By using Lemma 3.1, we have

mb v
( / g(s)Ez;i:ﬂws”)ds) (f(a) + f(mb)) (3.4)

-1

/mb /t Skl : ik
—v g(8)E) )y (wst)ds g B}y (wth) f(t)dt

mb mb v—l
—v / ( / g(s)EZ:if(ws“)ds) gt BT (wt) f(t)dt
a t

mb
<
a
mb
“f
a

By using || ¢ ||co= sup |g(¢)| and absolute convergence of Mittag-Leffler function, we
te(a,b]

v

/ (VBN wsyds| | (1)t

mb v
[ atE sk wsas| 1 wlat
t

have

mb v

‘( / g(s)El,’if(ws“)ds> (f(a) + f(mb)) (3.5)
mb t v—1

—v / < / g(s)E;;if(wsu)ds> g EY ) (wt?) f(t)dt
mb mb v—l

—v / ( /t g(s)E;;i;f(wsﬂ)ds> gt E) Dy (wt?) f(t)dt

mb mb
< Jlgll%5" ( / (t— a)"|f(t)]dt + / (mb—t)”lf’(t)ldt> .

a
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Since | f’] is m-convex function, therefore it can be written as

701 < 2L )+ 2D, gy (36)
for ¢ € [a, mb].
Using (3.6) in (3.5), we have
mb v
’ < / g(s)Ez;i:ﬂws“)ds) (F(a) + F(mb) (3.7

—1

mb t v
—v / ( / g(s)Eg;ﬁf(wsﬂ)ds) gt BT (wt) f(t)dt
’ ’ 7,6,k H v.8.k
—v g(s)EWJJ (wst)ds g(t)EW,J (wtt) f(t)dt
a t

mb mb — m(t —a
< flolis” (/ (0= o (2t + 2= o)) a

mb mb—a
mb
mb —t m(t — a)
b—1t)” ! ———|f'(b)] | dt | .
s [ - (B )+ 2= ) )
After simplification of above inequality we get the result. O

Remark 3.3. By taking particular values of parameters used in Mittag-Leffler func-
tion in above theorem several fractional integral inequalities can be obtained for cor-
responding fractional integrals. For example see the following results.

Corollary 3.4. If we take m =1 in Theorem 3.2, then we get the following inequality

b 1%
| ( / g(s)E;;i;ﬂws“)ds) (f(a) + £(b)
b t v—1
[ ( / g(s)E;;i;ﬂws“)ds) GO ) (1)t

b b v—1
v / ( / g(s)E;;S:ﬂws“)ds) GO ETSE (i) f (1)t

—a v+1 v v
< O= MBS ) 4 o).

Remark 3.5. In Theorem 3.2, for m = 1.

(i) If we put w = 0, then we get [19, Theorem 6].

(ii) If we take w = 0, v = £ and g(s) = 1, then we get [9, Corollary 2.3].
(iii) For g(s) = 1 along with w = 0 and v = py, then we get [19, Corollary 2].

Next we give another fractional integral inequality.
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Theorem 3.6. Let f: I — R be a differentiable mapping on I, a,b € I with0 < a <b
and also let g : [a,mb] — R be a continuous function on [a,mb]. If |f'|? is m-convex
function on [a,mb] for g > 1, then the following inequality holds

mb v
‘ ( / g(s)Ez;izﬂws“)ds) (F(a) + f(mb)
mb t v—1
—v / ( / g(s)EZ;i:f(ws“)ds) gt EY T (wt) f(t)dt

v—1

/mb /mb vk vk
v g(s)E,u,u,l ((US )dS g(t)E/L,l/J (Wt )f(t)dt
a t

< 2(mb — a)" g%, 8" <f’(a)|q + m|f’(b)|q>é
B (vp+ 1)% 2

for k <1+ p, where || g ||oo= sup |g(t)| and % + % =1.
t€la,b]

Proof. By using Lemma 3.1, we have

v

mb

‘( / g(s)E:;i:ms“)ds) (Fa) + F(mb) (33
mb t v—1

v / ( / g(s)El:i:?(ws“)ds) gL (wt) f(t)dt
mb mb v—1

v | ( / g(s)E;;i:ﬂws“)ds) o(OE () f (1)t

mb
<]
a
mb
“f
a

Using Holder inequality, we have

v

t
/ 9($) BN (ws)ds| |f(1)]dt

mb v
[ atEskwsas| 1 ®lat
t

mb v
|</ g(S)EZ,’i’f(ws“)d$> (f(a) + f(mb)) (3.9)

mb t v—1
—v / ( / g(s)Eg;;jf(wsﬂ)ds) g E) )T (wt?) f(t)dt

mb mb
v / ( / g(s)E,z;i;msﬂ)ds) g(O TSk (wt) f(t)dt
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< ( /" Vpdt) ( / mblf’(t)th)
. (/amb N dt)zl) </amb|f’(t)th>;. (3.10)

By using || ¢ ||lco= sup |g(¢)| and absolute convergence of Mittag-Leffler function, we
t€(a,b]

=
Q=

t
[ aeE sk wsas

mb
/ g(s)El’i’f(ws”)ds
t

have

mb v
|< / g(s)E:;i;ﬂws#)ds) (f(a) + f(mb)) (3.11)

mb t v—1
v / ( / g(s)E,z;i:ms“)ds) g() BTk (wt) £ ()t
v—1

mb mb
v | ( / g(s)Ez;i:ms“)ds) 9B S ) f (1t
a t

mb %

< |lgllZ. 8" ( ( [ —a|"pdt>
mb mb %
+</ |mb—t|”pdt> (/ f’(t)|th> .

Since |f’(t)]|? is m~convex, we have
b—t m(t —a)
e < m(t —a)

ol < =t

[ () + AL (3.12)
Using (3.12) in (3.11), we have

=

mb —

mb v
( / g(S)EZji’f(wS")d8> (f(a) + f(mb))

_ /mb /t 7,0,k m Y 7,0,k m
v g(s)EIWJ (wst)ds g(t)EW/J (wt™) f(t)dt

mb mb v—l
—v / ( / g(s)EZ:if(ws“)ds) gt BT (wt) f(t)dt (3.13)

1 1
mb P mb P
< llgll&s” ((/ It — a|”pdt> + </ |mb—t|””dt> )

mb - m(t—a !
(/ mb =t prayje 4 )If’(b)lq>-

mb—a mb—a
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After a simple calculation, we get the required result. O

Remark 3.7. It is remarkable that by taking particular values of parameters of Mittag-
Leffler function in above theorem several fractional integral inequalities can be ob-
tained for corresponding fractional integrals. For example some results are given be-
low.

Corollary 3.8. In Theorem 3.6 if we take m = 1, then we have the following integral
iequality

b 1%
|< / ofs )E;gms%) (f(a) + F(b)

[ b ( / e )E,Zi?(ws*‘)ds)u_l GBS (wt) (1)t

b b
_y/ (/t g(S)EZ:Sf(wsﬂ)ds> ()Eli;@( t”)f(t)dt

1

2 20— a)" " gll5 8" <|f’(a)|q + f'(b)q) ’
N (vp+1)7 2

Remark 3.9. In Theorem 3.6, for m = 1.

(i) If we put w = 0, then we get [19, Theorem 7).

(ii) If we take w = 0 along with v = £, then we get [9, Theorem 2.5].

(iii) If we take g(s) =1 and w = 0, then we get [3, Theorem 2.3].

(iv) If we put w = 0 and v = 1, then we get [3, Corollary 3].

In the next result we give the Hadamard type inequalities for m-convex func-
tions via generalized fractional integral operator containing generalized Mittag-LefHler
function.

Theorem 3.10. Let f : [a,mb] — R be a positive function with 0 < a < b and
f € Lla,mb]. If f is m-convex function, then the following inequalities for generalized
fractional integral hold

a + mb y.6.k
f( 2 ) (euulw“*mbwl)
v,8,k 7,8,k a
( v, l,w’ (“JrZ'"Lb ) (Eu v,l m“w’,(%)—f> (E)
< 1 [f(a) —mf (—)] (ewm 1) (mb)
~mb—a m?2 u,u+1,l,w’,(%’”b)+
v+1 a v:8,k a
et (10 +mf (15)) (G0 ez ) ()

2Hw
(mb—a)r -~

IN

where w' =

Proof. Using m-convexity of f, we have

() < He) it

(3.14)
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for z,y € [a, mb].
By taking « = fa + Ztmb, y = Z=La + Lb for t € [0,1] such that z,y € [a, mb],
inequality (3.14) becomes

2f(a+mb><f<;a+22t )+mf< o+ b) (3.15)

Multiplying both sides of (3.15) by t”*lE;’:f:f (wt*) and integrating with respect to ¢
on [0, 1]

2f<“+2mb> / (¢ ETOF )t (3.16)
0

1
</ (t"~ 1)EZ’3§“( tH) f <;a+22tmb> dt

2—-t t
v— 1 'y5k
+m/ " )E (W t“)f<2ma+2b>dt.

Setting u = §a + %tmb and v = 57ta + §b in (3.16), we have
a+mb 1 bk L
2 ( ) /ﬂ (mb — )" =L (W (mb — w)")du (3.17)
2
mb o
= /i (mb —u)" " BT (@ (mb — u)*) f (u)du
2 ofmb b1
Fmt [ (o ) B (e = ) (e
where w' = (mi‘:u;)u_
This implies
a+mb
2f ( ) (%Zi’,ﬁwu(%mbwl) (mb) (3.18)

~,8,k v,8,k g)
(08 g ) 0+ (G50 1) (2),

To prove the second inequality from m-convexity of f, we have

f(;a+m22_tb>+mf( L b) (3.19)

<4 (10 () o (00 ().
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Multiplying both sides of (3.19) by t”*lElzg’f (wt*) and integrating with respect to ¢
over [0, 1], we have

1 9
/ LB (wtt) f (;a—i-mth) dt (3.20)
b N2t
+m/ LB (wtt) f (2ma—|—b)
1
< - v ’Y,5k n
—z(f( m?f (= )/tE Bty de

:)
+m< ( ))/ LB (wtt) .

Setting u = £a + m25b and v = 2=La + £b in (3.20), we have
mb
[L L (mb— w) T EY DT (@ (mb — w)) f (u)du (3.21)
’ a«zl;'mb vl u
+/ (v - g) Elif (m”w' (v — ﬁ) ) f(v)dv
= m ” m
1 2 a " 8k ¢ 1
< B (f(a) —m*f (W)) [Hm (mb—w)"E} )7 (' (mb —u)t)dt
a+mb

NPt (f(b)—i—mf(%))/a 8 (v—%)y_ B0 (i (U—T‘;)”) dt.

m

This implies

(0o oty ) () (i:i’,’imuw,,<w>f) () (3.22)
= mbl— a (f(“) —m'f (%)) <€Z’i’i1,z,w',(%m>+1> (mb)
Fm (10 +mi (05)) (G epmy 1) ()

2m

Combining (3.18) and (3.22) we get the result. O

Corollary 3.11. In Theorem 3.10 if we take w = 0, then we get the following inequality
for Riemann-Liouville fractional integral operator

a+ mb 2 10w +1) 7, v a
! < 2 )S ey (Tesgy Smb) Ty £(2)) - (329)

i V@ (Gp)) + 5 0 ems (55))

Remark 3.12. If we put w =0, m = 1 and v = 1 in Theorem 3.10, then we get the
classical Hadamard inequality.
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