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Characterization of q-Cesàro convergence for
double sequences
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Abstract. In the present paper we examine the Buck-Pollard property of 4-
dimensional q-Cesàro matrices. Indeed we discuss some questions related to the
q-Cesàro summability of subsequences of a given double sequence. The main re-
sult states that “ a bounded double sequence is q-Cesàro summable to L if and
only if almost all of its subsequences are q-Cesàro summable to 21−qL”.
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1. Introduction

Buck and Pollard [2] proved that a bounded sequence (sn) is (C, 1) summable
if and only if almost all of its subsequences is (C, 1) summable. Since this idea has
been introduced by Buck and Pollard, the property is to be called “Buck-Pollard
property”. The Buck-Pollard property is related to the convergence or summability of
subsequences of a given sequence. Taking into consideration q-Cesàro matrix instead of
(C, 1) matrix, similar results have been investigated in [7]. Recently the Buck-Pollard
property for (C, 1, 1) summability method has been examined and also provided a
new characterization of (C, 1, 1) summability for double sequences with respect to its
subsequences [10].

In the present paper we consider similar problems for four dimensional q-Cesàro
matrix on double sequences. We first introduce the notions of our interest related to
double sequences.

A double sequence s = (sjk) is said to be Pringsheim convergent (i.e., it is
convergent in Pringsheim’s sense) to L if for every ε > 0 there exists an N ∈ N such
that |sjk − L| < ε whenever j, k ≥ N ([9]). In this case L is called the Pringsheim

limit of s and the space of such sequences is denoted by c(2). A double sequence s is
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bounded if there exists a positive number H such that |sjk| < H for all j and k, i.e.,

‖s‖(∞,2) = sup
j,k
|sjk| <∞.

We will denote the set of all bounded double sequences by l
(2)
∞ . Note that in contrast

to the case for single sequences, a convergent double sequence need not to be bounded.
Throughout the paper when there is no confusion, ”convergence” means the

Pringsheim convergence.

Four dimensional q-Cesàro matrix (Cq, 1, 1) =
(
cnmjk

)
is defined by

cnmjk =


1

nqmq , 1 ≤ j ≤ n and 1 ≤ k ≤ m

0 , otherwise

where 0 < q < ∞. Observe that the case q = 1 reduces to (C, 1, 1), 4-dimensional
Cesàro matrix. Also if q 6= 1, q-Cesàro matrices (Cq, 1, 1) cannot be RH regular, i.e.,
it cannot sum every bounded convergent sequence to the same limit.

There exist several versions of the concept of subsequences for double sequences
([3], [8], [12]). We adopt Definition 2 of [3] on subsequences of double sequences
throughout the paper.

Let X denote the set of all double sequences of 0’s and 1’s, that is

X = {x = (xjk) : xjk ∈ {0, 1} for each j, k ∈ N} .

Let < be the smallest σ-algebra of subsets of the set X which contains all sets of the
form

{x = (xjk) ∈ X : xj1k1
= a1, ..., xjnkn

= an}
where each ai ∈ {0, 1} and the pairs {(jiki)}ni=1 are pairwise distinct.

There exists a unique probability measure P on the set <, such that

P ({x = (xjk) ∈ X : xj1k1
= a1, ..., xjnkn

= an}) =
1

2n

for all choices of n and all pairwise disjoint pairs {(jiki)}ni=1, and all choices of a1, ..., an
(see, [3]).

Let s = (sjk) be a double sequence and x = (xjk) ∈ X. Following [3] we define
a subsequence of the sequence s by

sjk (x) =

{
sjk , if xjk = 1
∗ , if xjk = 0

.

Mapping x→ s (x) is a bijection from the set X to the set of all the subsequences of
the sequence s = (sjk) [3].

An element x of X is said to be normal ([3]) if for each ε > 0 there is a natural

number Nε such that for n,m ≥ Nε we have

∣∣∣∣∣∣ 1
nm

∑
j≤n
k≤m

xjk − 1
2

∣∣∣∣∣∣ < ε. Let η denote the

set of all elements x in X that are normal. This implies that normal elements are
(C, 1, 1)-summable to 1

2 . It is also known ([3]) that P (η) = 1.
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2. Subsequence Characterization of q-Cesàro Summability

In this section we characterize (Cq, 1, 1) summability of a double sequence. In
particular we study conditions under which (Cq, 1, 1) summability of a double se-
quence carry over to that of its subsequences, and conversely, whether these proper-
ties for suitable subsequences imply them for the sequence itself. We begin with the
following theorem which is analog to that of Buck and Pollard [2] for single sequences.

Theorem 2.1. If almost all subsequences of s = (sjk) are (Cq, 1, 1)-summable to a
value L then the sequence s = (sjk) is (Cq, 1, 1)-summable to 21−q L.

Proof. If almost all subsequences of (sjk) are (Cq, 1, 1)-summable to a value L then
the set G = {x ∈ X : s (x) is (Cq, 1, 1) -summable to L} has probability measure 1.
We use the technique given in [3]. Now given a sequence x = (xjk) ∈ X we define a
sequence x̄ = (x̄jk) by

x̄jk =

{
0 , if xjk = 1
1 , if xjk = 0

.

Let Y = G ∩ η and Y = {(x̄jk) : xjk ∈ Y }. Therefore we have Y = G ∩ η where G is
defined in the obvious way. Since the mapping (xjk) → (x̄jk) preserves the measure

P , we get P
(
Y
)

= 1 and hence P
(
Y ∩ Y

)
= 1. So Y ∩ Y is a non-empty set. If

x = (xjk) ∈ Y ∩ Y , then we have x ∈ G , x ∈ η and x̄ ∈ G , x̄ ∈ η. Hence we obtain

s (x)→ L (Cq, 1, 1)

and

s (x̄)→ L (Cq, 1, 1)

with x, x̄ ∈ η. That is

lim
n,m→∞

n,m∑
j,k=1,1

sjkxjk(
n,m∑

j,k=1,1

xjk

)q = L and lim
n,m→∞

n,m∑
j,k=1,1

sjkx̄jk(
n,m∑

j,k=1,1

x̄jk

)q = L.

Also since x, x̄ ∈ η, we have

lim
n,m→∞

1

nm

n,m∑
j,k=1,1

xjk =
1

2
and lim

n,m→∞

1

nm

n,m∑
j,k=1,1

x̄jk =
1

2
.

On the other hand, the (Cq, 1, 1)-summability of the sequence (sjk) is equivalent
to the existence of the limit of the following expression

n,m∑
j,k=1,1

sjk

nqmq
=

(
n,m∑

j,k=1,1

xjk

)q

nqmq

n,m∑
j,k=1,1

sjkxjk(
n,m∑

j,k=1,1

xjk

)q +

(
n,m∑

j,k=1,1

x̄jk

)q

nqmq

n,m∑
j,k=1,1

sjkx̄jk(
n,m∑

j,k=1,1

x̄jk

)q .
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So we get that

lim
n,m→∞

n,m∑
j,k=1,1

sjk

nqmq
=

L

2q
+
L

2q
= 21−qL

which implies that the sequence (sjk) is (Cq, 1, 1)-summable to 21−qL. �

In order to get the converse of Theorem 2.1, we need the following two lemmas
presented in [10]. The first lemma is an analog of the Khintchine inequality for double
sequences.

Lemma 2.2. Let

tnm (x) =
n,m∑

j,k=1,1

sjkrjk (x) , Bnm =
n,m∑

j,k=1,1

s2jk.

Then the following inequality

E
(

(tnm)
2r
)
≤ (2r)!

2rr!
(Bnm)

r

is fulfilled, where r is a positive integer.

The next result is an analog of the Marcinkiewicz-Zygmund inequality for double
sequences.

Lemma 2.3. Let

tnm (x) =
n,m∑

j,k=1,1

sjkrjk (x) , Bnm =
n,m∑

j,k=1,1

s2jk

and t∗nm (x) = max
(j,k)∈Knm

|tjk|, where Knm := {(j, k) : 1 ≤ j ≤ n, 1 ≤ k ≤ m}.

Then for a > 0 the following inequality

E
(
eat

∗
nm(x)

)
≤ 32ea

2 Bnm
2

holds.

Now we are ready to provide the converse of Theorem 2.1.

Theorem 2.4. If the sequence (sjk) is (Cq, 1, 1)-summable to a value L and

n,m∑
j,k=1,1

s2jk = o

(
n2qm2q

log log nqmq

)
then almost all subsequences of (sjk) are (Cq, 1, 1)-summable to 2q−1L.

Proof. The (Cq, 1, 1)-summability of almost all subsequences of (sjk) is equivalent to
the convergence of the following expression

n,m∑
j,k=1,1

sjkxjk(
n,m∑

j,k=1,1

xjk

)q for almost all x.
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We can rewrite the above expression as follows for almost all x

n,m∑
j,k=1,1

sjk

(
1 + rjk (x)

2

)
{

n,m∑
j,k=1,1

(
1 + rjk (x)

2

)}q =

1
2nqmq

n,m∑
j,k=1,1

sjk + 1
2nqmq

n,m∑
j,k=1,1

sjkrjk (x)

1
nqmq

{
n,m∑

j,k=1,1

(
1 + rjk (x)

2

)}q (2.1)

where rjk (x) = 2xjk−1 . Recall that the functions rjk are the Rademacher functions
(see [3]). Since P (η) = 1, observe that the denumerator of (2.1) converges to 1

2q for
almost all x. To complete the proof, it suffices to establish that

1

nqmq

n,m∑
j,k=1,1

sjkrjk (x)→ 0, (as n,m→∞) for almost all x.

Let ε > 0 and define

Mjk :=
{
x : there is (n,m) with 2j−1 < n ≤ 2j , 2k−1 < m ≤ 2k such that |tnm (x)| > nqmqε

}
and let

Gjk =
{
x : t∗2j ,2k (x) > 2q(j−1)2q(k−1)ε

}
.

Notice that Mjk ⊂ Gjk. The proof will be completed if we prove that for every ε > 0,

∞,∞∑
j,k=1,1

P (Gjk) <∞.

Now using Lemma 2.3 we have

P (Gjk) ea2
q(j−1)2q(k−1)ε ≤

∫
X

e
at∗

2j ,2k
(x)
dP (x) = E

(
e
at∗

2j ,2k
(x)
)
≤ 32ea

2 B
2j2k
2 .

Hence

P (Gjk) ≤ 32e
a2B

2j2k
2 −a2q(j−1)2q(k−1)ε.

Taking a = 2q(j−1)2q(k−1)ε
B

2j2k
, we have

P (Gjk) ≤ 32e
−
ε222q(j−1)22q(k−1)

2B2j2k (2.2)

= 32e
−
ε2
(
2j
)2q (

2k
)2q

2.16qB2j2k .

On the other hand it follows from the hypothesis that

B2j2k

(2j)
2q

(2k)
2q = o

(
1

log log 2jq2kq

)
which yields

B2j2k

(2j)
2q

(2k)
2q ≤

ε2

2.16q log log 2jq2kq
.
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Then (2.2) yields that

P (Gjk) ≤ 32e
−

ε2

2.16q
6.16q log log 2jq2kq

ε2

= 32e−3 log log 2jq2kq

=
32

[(j + k) log 2q]
3 .

Since
∞,∞∑

j,k=1,1

1
[(j+k) log 2q ]3

<∞ (see [1]),

∞,∞∑
j,k=1,1

P (Gjk) ≤ 32

∞,∞∑
j,k=1,1

1

[(j + k) log 2q]
3 <∞.

Hence we obtain lim
j,k→∞

P (Gjk) = 0 and also lim
j,k→∞

P (Mjk) = 0. This completes the

proof. �

A criterion for (Cq, 1, 1) summability of bounded double sequences is provided
in the next corollary.

Corollary 2.5. A bounded double sequence (sjk) is (Cq, 1, 1)-summable if and only if
the almost all subsequences are (Cq, 1, 1)-summable.

Theorem 2.6. If

lim
n,m→∞

1

nqmq

n,m∑
j,k=1,1

sjkrjk (x) = 0, for almost all x (2.3)

then we have

lim
n,m→∞

1

n2qm2q

n,m∑
j,k=1,1

s2jk = 0.

Proof. Let N [u, z] = {(j, k) : u ≤ j ≤ n or z ≤ k ≤ m} and

Tu,z,n,m (x) =
∑

(j,k)∈N [u,z]

sjkrjk (x) .

Hence

T 2
u,z,n,m (x) =

∑
(j,k)∈N [u,z]

s2jk + 2
∑

(j1,k1),(j2,k2)∈N [u,z]
j1 6=j2 or k1 6=k2

sj1k1sj2k2rj1k1 (x) rj2k2 (x) .

Because of the Egoroff theorem there exists a set D ⊂ X with positive measure such
that the limit in (2.3) exists uniformly on D. Therefore,∫

D

T 2
u,z,n,m (x) dP (x) = P (D)

∑
(j,k)∈N [u,z]

s2jk +K, (2.4)
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where

K = 2
∑

(j1, k1) , (j2, k2) ∈ N [u, z]
j1 6= j2 or k1 6= k2

sj1k1sj2k2

∫
D

rj1k1 (x) rj2k2 (x) dP (x) .

By the Hölder inequality we have

|K|≤ 2


∑

(j1, k1) , (j2, k2) ∈ N [u, z]

j1 6= j2 or k1 6= k2

s2j1k1
s2j2k2



1
2


∑
(j1, k1) , (j2, k2) ∈ N [u, z]

j1 6= j2 or k1 6= k2

v2j1k1j2k2



1
2

(2.5)
where vj1k1j2k2

=
∫
D

rj1k1
(x) rj2k2

(x) dP (x). We know that the functions rj1k1
(x)

and rj2k2
(x) are orthogonal on X (see [3]). So by the Bessel inequality [13] for double

sequences we get ∑
1 ≤ j1 < j2 ≤ ∞
1 ≤ k1 < k2 ≤ ∞

v2j1k1j2k2
≤
∫
X

(χD (x))
2
dP (x) = P (D) .

For sufficiently large u and z, we have
∑

(j1, k1) , (j2, k2) ∈ N [u, z]
j1 6= j2 or k1 6= k2

v2j1k1j2k2



1
2

≤ P (D)

4
.

It follows from (2.5) that

|K| ≤


∑

(j1, k1) , (j2, k2) ∈ N [u, z]
j1 6= j2 or k1 6= k2

s2j1k1
s2j2k2



1
2

P (D)

2
≤ P (D)

2

∑
(j1,k1)∈N [u,z]

s2j1k1
.

Combining this with (2.4) we get

∫
D

T 2
u,z,n,m (x) dP (x) = P (D)

∑
(j,k)∈N [u,z]

s2jk +K

≥ P (D)

2

∑
(j,k)∈N [u,z]

s2jk.
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By (2.3) we have that

lim
n,m→∞

1

n2qm2q

∑
(j,k)∈N [u,z]

s2jk = 0 and lim
n,m→∞

1

n2qm2q

n,m∑
j,k=1,1

s2jk = 0.

Hence the result follows. �

In the next examples we present a sequence so that it is (Cq, 1, 1) summable but
almost none of its subsequences are (Cq, 1, 1) summable.

Example 2.7. Consider the double sequence sjk = (−1)
j

(−1)
k√

j
√
k. Then

∞∑
j=1

(−1)
j √

j

jq
=

∞∑
j=1

(−1)
j

jq−
1
2

is convergent in the ordinary sense for q >
1

2
,

and

∞∑
k=1

(−1)
k√

k

kq
=

∞∑
k=1

(−1)
k

kq−
1
2

is convergent in the ordinary sense for q >
1

2
.

On the other hand the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent (see [1], page

90). Also since

∞∑
j=1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent in the ordinary sense for k = 1, 2, ...

and
∞∑
k=1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent in the ordinary sense for j = 1, 2, ...

then the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent in the restricted sense by

Theorem 1 of [5]. Since the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k√

j
√
k

jqkq
is convergent in

the restricted sense, we get that the sequence

 1
nqmq

n,m∑
j,k=1,1

(−1)
j

(−1)
k
√
j
√
k

 con-

verges to zero in the Pringsheim sense [6]. Hence the sequence
(

(−1)
j

(−1)
k√

j
√
k
)

is (Cq, 1, 1)-summable to zero. On the other hand, for the case of q = 3
4 , 1

n2qm2q

n,m∑
j,k=1,1

jk

 =

(
1

n2qm2q

n (n+ 1)

2

m (m+ 1)

2

)
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the double sequence does not converge to zero. Hence we have, by Theorem 2.6, that

lim
n,m

1

nqmq

n,m∑
j,k=1,1

(−1)
j

(−1)
k
√
j
√
krjk (x) 6= 0.

So almost none of its subsequences are (Cq, 1, 1)-summable to zero.

Example 2.8. Consider the double sequence sjk = (−1)
j

(−1)
k
jk. Then

∞∑
j=1

(−1)
j
j

jq
=

∞∑
j=1

(−1)
j

jq−1
is convergent in the ordinary sense for q > 1,

and

∞∑
k=1

(−1)
k
k

kq
=

∞∑
k=1

(−1)
k

kq−1
is convergent in the ordinary sense for q > 1.

On the other hand, the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−1kq−1
is convergent (see [1], page

90). Also since

∞∑
j=1

(−1)
j

(−1)
k

jq−1kq−1
is convergent in the ordinary sense for k = 1, 2, ...

and
∞∑
k=1

(−1)
j

(−1)
k

jq−1kq−1
is convergent in the ordinary sense for j = 1, 2, ...

then the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−1kq−1
is convergent in the restricted sense by

Theorem 1 of [5]. Since the series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k
jk

jqkq
is convergent in the restricted

sense, we get that the sequence

 1
nqmq

n,m∑
j,k=1,1

(−1)
j

(−1)
k
jk

 converges to 0 in the

Pringsheim sense [6]. Hence the sequence
(

(−1)
j

(−1)
k
jk
)

is (Cq, 1, 1)-summable to

0. On the other hand, for the case of q = 3
2 , 1

n2qm2q

n,m∑
j,k=1,1

j2k2

 =

(
1

n2qm2q

n (n+ 1) (2n+ 1)

6

m (m+ 1) (2m+ 1)

6

)
the double sequence does not converge to zero. Therefore, Theorem 2.6 implies almost
none of its subsequences are (Cq, 1, 1)-summable to zero.
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[6] Móricz, F., The kronecker lemmas for multiple series and some applications, Acta Math.
Acad. Sci. Hungar., 37(1981), 39-50.

[7] Orhan, C., Tas, E., Yurdakadim, T., The Buck-Pollard property for p−Cesàro matrices,
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