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A new proof of Ackermann’s formula from control
theory
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Abstract. This paper presents a novel proof for the well known Ackermann’s
formula, related to pole placement in linear time invariant systems. The proof
uses a lemma [3], concerning rank one updates for matrices, often used to effi-
ciently compute the determinants. The proof is given in great detail, but it can
be summarised to few lines.
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1. Introduction

Given a matrix A ∈ Rn×n and a vector B ∈ Rn×1, it is known, see [1] that
if the marix Co(A,B) = [B|A · B| . . . |An−1 · B] is invertible then there exists a

unique K ∈ Rn×1 such that Â = A + B · KT has any desired set of eigenvalues
S = {λ∗1, . . . , λ∗n}, closed under complex conjugation, that is if λ ∈ S then λ̄ ∈ S.
Algorithms for finding K are well known in literature among which the algorithm of
Bass-Gura (see [2]) and Ackerman (see [1]) are mentioned.

In the following a new demonstration to Ackermann’s result is given, using a well
known lemma often used for computing the determinant of a certain invertible matrix,
see [3]. This lemma relates the determinant of a rank-one update to the determinant
of the initial matrix. For an elegant proof of this result we point the reader to [3].

Lemma 1.1 (Matrix determinant lemma, [3]). Suppose that A is an invertible square
matrix and u and v are column vectors. Then:

det(A+ uvT ) =
(
1 + vTA−1u

)
det(A) (1.1)



326 Marius Costandin, Petru Dobra and Bogdan Gavrea

2. The novel proof for Ackermann’s formula

Theorem 2.1 (Ackermann). Let Ẋ = A ·X+B ·u be a linear time invariant dynamical
system, with X,B ∈ Rn and A ∈ Rn×n. If Co(A,B) = [B|A · B| . . . |An−1 · B] is in-

vertible, then the matrix Â = A−B ·KT
x has the user-defined eigenvalues {λ∗1, . . . , λ∗p},

with algebraic multiplicities q1, . . . , qp, where

Kx =

(
p∏

i=1

(A− λ∗i I)qi

)T

· Co(A,B)−T ·


0
0
...
1



= P ∗(A)T · Co(A,B)−T ·


0
0
...
1



Proof. Let P ∗(λ) =

p∏
i=1

(λ−λ∗i )qi = det(λI − Â) denote the characteristic polynomial

of Â and P (λ) = det(λI − A) the characteristic polynomial of A. Suppose, for start,
that the desired eigenvalues are not already eigenvalues for the system matrix, A.
Therefore det(λ∗i I −A) 6= 0 for all i ∈ {1, . . . , p}. Then, from Lemma 1.1:

P ∗(λ) = det(λI − Â)

= det(λI − (A−BKT
x ))

= det((λI −A) +BKT
x )

=
(
1 +KT

x (λI −A)−1B
)

det(λI −A)

=
(
1 +KT

x (λI −A)−1B
)
· P (λ) (2.1)

We are interested in finding Kx such that Equation (2.1) holds. Equation (2.1)
is a monic polynomial equality, so it is enough to hold for the roots. Let λ = λ∗i in
Equation (2.1).

Because λ∗i has multiplicity qi, then the folowing relations are obtained:


KT

x · (λ∗i I −A)−1 ·B = −1

KT
x · (λ∗i I −A)−2 ·B = 0

...

KT
x · (λ∗i I −A)−qi ·B = 0

∀i ∈ {1, . . . , p} (2.2)
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Hence 

BT · (λ∗1I −AT )−1

BT · (λ∗1I −AT )−2

...
BT · (λ∗1I −AT )−q1

...
BT · (λ∗pI −AT )−1

BT · (λ∗pI −AT )−2

...
BT · (λ∗1I −AT )−qp


·Kx =



−1
0
...
0
...
−1
0
...
0


(2.3)

Denote
C =

[
(λ∗1I −A)−1 ·B| . . . |(λ∗1I −A)−q1 ·B| . . .

]
and

N =
[
−1 0 . . . 0 . . . −1 0 . . . 0

]T
then

CT ·Kx = N

Looking closely at C one can see:
p∏

i=1

(λ∗i I −A)qi · C =
[
P1{λ∗1}(A) ·B| . . . |Pq1{λ∗1}(A) ·B| . . .

]
= C̄ (2.4)

where Pj{λ∗k}(A) =
(∏p

i=1,i6=k(λ∗i I −A)qi
)
·(λ∗kI−A)qk−j with k ∈ 1, p and j ∈ 1, qk.

If seen as a polynomial over R, then it’s roots are {λ∗1, . . . , λ∗k, . . . , λ∗p}, with the
multiplicity q1, . . . , qk − j, . . . , qp. The order of the polynomial is n− j. Stacking the
polynomial’s coefficients in a vector, with the coefficient of the smallest power in the
first position, and leaving the same name for the vector, one has:

C̄ =
[
B| A ·B| . . . | An−1 ·B

]
·

·
[
P1{λ∗1}| . . . | Pq1{λ∗1}| . . . | P1{λ∗p}| . . . | Pqp{λ∗p}

]
= Co(A,B) · P (2.5)

Of course, P is invertible, since it has linearly independent columns. Indeed let

α1
1 · P1{λ∗1}+ . . .+ αp

1 · P1{λ∗p}+ . . . = 0

be a null linear combination of the columns of P. Suppose the polynomial’s variable
is X. Let k ∈ 1, p and let αk

j be the the coefficient of the polynomial having λ∗k as a
root with the smallest multiplicity mk. Differentiating the above linear combination,
mk times, with respect to X, then replacing X with λ∗k, will yield αk

qk
= 0. Repeating

the process will conclude that the polynomials are linear independent. Hence:

C−T =

(
p∏

i=1

(λ∗i I −A)qi

)T

· Co(A,B)−T · P−T (2.6)
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therefore

Kx =

(
p∏

i=1

(A− λ∗i I)qi

)T

· Co(A,B)−T · (−1)n · P−T ·N

= P ∗(A)T · Co(A,B)−T · (−1)n · P−T ·N (2.7)

Denote V = (−1)n · P−T ·N therefore (−1)n · PT · V = N . Because P is invertible,
V is unique.

(−1)n ·



P1{λ∗1}T
P2{λ∗1}T

...
Pq1{λ∗1}T

...
P1{λ∗p}T
P2{λ∗p}T

...
Pqp{λ∗p}T


·

v1...
vn

 =



−1
0
...
0
...
−1
0
...
0


(2.8)

Because Pj{λ∗k} has the order n − j, and the coefficient of the smallest power is on
the first position in vector, that is the coefficient of the greatest power is on the last
position, follows:

(−1)n ·



. . . (−1)n−1

. . . 0
...

...
. . . 0
...

...
. . . (−1)n−1

. . . 0
...

...
. . . 0


·

v1...
vn

 =



−1
0
...
0
...
−1
0
...
0


(2.9)

It is easy to see that V = [0, . . . , 0, 1]T is a solution. Therefore

Kx = P ∗(A)T · Co(A,B)−T · V (2.10)

If λ∗i = λi, for some i ∈ 1, p, then take λ∗i (ε) = ε+ λ∗i to obtain

det(λI − (A−B ·Kx(ε)T )) = P ∗{ε}(λ).

Letting ε −→ 0, one has det(λI − (A−B ·KT
x )) = P ∗(λ). �
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3. Conclusions

A new proof for the well known Akermann’s formula was presented. The proof
uses a matrix lemma, giving an in depth look at the mechanics of eigenvalues change
using rank one updates. The state feedback matrix Kx is shown to be the unique
solution to a system of equations, obtained using a well known matrix lemma. The
proof can be summarised as follows:

1. Use Equation (2.1) to obtaing Equation (2.3)
2. Use Equations (2.4) and (2.5) to obtain Equation (2.6) regardind the resolvent

matrix
3. Use Equation (2.8) and (2.9) in Equation (2.7) to obtain Kx
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