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Abstract. This paper discusses the structure of a finite valuated p-group when
viewed as a module over its endomorphism ring. A category equivalence between
full subcategories of the category of valuated p-groups and the category of right
modules over the endomorphism ring of A is used to investigate the interac-
tion between this module structure and homological properties of the underlying
group. Examples are given throughout the paper.
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1. Introduction

Consider a prime p and a p-local Abelian group G. A wvaluation v on G assigns
a value v(g) to each g € G which is either an ordinal or co subject to the rules

i) v(pz) > v(z) for all z € G where co > oo,

ii) v(xz +y) > min{v(x),v(y)} for all z,y € G, and

iii) v(nz) = v(x) whenever n and p are relatively prime [11].
The third condition is redundant whenever G is a p-group. The valuated p-local
groups are the objects of the category V, studied extensively by Hunter, Richman
and Walker (e.g. see [7], [8] and [11]). A group homomorphism « : (G,v) — (H,w) is
a Vp-morphism if w(a(z)) > v(x) for all z € G, and we write a € Mor(G, H) in this
case. The category V), is pre-Abelian, i.e. all maps have kernels and cokernels. While
the kernel and cokernel of a V,-map G — H are its kernel and cokernel in the category
Ab of Abelian groups, their valuations are induced by those on G and H respectively.
Consequently, monomorphisms and epimorphisms need not be kernels and cokernels;
and V), is not Abelian. Finally, the forgetful functor 7 : V, — Ab strips a valuated
group (G, v) of its valuation.
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In this paper, all valuated groups are assumed to be finite valuated p-groups.
Although the group structure of a finite valuated p-group is well understood, the
addition of a valuation directly impacts its homological properties. In addition, Arnold
discovered a surprising connection between finite valuated p-groups and torsion-free
Abelian groups of finite rank in [3] by demonstrating that representation theory can
be used to investigate finite rank Butler groups as well as finite valuated p-groups.
Moreover, both classes of groups are equally difficult to describe.

This paper follows Arnold’s approach by investigating valuated p-groups using
tools which have traditionally been used in the discussion of torsion-free groups of
finite rank. For instance, homological properties of Abelian groups A of finite torsion-
free rank have been successfully studied by viewing A as a left module over its endo-
morphism ring. This paper extends this approach to finite valuated p-groups by con-
sidering such a group A as a module over its V,-endomorphism ring R = Mor(4, A)
and by studying how this module structure affects the homological properties of A.
Section 2 focuses on the case that A is projective as an R-module, while Section 3
considers the case that R has specific ring-theoretic properties.

2. Valuated p-Groups Projective as R-modules

A finite valuated p-group A-free if it is isomorphic to A" for some n < w, and
A-projective if it is a Vp-direct summand of an A-free group. Since A is a left R-
module, H4 = Mor(A, —) can be viewed as a functor from V, to the category Mg
of right R-modules, with the property that H(P) is free (projective) if P is A-free
(A-projective).

We begin our discussion with a few technical results. If « is a kernel in V,,, then
a = ker(coker(a)) [12]; and a similar result holds for cokernels. However, composition
of kernels (cokernels) in V, need not be kernels (cokernels) [10]. Therefore, the usual
homological constructions may not carry over from Abelian categories. Nevertheless, it
is still possible to develop a homological algebra for pre-Abelian categories as Yakovlev
showed in [14].

Lemma 2.1. Let A, B and C be valuated p-groups. If o € Mor (A, B) is an epimorphism
and 5 € Mor(B,C) such that Ba is a cokernel of a V,-map §, then B is a cokernel
for aé.

Proof. Suppose that ¢ satisfies pad = 0. Since PBa is a cokernel for d, there is a
map v such that ¥fa = ¢a. Because « is an epimorphism, ¢ = 3. Since 3 is an
epimorphism, v is unique with this property. U

A sequence A 5 B 2 © of valuated p-groups is is left-exact if « is a kernel for
B, and right-exact if 3 is a cokernel for a. It is ezact in V, if a is a kernel for 5 and
B is a cokernel for « [11]. The functor H4 : V, — Mp is left-exact since

Ha(a)

0= Ha(U) "2 Hu(B) "D Ha(0) (v)
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is an exact sequence of right R-modules whenever
0-U-%B-2C

is a left-exact sequence of valuated p-groups.
Consider the functor t4 : Mr — Ab defined by t4 = — ®g A for all M € Mp.
If F is a free right R-module with basis {x; | ¢ € I}, then

v(Bierx; ® a;) = min{v(a;) | i € I}

defines a valuation on t4(F'), and the resulting valuated group is denoted by T4 (F)
[1]. To define a valuation on ¢4 (M) for an arbitrary right R-module M, we choose a
free resolution

- m 2o
of M. Applying t 4 induces an exact sequence

Ta(Fy) 2 14(Fy) 2B t4(M) = 0
where t4(a) is a V,-map, which we denote as T4 (), by [1]. Since V, is pre-Abelian,
there is a unique valuation v on t4(M) such that t4(8) becomes the V,-cokernel of
Ta(a) [11]. We define T4 (M) = (ta(M),v), and observe t4 = FT4. The next result
summarizes the basic properties of T4 which were established in [2, Section 2J:

Theorem 2.2. [2] Let A be a finite valuated p-group.

a) Ta: Mpr —V, is a right exact functor.

b) The evaluation map g : TAHA(G) — G defined by 0g(a ® a) = ala) is a
natural Vp-map for all valuated p-groups G such that 0p is an isomorphism for
all A-projective groups P.

c) The natural map ®pr : M — Hom(A,Ta(M)) defined by [Pp(z)](a) = 2 @ a
is a natural transformation such that Op, vnTa(®nr) = 1,y for all right R-
modules M. Moreover, ®p is an isomorphism for all finitely generated projective
right R-modules P.

An epimorphism G — H of valuated p-groups is A-balanced if the induced map
Ha(a) : HA(G) — Ha(H) is onto. A valuated p-group G is weakly A-generated if we
can find an A-balanced epimorphism

oA a0

for some index-set I. It is A-generated if 8 can be chosen to be a cokernel in V.
Although there is no need to distinguish between A-generated and weakly A-generated
objects in an Abelian category, it is necessary to do this in the pre-Abelian case as
was shown in [2].

A valuated p-group G is A-presented if there is an exact sequence

0—-U—-F—-G—=0

of valuated p-groups such that F' is A-free and U is weakly A-generated. If this
sequence can be chosen to be A-balanced, then G is called A-solvable. A valuated
p-group G is A-presented if and only if G = T4 (M) for some right R-module M.
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Moreover, it is A-solvable if and only if 6 is an isomorphism [2]. In particular, every
A-projective group is A-solvable.

In a pre-Abelian category like V,, neither the 5-Lemma nor the Snake-Lemma
need to hold [11]. The next result is frequently used in this paper as a substitute for
the 5-Lemma throughout this paper:

Lemma 2.3. Let A be a finite valuated p-groups. If 0 — U = H LG5 0isa
Vp-ezact sequence such that Oy is an isomorphism, then there exists a commutative
Vp-diagram

TAHA(U) 222290 gy 22228 o) —— 0

. o I
0 U e, H 2, ¢ ——0

with Vp-exzact rows in which M = imH(8) C Ha(G) and 0 : Tao(M) — G is the
evaluation map. Moreover, 0 is a cokernel, and 6 = 0cTA(t) where v : M — Hx(G)
is the inclusion map.

Proof. Since H 4 is left-exact, every exact sequence

0-U-5HL5650

of valuated groups induces an exact sequence

0 — Ha(U) ™2 1y (1) 29 M o 0

of right R-modules where M = im(H(p)) is a submodule of H(G). By Part a) of
Theorem 2.2, the induced sequence

TaHAU) Y 1y 1, (1) Ta(M) =0
is right exact. Part b) of same result yields that 6y and 6g are V,-maps, and the
commutativity of the diagram follows directly. Since T'4(¢) is a V,-map by another
application of Theorem 2.2, the same holds for § = T'4(¢)f¢. Using the fact that 6y
is a V,-isomorphism, we obtain 8[T4(3)05'] = 8. Because T4 (f) is a cokernel, 6 is a
cokernel by Lemma 2.1. O

TAE)(ﬁ)

Ulmer described the objects of an Abelian Groethendick category which are flat
over their endomorphism ring [13]. When discussing the validity of Ulmer’s result in
Vp, one immediately realizes that his original arguments need to be modified exten-
sively because this category is only pre-Abelian. In particular, we want to remind
the reader that a finite valuated p-group is flat as an R-module if and only if it is
projective.

Theorem 2.4. The following conditions are equivalent for a finite valuated p-group A:

a) A is projective as a left R-module.

b) Whenever ¢ € Mor(A™, A) for some n < w, then ker ¢ is weakly A-generated.

c) Whenever ¢ € Mor(G, H) for A-solvable valuated p-groups G and H, then ker ¢
is weakly A-generated.
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Proof. a) = ¢): For K = ker ¢, consider the exact sequence

0— Ha(K) — Ha(G) -2 M =0

of right R-modules in which M = im(H4(¢)) is a submodule of H4(H). Let ¢ denote
embedding M C H4(H). By Proposition 2.3, we obtain a commutative diagram

0 — s TaHA(K) —— TaHA(G) 2229 1oy —— 0

s zle@,c le

0 —— K — G . H
of V,-maps whose top-row is right exact in V,. Moreover, it is exact in .Ab since A
is projective as a left R-module. Using the projectivity of A once more yields that
T4(¢) is a monomorphism, and the same holds for § = 05T 4(¢) since H is A-solvable.
Thus, 0 is an isomorphism of Abelian groups. Because the 3-Lemma is valid in Ab,
we obtain that 6 is an epimorphism in .Ab, and hence in V.

Since ¢) = b) is obvious, it remains to show b) = a):

It suffices to establish that the inclusion map ¢ : I — R induces a monomorphism
ta(t) i ta(I) — ta(R) of Abelian groups for all right ideals I of R. Since R is finite,
I={ry,...,r,}. We define a map ¢, : F = R™ — I by ¢1(e;) = r; where {eq,...,e,}
is an R-basis of F. Set ¢ = 11 : FF — R. By b), the kernel K of the V,-map
Ta(p) : Ta(F) — Ta(R) is weakly A-generated. Since A is finite, we can select a
finite A-projective group P and an A-balanced epimorphism A : P — K. Because

0= K — Ta(F) 29 7,(R)
is Vp-exact, the induced sequence
HaTa(9)
O—)HA(K)*)HATA(F) — HATA(R)

is exact. Combining this sequence with H4(\) yields that the top-row of the commu-
tative diagram

Ha(P) a4l HTa(F) HaTa @), HAT4(R)
ZTq)F ITq)R
F LN R

of right R-modules is exact. In view of ¢(F) = I, the diagram gives us the exact
sequence

—1
(B) Ha(P) ™D Haa(F) 25 150

of right R-modules. Since 07, n)Ta(Pr) = 1r, ) for all right R-modules M, we

obtain 7, (x) = TA(<I>;(1) for all finitely generated projective right R-modules X.
Hence,

Ta(9)0r,(ry = Ta(¢p@5") = Ta(@R" HaTa(¢)) = 01, (my TaHaTa(9).

Because of this and Theorem 2.2, an application of T4 yields the commutative diagram
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TaHA(N) TaHATA(
IR

TAHA(P) TAHATA(F) Dy TyHATA(R)

ll@p llgTA(F) ZJVGTA(R)

P A TR Tal0), TA(R)

of Abelian groups. Since it suffices to show that ¢4(¢) is a monomorphism of Abelian
groups, our computations are done from this point only in Ab instead of in V,. In
particular, we use the fact that the Vp-kernel of a map is its kernel in Ab with a
valuation added. The symbols t 4 and T'4 can be used interchangeably when computing
in Ab.

Observe that the bottom row of the last diagram is exact at T4 (F') as a sequence
of Abelian groups by the choice of P and . Since the vertical maps are isomorphisms,
the top-row is exact at T4 HaT4(F'). Moreover, (F) induces the exact sequence

TaHA(P) AN 1y 1T (F)

of Abelian groups. Therefore, the map TA(qSlq);l) is a cokernel in Ab for the left
top-map TAH4(X). On the other hand, the projection
T TA(F) -G = TA(F)/K

is a cokernel of A in Ab. Hence, there is an isomorphism o : Ty(I) = t4(I) — G of
Abelian groups such that 707, p) = 0Ta(¢1®5"). Since the bottom row of the last
diagram is exact at T4 (F'), there is a map 7 : G — T4 (R) with 77 = T4 (¢) using
the exactness of the bottom row of the last diagram once more. For g € ker 7, select
x € Ty(F) with w(z) = ¢g. Then 0 = 7n(z) = Ta(¢)(z) yields x = A(y) for some
y € P. Hence, g = mA(y) = 0, and 7 is a monomorphism.
Because HAT A(¢1)Pr = P11, we have
07, (R)TAHATA()TA(®1)Ta(d1) = b1, (R)TAHATA()TAHATA(d1)Ta(PF)
= Or,R)TaHATA()TA(PF)
= Ta(9)0r, () Ta(PF)
= T’/TQTA(F)TA((I)F)
= 70TaA(1®5")Ta(®PF)
= 710Ta(¢1).

Since T'4(¢1) is an epimorphism, we obtain that

9TA(R)TAHATA(L)TA(‘I)[) =T0

—1
S (1) = 0

is a monomorphism since the maps on the right are monomorphisms, and the same
holds for

TA(CI)R)tA(L) = TAHATA(L)TA((I)I)
using the fact that T4 (R) = A. Because T4 (Pg) is an isomorphism, ¢ 4(¢) is one-to-one
as desired. O

For a finite p-group G, let e(A) denote the smallest n < w such that p"G = 0.
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Corollary 2.5. Every finite valuated p-group A is a direct summand of a finite valuated
p-group B such that e(A) = e(B) and B is flat as a module over its endomorphism
7ing.

Proof. Choose n < w minimal with the property that pA = 0, and consider the
group B = Z/p"Z ® A where Z/p™ carries the height valuation h. Since h is the
smallest valuation on Z/p"Z, and every B-generated group is bounded by p", the
kernel of every map between any two B-generated groups is a V,-epimorphic image
of (Z/p"Z,h). By Theorem 2.4, B is projective over its endomorphism ring. d

We continue our discussion by looking at simply presented groups. A (p-)valuated
tree is a set X, on which a partial multiplication by p is defined, together with a
function v assigning a value v(x) to each € X which is either an ordinal or co
subject to the rules

i) If p"a = z for some 0 < n < w, then pr = x, and there is exactly one element

in X with this property, called the root of X.

ii) v(pz) > v(z) whenever px is defined.
Moreover, if X1, ..., X, are rooted valuated trees, then the co-product U}_; X; in the
category of valuated p-tree is the tree that is obtained by joining X, ..., X, at their
roots.

Associated with any rooted tree X is a simply presented valuated p-group S(X)
defined as Fx/Rx where Fx is a free Z,-module with basis {(z)|z € X} and Ry is
generated by the elements p(x) — (px). If we set T = (z) + Rx, then every g € S(X)
has a unique presentation g = X;exn,Z with 0 < n, < p, and the valuation on S(X)
is defined by

vl(g) = min{v(x) | n. # 0}.
Finally, a valuated cyclic p-group G of order p™ is of the form G = S(X) for a valuated
p-tree X = {xq,...,zp_1} such that G = (xo) and x; = px;_1 fori =1,...,n.

A map ¢ : X — Y between valuated trees is a tree map if ¥ (px) = py(x) if px
exists and v(1(z)) > v(x). A tree map r : X — X is a retraction if r?> = r. Hunter,
Richman and Walker showed that there is an order preserving retraction from S(X)
onto X for all valuated trees [7]. Moreover, every tree map ¢ : X — Y induces a
V,-map ¢ : S(X) — S(Y).

Corollary 2.6. The following conditions are equivalent for a finite valuated p-group A:
a) A is a cyclic group.
b) A is an indecomposable simply presented group which is projective as an R-
module.

Proof. 1t remains to show that an indecomposable simply presented group A is cyclic
if it is projective as an R-module. Since A is indecomposable, R is a local ring.
Therefore, all projective R-modules are free. Consequently, we can find a € A such
that A = Ra, and ra # 0 for all non-zero r € R.

Write A = S(X) for some valuated tree X. Since A is indecomposable, X is
irretractable and has a unique element y of order p. Let x1,...,x, be the elements
of maximal order of X, and select rq,...,7, € R such that z; = r;a fori =1,...,n.
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Ifry,...,rn € J(R), then A = J(R)A because z1,...,x, generate A as an Abelian
group, which is impossible by Nakayama’s Lemma. Therefore, we may, without loss
of generality, assume ry ¢ J(R). Thus, r; is a unit in R, and

A = Ra = Rria = Rx.
Moreover, if sz; = 0, then
-1
0=sxzy =sri(r] x1)=sria

from which we obtain sr; = 0. Then s = 0 since 7 is a unit of R. Therefore, ¢(x1) # 0
for all non-zero ¢ € R.

Suppose that n > 1, and define a map r : X — X by r(z) = 0 if  # x5 and
r(z2) = y. Observe that v(zs) < v(y) by the choice of x5 and y. For x # xa, pr # x4
because x2 is an element of maximal order. Thus, r(pz) = 0. On the other hand
pr(z2) = py = 0 while r(pz3) = 0 since pxs # 5. Therefore, r is a map of valuated
trees, and induces an endomorphism « of the valuated group A with a(z;) = 0 and
a(x) =y # 0, a contradiction. Consequently, X has only one element x; of maximal
order, and A = (x1). O

However, Corollary 2.5 shows that a simply presented group which is flat as a
module over its endomorphism ring need not be a direct sum of cyclic groups. More-
over, there are infinitely many isomorphism classes of indecomposable finite valuated
p-groups G such that p?G = 0 and v(g) < 9 for all 0 # g € G [3, Example 8.2.5].
Furthermore, the category of indecomposable finite valuated p-groups G such that
p°G = 0 and v(g) < 11 for all 0 # g € G has wild representation type [3, Example
8.2.6].

Example 2.7. Let A; = {(a;), A2 = {az) and Az = {a3) be cyclic groups of order p?,
and define a valuation on A; by v(a;) = 1, v(pa;) = 4 and v(p?a;) = 5 and on Ay by
v(az) = 2, v(paz) = 3 and v(p?az) = 5. Finally, set v(az) = co.
To see that A = Ay @ Ay @ Az is not flat as an R-module, consider the map
0 : Ay @ Ay — As defined by d((nai,mas)) = (n — m)as. It is easy to see that
K =ker § =< (a1, a2) > and v(ai, az) = 1, v(pay,pas) = 3, and v(p3a1, p?as) = 5.
If ¢ € Mor(Ay, K), then ¢(ay) € pK for otherwise

4 =v(pa1) < v(d(pa1)) = v(pay, paz) = 3.
Similarly, if 1» € Mor(As, K), then ¢ (as) € pK since otherwise
2 =wv(az) < v(YP(az)) = v(ai,az) = 1.

Since Mor(A3, A1 ® As) = 0, we have im 0 C pK, and K is not weakly A-generated.
By Theorem 2.4, A is not projective as an R-module.

Example 2.8. If A = (z) is a cyclic group of order p? with the height valuation, then
A is free as a module over its endomorphism ring F = Z/p?Z. Moreover, v(pr) = 1.
On the other hand, M = Z/pZ is a left E-module which fits into the exact sequence

E“SEs M0

where a(1 + p?Z) = p + p?Z and B(1 + p?Z) = 1 + pZ. Then Ta(M) = Z/pZ and
setting v(1 + pZ) = 0 yields the cokernel valuation on T4(M). On the other hand,
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the map v : M — E defined by (1 + pZ) = p + p*Z induces a monomorphism
Ta(y) : Ta(M) — A such that im(Ta(y)) = (pz). Since

0=uv(l+pZ) < v(px) =1,

the map T4 (y) does not preserve valuations. If we consider the sequence

0-M -2 E 2 Mo,
then Ta(7y) : Ta(M) — Ta(FE) is not a kernel for T4(3).

Therefore, the class of A-solvable groups may behave quite different from the
case that A is either a torsion-free or mixed Abelian group even if A is a finite valuated
p-group which is projective over its endomorphism ring. For instance, the kernel of
a map between two A-solvable groups need not be A-solvable, nor is a weakly A-
generated subgroup U of an A-solvable group necessarily A-solvable.

Corollary 2.9. Let A be a finite valuated p-group which is projective as an R-module.
An A-generated subgroup U of an A-solvable group G is A-solvable.

Proof. By Proposition 2.3, it remains to show that 6y is an isomorphism in V,. Since
A is projective as an R-module, one can argue as in the case of torsion-free groups that
Oy is an isomorphism of Abelian groups. Select an A-free group F' and an A-balanced

exact sequence 0 — V -2 F 2. U = 0. It induces the commutative diagram

TAHA(F) 2229 1 og(U) —— 0
Ilgp J/GU
0 g F LN U —o.

Since 0y is an isomorphism of Abelian groups, T4 H 4 (6)9;104 = 0. There is a V,-map
A:U — TaHA(U) such that TAHA(B)<9;1 = A3 because 3 is a cokernel of « in V.
Then

OuNB = OuTaHA(B)0," = B
yields 0y = 1y. Thus, My = 17,m, @) since Oy is an isomorphism of Abelian
groups. Hence
v(z) = v(My(z)) = v(0u(x)) = v(z)
for all x € TAHA(U). Thus, 0y is a Vp-isomorphism. O

Corollary 2.10. The following conditions are equivalent for a finite valuated p-group
A:

a) A is a progenerator for pM.
b) i) Whenever ¢ € Mor(G, H) for A-solvable valuated p-groups G and H, then
ker ¢ is weakly A-generated.
il) Whenever ¢ € Mor(G, H) is an epimorphism of A-solvable valuated p-
groups G and H, then H4(¢) is an epimorphism.
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Proof. a) = b): It remains to show that ii) holds. For this, consider the submodule
M = im Ha(¢) of Hy(H), and denote the inclusion map M — H(H) by ¢. The
evaluation map 0 : T4 (M) — H is a V,-map since it satisfies § = 05 T4(¢). Moreover,
it is one-to-one since A is a projective as a right R-module guarantees that T4(¢) is a
monomorphism of Abelian groups and 0y is an isomorphism. On the other hand, it
also fits into the commutative diagram

TAHAG) 9% 70(M) —— 0

o Jo
G s H —o.

Hence, 6 is an isomorphism of Abelian groups, and the same holds for T4 (¢). However,
the latter fits into the exact sequence

Ta(M) ™Y Ty H A (H) — Ha(H)/M — 0.
Therefore, Ty (Ha(H)/M) = 0. Since A is a projective generator, M = H4(H).

b) = a): By [9, Proposition 2.4], every faithful projective module is a generator.
Since A is a projective left R-module by Theorem 2.4, it remains to show that it is
faithful. Let M be a right R-module with ¢4 (M) = 0, and consider an exact sequence
P —- F —- M — 0 in which P and F' are projective module. By Theorem 2.2, we
obtain a right exact sequence Ty (P) — T4(F) — 0 of valuated p-groups. By ii), the
top sequence in the diagram

HATA(P) e HATA(F) — 0
ZT‘PP ZTQF

P F M 0
is exact. Thus, M = 0. O

3. Hereditary and Quasi-Frobenius Endomorphism Rings

We conclude our discussion by considering finite valuated p-groups A whose
endomorphism ring has specific ring-theoretic properties. We focus particularly on
the cases that R is either hereditary or self-injective. We want to remind the reader
that there is no need to deal with right/left conditions since R is finite [4].

A finite valuated p-group G is A-torsion-less if there is a monomorphism G — A*
for some ¢ < w. We say that an exact sequence of valuated groups is A-cobalanced if
A is injective with respect to it.

Theorem 3.1. Let R be a finite valuated p-group A:

a) R is hereditary if and only if A is a direct sum of cyclic groups of order p.
b) R is (semi-)simple Artinian if and only if A= B™ where B is a cyclic group of
order p.
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¢) If R is a quasi-Frobenius ring, then every exact sequence 0 — U — G in which
U is weakly A-generated and G is A-solvable is A-cobalanced. If A is a projective
R-module, then the converse holds, and every A-presented group is A-torsion-
less.

Proof. a) If R is hereditary, then so is eRe for any idempotent e of R [4]. If B is an
indecomposable summand of A, then there is a primitive idempotent e of R such that
eRe is the V,-endomorphism ring of B. Since eRe is a hereditary local ring, all right
ideals of eRe are free eRe-modules. However, this means that eRe is a field since it
is finite. Because, pE(B) is a proper ideal of E(B), we have pB = 0. By [8], B is a
cyclic group. Hence, A is a direct sum of cyclic groups of order p.

Conversely, if A has the described form, then A = A1 @...® A,, where A; & Bf
and each B; is a cyclic group of order p. If B; = (b;), then no generality is lost if we
assume v(b;) < v(b;) for ¢ < j and v(b;) # oo for i < n. Then Mor(B;, B;) = Z/pZ
if i < j, and Mor(B;, B;) = 0 otherwise. Therefore, R is Morita-equivalent to a lower
triangular matrix ring over Z/pZ. By [5], R is hereditary.

b) We continue using the notation from a). f A= A1 @®...® A, and n > 1, then
Mor(A;, A;) = 0 for ¢ > j, but Mor(A4;, A;) # 0 for ¢ < j. In particular, N(R) # 0.
b) now follows immediately.

¢) If R is quasi-Frobenius, then we consider an exact sequence 0 — U % Gin
which U is an epimorphic image of an A-projective group and G is A-solvable. For
¢ € Mor(U, A), we can find a map ¢ : Ha(G) — R such that v Ha(«) = ¢. Since
both, o and ¢, fit into the commutative diagram

TuHAU) 2225 7 1,(6)
JQU ZJVGG
U e G,

we obtain
Ta()05" aby = 04Ta(Y)TaHa(e) = 04TaHa(9) = ¢0y.
Because 6 is a V,-epimorphism, TA(w)Hala = ¢.
Conversely, let
0—-I-%R
be an exact sequence and ¢ € Hompg(I, R). Because A is a flat R-module,

0= Ta(D) 2% T4 (R)

is a Vy-exact sequence. Since T4(I) is an image of an A-projective group, there is a
map ¥ € Mor(Ta(R),Ta(R)) such that ¥ Ta(a) = Ta(¢). We consider commutative
diagrams of the form

0 — s HaTa() 2229 g 70 (R)

T Jox

0 —— 1 —_— R
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to obtain
PR HA()Pra = PR HA(W)HATA()®;
DR HaTA(0)®;
= ORp'Prop=¢.
Finally, if G is an A-presented group, then G = T (M) for some finitely gen-
erated right R-module M by [2] as mentioned before. Let FE be an injective hull of
M. Since R is quasi-Frobenius, E is projective. Thus, M can be embedded into a

free R-module F', which can be chosen to be finite since M is finite. Then T4 (M) is
isomorphic to a submodule of T4 (F) since A is projective. O

Corollary 3.2. Let A be a finite valuated p-group whose endomorphism ring is self-
jective. Fvery exact sequence

0—+P-5G
such that P is A-projective and G is A-solvable splits.

O
We conclude with two examples that show that the endomorphism ring of a
direct sum of cyclic valuated p-groups may or may not be quasi-Frobenius:

Example 3.3. a) Let A; be a cyclic group of order p™, and Ay a cyclic valuated
group of order p™ whose generator x satisfies v(p"~1z) > n. Then, the endo-
morphism ring of A = A; @ A is the lower triangular matrix ring over Z/p"Z,
which is not self-injective.

b) By [6, Example 1], the ring
_| z/p°’z pZ/p’L
T pZ/p*L L[pPL
is quasi-Frobenius. Consider two cyclic valuated groups Ay = ({(x1),v1) and Az =
({w3),v2) of order p® such that vy(z1) = 1, v1(px1) = 4, vo(T2) = 2, v2(px2) = 3
and vy (p?x1) = va(p?x2) > 5. In view of the fact that Mor(4;, A;) = Z/p*Z for
i # j, we obtain that A = A; ® A, has R as its Vp-endomorphism ring.
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