Stud. Univ. Babes-Bolyai Math. 62(2017), No. 3, 295-307

DOI: 10.24193/subbmath.2017.3.03

Finite valuated groups as modules over their endomorphism ring

Ulrich Albrecht

Abstract. This paper discusses the structure of a finite valuated p-group when viewed as a module over its endomorphism ring. A category equivalence between full subcategories of the category of valuated p-groups and the category of right modules over the endomorphism ring of A is used to investigate the interaction between this module structure and homological properties of the underlying group. Examples are given throughout the paper.

Mathematics Subject Classification (2010): 20K30, 20K40, 20K10.

Keywords: Valuated p-group, endomorphism ring, Ulmer's theorem, projective module.

1. Introduction

Consider a prime p and a p-local Abelian group G. A valuation v on G assigns a value v(g) to each $g \in G$ which is either an ordinal or ∞ subject to the rules

- i) v(px) > v(x) for all $x \in G$ where $\infty > \infty$,
- ii) $v(x+y) \ge \min\{v(x), v(y)\}\$ for all $x, y \in G$, and
- iii) v(nx) = v(x) whenever n and p are relatively prime [11].

The third condition is redundant whenever G is a p-group. The valuated p-local groups are the objects of the category \mathcal{V}_p studied extensively by Hunter, Richman and Walker (e.g. see [7], [8] and [11]). A group homomorphism $\alpha:(G,v)\to(H,w)$ is a \mathcal{V}_p -morphism if $w(\alpha(x))\geq v(x)$ for all $x\in G$, and we write $\alpha\in \mathrm{Mor}(G,H)$ in this case. The category \mathcal{V}_p is pre-Abelian, i.e. all maps have kernels and cokernels. While the kernel and cokernel of a \mathcal{V}_p -map $G\to H$ are its kernel and cokernel in the category $\mathcal{A}b$ of Abelian groups, their valuations are induced by those on G and H respectively. Consequently, monomorphisms and epimorphisms need not be kernels and cokernels; and \mathcal{V}_p is not Abelian. Finally, the forgetful functor $\mathcal{F}:\mathcal{V}_p\to \mathcal{A}b$ strips a valuated group (G,v) of its valuation.

In this paper, all valuated groups are assumed to be finite valuated p-groups. Although the group structure of a finite valuated p-group is well understood, the addition of a valuation directly impacts its homological properties. In addition, Arnold discovered a surprising connection between finite valuated p-groups and torsion-free Abelian groups of finite rank in [3] by demonstrating that representation theory can be used to investigate finite rank Butler groups as well as finite valuated p-groups. Moreover, both classes of groups are equally difficult to describe.

This paper follows Arnold's approach by investigating valuated p-groups using tools which have traditionally been used in the discussion of torsion-free groups of finite rank. For instance, homological properties of Abelian groups A of finite torsion-free rank have been successfully studied by viewing A as a left module over its endomorphism ring. This paper extends this approach to finite valuated p-groups by considering such a group A as a module over its \mathcal{V}_p -endomorphism ring $R = \operatorname{Mor}(A, A)$ and by studying how this module structure affects the homological properties of A. Section 2 focuses on the case that A is projective as an R-module, while Section 3 considers the case that R has specific ring-theoretic properties.

2. Valuated p-Groups Projective as R-modules

A finite valuated p-group A-free if it is isomorphic to A^n for some $n < \omega$, and A-projective if it is a \mathcal{V}_p -direct summand of an A-free group. Since A is a left R-module, $H_A = \operatorname{Mor}(A, -)$ can be viewed as a functor from \mathcal{V}_p to the category \mathcal{M}_R of right R-modules, with the property that $H_A(P)$ is free (projective) if P is A-free (A-projective).

We begin our discussion with a few technical results. If α is a kernel in \mathcal{V}_p , then $\alpha = \ker(\operatorname{coker}(\alpha))$ [12]; and a similar result holds for cokernels. However, composition of kernels (cokernels) in \mathcal{V}_p need not be kernels (cokernels) [10]. Therefore, the usual homological constructions may not carry over from Abelian categories. Nevertheless, it is still possible to develop a homological algebra for pre-Abelian categories as Yakovlev showed in [14].

Lemma 2.1. Let A, B and C be valuated p-groups. If $\alpha \in \text{Mor}(A, B)$ is an epimorphism and $\beta \in Mor(B, C)$ such that $\beta \alpha$ is a cokernel of a \mathcal{V}_p -map δ , then β is a cokernel for $\alpha \delta$.

Proof. Suppose that ϕ satisfies $\phi \alpha \delta = 0$. Since $\beta \alpha$ is a cokernel for δ , there is a map ψ such that $\psi \beta \alpha = \phi \alpha$. Because α is an epimorphism, $\phi = \psi \beta$. Since β is an epimorphism, ψ is unique with this property.

A sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ of valuated *p*-groups is is *left-exact* if α is a kernel for β , and *right-exact* if β is a cokernel for α . It is *exact in* \mathcal{V}_p if α is a kernel for β and β is a cokernel for α [11]. The functor $H_A : \mathcal{V}_p \to \mathcal{M}_R$ is left-exact since

$$0 \to H_A(U) \xrightarrow{H_A(\alpha)} H_A(B) \xrightarrow{H_A(\beta)} H_A(C) \quad (*)$$

is an exact sequence of right R-modules whenever

$$0 \to U \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

is a left-exact sequence of valuated p-groups.

Consider the functor $t_A : \mathcal{M}_R \to \mathcal{A}b$ defined by $t_A = - \otimes_R A$ for all $M \in \mathcal{M}_R$. If F is a free right R-module with basis $\{x_i \mid i \in I\}$, then

$$v(\Sigma_{i\in I}x_i\otimes a_i)=min\{v(a_i)\mid i\in I\}$$

defines a valuation on $t_A(F)$, and the resulting valuated group is denoted by $T_A(F)$ [1]. To define a valuation on $t_A(M)$ for an arbitrary right R-module M, we choose a free resolution

$$F_1 \xrightarrow{\alpha} F_0 \xrightarrow{\beta} M \to 0$$

of M. Applying t_A induces an exact sequence

$$T_A(F_1) \xrightarrow{t_A(\alpha)} T_A(F_0) \xrightarrow{t_A(\beta)} t_A(M) \to 0$$

where $t_A(\alpha)$ is a \mathcal{V}_p -map, which we denote as $T_A(\alpha)$, by [1]. Since \mathcal{V}_p is pre-Abelian, there is a unique valuation v on $t_A(M)$ such that $t_A(\beta)$ becomes the \mathcal{V}_p -cokernel of $T_A(\alpha)$ [11]. We define $T_A(M) = (t_A(M), v)$, and observe $t_A = \mathcal{F}T_A$. The next result summarizes the basic properties of T_A which were established in [2, Section 2]:

Theorem 2.2. [2] Let A be a finite valuated p-group.

- a) $T_A: \mathcal{M}_R \to \mathcal{V}_p$ is a right exact functor.
- b) The evaluation map $\theta_G: T_AH_A(G) \to G$ defined by $\theta_G(\alpha \otimes a) = \alpha(a)$ is a natural \mathcal{V}_p -map for all valuated p-groups G such that θ_P is an isomorphism for all A-projective groups P.
- c) The natural map $\Phi_M: M \to \operatorname{Hom}(A, T_A(M))$ defined by $[\Phi_M(x)](a) = x \otimes a$ is a natural transformation such that $\theta_{T_A(M)}T_A(\Phi_M) = 1_{T_A(M)}$ for all right R-modules M. Moreover, Φ_P is an isomorphism for all finitely generated projective right R-modules P.

An epimorphism $G \to H$ of valuated p-groups is A-balanced if the induced map $H_A(\alpha): H_A(G) \to H_A(H)$ is onto. A valuated p-group G is weakly A-generated if we can find an A-balanced epimorphism

$$\bigoplus_I A \stackrel{\beta}{\longrightarrow} G \to 0$$

for some index-set I. It is A-generated if β can be chosen to be a cokernel in \mathcal{V}_p . Although there is no need to distinguish between A-generated and weakly A-generated objects in an Abelian category, it is necessary to do this in the pre-Abelian case as was shown in [2].

A valuated p-group G is A-presented if there is an exact sequence

$$0 \to U \to F \to G \to 0$$

of valuated p-groups such that F is A-free and U is weakly A-generated. If this sequence can be chosen to be A-balanced, then G is called A-solvable. A valuated p-group G is A-presented if and only if $G \cong T_A(M)$ for some right R-module M.

Moreover, it is A-solvable if and only if θ_G is an isomorphism [2]. In particular, every A-projective group is A-solvable.

In a pre-Abelian category like V_p , neither the 5-Lemma nor the Snake-Lemma need to hold [11]. The next result is frequently used in this paper as a substitute for the 5-Lemma throughout this paper:

Lemma 2.3. Let A be a finite valuated p-groups. If $0 \to U \xrightarrow{\alpha} H \xrightarrow{\beta} G \to 0$ is a \mathcal{V}_p -exact sequence such that θ_H is an isomorphism, then there exists a commutative \mathcal{V}_p -diagram

$$T_A H_A(U) \xrightarrow{T_A H_A(\alpha)} T_A H_A(H) \xrightarrow{T_A H_A(\beta)} T_A(M) \longrightarrow 0$$

$$\downarrow \theta_U \qquad \qquad \downarrow \downarrow \theta_H \qquad \qquad \downarrow \theta$$

$$0 \longrightarrow U \xrightarrow{\alpha} H \xrightarrow{\beta} G \longrightarrow 0$$

with \mathcal{V}_p -exact rows in which $M = imH_A(\beta) \subseteq H_A(G)$ and $\theta : T_A(M) \to G$ is the evaluation map. Moreover, θ is a cokernel, and $\theta = \theta_G T_A(\iota)$ where $\iota : M \to H_A(G)$ is the inclusion map.

Proof. Since H_A is left-exact, every exact sequence

$$0 \to U \xrightarrow{\alpha} H \xrightarrow{\beta} G \to 0$$

of valuated groups induces an exact sequence

$$0 \to H_A(U) \xrightarrow{H_A(\alpha)} H_A(H) \xrightarrow{H_A(\beta)} M \to 0$$

of right R-modules where $M = im(H_A(\beta))$ is a submodule of $H_A(G)$. By Part a) of Theorem 2.2, the induced sequence

$$T_A H_A(U) \xrightarrow{T_A H_A(\alpha)} T_A H_A(H) \xrightarrow{T_A H_A(\beta)} T_A(M) \to 0$$

is right exact. Part b) of same result yields that θ_U and θ_G are \mathcal{V}_p -maps, and the commutativity of the diagram follows directly. Since $T_A(\iota)$ is a \mathcal{V}_p -map by another application of Theorem 2.2, the same holds for $\theta = T_A(\iota)\theta_G$. Using the fact that θ_H is a \mathcal{V}_p -isomorphism, we obtain $\theta[T_A(\beta)\theta_H^{-1}] = \beta$. Because $T_A(\beta)$ is a cokernel, θ is a cokernel by Lemma 2.1.

Ulmer described the objects of an Abelian Groethendick category which are flat over their endomorphism ring [13]. When discussing the validity of Ulmer's result in \mathcal{V}_p , one immediately realizes that his original arguments need to be modified extensively because this category is only pre-Abelian. In particular, we want to remind the reader that a finite valuated p-group is flat as an R-module if and only if it is projective.

Theorem 2.4. The following conditions are equivalent for a finite valuated p-group A:

- a) A is projective as a left R-module.
- b) Whenever $\phi \in \text{Mor}(A^n, A)$ for some $n < \omega$, then ker ϕ is weakly A-generated.
- c) Whenever $\phi \in \text{Mor}(G, H)$ for A-solvable valuated p-groups G and H, then ker ϕ is weakly A-generated.

Proof. a) \Rightarrow c): For $K = \ker \phi$, consider the exact sequence

$$0 \to H_A(K) \longrightarrow H_A(G) \stackrel{\phi}{\longrightarrow} M \to 0$$

of right R-modules in which $M = im(H_A(\phi))$ is a submodule of $H_A(H)$. Let ι denote embedding $M \subseteq H_A(H)$. By Proposition 2.3, we obtain a commutative diagram

$$0 \longrightarrow T_A H_A(K) \longrightarrow T_A H_A(G) \xrightarrow{T_A H_A(\phi)} T_A(M) \longrightarrow 0$$

$$\downarrow \theta_K \qquad \qquad \downarrow \psi_{\oplus_I G} \qquad \qquad \downarrow \theta$$

$$0 \longrightarrow K \longrightarrow G \xrightarrow{\phi} H$$

of \mathcal{V}_p -maps whose top-row is right exact in \mathcal{V}_p . Moreover, it is exact in $\mathcal{A}b$ since A is projective as a left R-module. Using the projectivity of A once more yields that $T_A(\iota)$ is a monomorphism, and the same holds for $\theta = \theta_H T_A(\iota)$ since H is A-solvable. Thus, θ is an isomorphism of Abelian groups. Because the 3-Lemma is valid in $\mathcal{A}b$, we obtain that θ_K is an epimorphism in $\mathcal{A}b$, and hence in \mathcal{V}_p .

Since $(c) \Rightarrow (b)$ is obvious, it remains to show $(b) \Rightarrow (a)$:

It suffices to establish that the inclusion map $\iota: I \to R$ induces a monomorphism $t_A(\iota): t_A(I) \to t_A(R)$ of Abelian groups for all right ideals I of R. Since R is finite, $I = \{r_1, \ldots, r_n\}$. We define a map $\phi_1: F = R^n \to I$ by $\phi_1(e_i) = r_i$ where $\{e_1, \ldots, e_n\}$ is an R-basis of F. Set $\phi = \iota \phi_1: F \to R$. By b), the kernel K of the \mathcal{V}_p -map $T_A(\phi): T_A(F) \to T_A(R)$ is weakly A-generated. Since A is finite, we can select a finite A-projective group P and an A-balanced epimorphism $\lambda: P \to K$. Because

$$0 \to K \to T_A(F) \xrightarrow{T_A(\phi)} T_A(R)$$

is \mathcal{V}_p -exact, the induced sequence

$$0 \to H_A(K) \to H_A T_A(F) \xrightarrow{H_A T_A(\phi)} H_A T_A(R)$$

is exact. Combining this sequence with $H_A(\lambda)$ yields that the top-row of the commutative diagram

$$H_{A}(P) \xrightarrow{H_{A}(\lambda)} H_{A}T_{A}(F) \xrightarrow{H_{A}T_{A}(\phi)} H_{A}T_{A}(R)$$

$$\uparrow \uparrow \Phi_{F} \qquad \qquad \uparrow \uparrow \Phi_{R}$$

$$F \xrightarrow{\phi} R$$

of right R-modules is exact. In view of $\phi(F)=I$, the diagram gives us the exact sequence

$$(E) \ H_A(P) \stackrel{H_A(\lambda)}{\longrightarrow} H_A T_A(F) \stackrel{\phi_1 \Phi_F^{-1}}{\longrightarrow} I \to 0$$

of right R-modules. Since $\theta_{T_A(M)}T_A(\Phi_M)=1_{T_A(M)}$ for all right R-modules M, we obtain $\theta_{T_A(X)}=T_A(\Phi_X^{-1})$ for all finitely generated projective right R-modules X. Hence,

$$T_A(\phi)\theta_{T_A(F)} = T_A(\phi\Phi_F^{-1}) = T_A(\Phi_R^{-1}H_AT_A(\phi)) = \theta_{T_A(R)}T_AH_AT_A(\phi).$$

Because of this and Theorem 2.2, an application of T_A yields the commutative diagram

of Abelian groups. Since it suffices to show that $t_A(\iota)$ is a monomorphism of Abelian groups, our computations are done from this point only in $\mathcal{A}b$ instead of in \mathcal{V}_p . In particular, we use the fact that the \mathcal{V}_p -kernel of a map is its kernel in $\mathcal{A}b$ with a valuation added. The symbols t_A and T_A can be used interchangeably when computing in $\mathcal{A}b$.

Observe that the bottom row of the last diagram is exact at $T_A(F)$ as a sequence of Abelian groups by the choice of P and λ . Since the vertical maps are isomorphisms, the top-row is exact at $T_AH_AT_A(F)$. Moreover, (E) induces the exact sequence

$$T_A H_A(P) \xrightarrow{T_A H_A(\lambda)} T_A H_A T_A(F) \xrightarrow{T_A(\phi_1 \Phi_F^{-1})} T_A(I) \to 0$$

of Abelian groups. Therefore, the map $T_A(\phi_1\Phi_F^{-1})$ is a cokernel in $\mathcal{A}b$ for the left top-map $T_AH_A(\lambda)$. On the other hand, the projection

$$\pi: T_A(F) \to G = T_A(F)/K$$

is a cokernel of λ in $\mathcal{A}b$. Hence, there is an isomorphism $\sigma: T_A(I) = t_A(I) \to G$ of Abelian groups such that $\pi\theta_{T_A(F)} = \sigma T_A(\phi_1\Phi_F^{-1})$. Since the bottom row of the last diagram is exact at $T_A(F)$, there is a map $\tau: G \to T_A(R)$ with $\tau\pi = T_A(\phi)$ using the exactness of the bottom row of the last diagram once more. For $g \in \ker \tau$, select $x \in T_A(F)$ with $\pi(x) = g$. Then $0 = \tau\pi(x) = T_A(\phi)(x)$ yields $x = \lambda(y)$ for some $y \in P$. Hence, $g = \pi\lambda(y) = 0$, and τ is a monomorphism.

Because $H_A T A(\phi_1) \Phi_F = \Phi_I \phi_1$, we have

$$\begin{array}{lcl} \theta_{T_A(R)}T_AH_AT_A(\iota)T_A(\Phi_I)T_A(\phi_1) & = & \theta_{T_A(R)}T_AH_AT_A(\iota)T_AH_AT_A(\phi_1)T_A(\Phi_F) \\ & = & \theta_{T_A(R)}T_AH_AT_A(\phi)T_A(\Phi_F) \\ & = & T_A(\phi)\theta_{T_A(F)}T_A(\Phi_F) \\ & = & \tau\pi\theta_{T_A(F)}T_A(\Phi_F) \\ & = & \tau\sigma T_A(\phi_1\Phi_F^{-1})T_A(\Phi_F) \\ & = & \tau\sigma T_A(\phi_1). \end{array}$$

Since $T_A(\phi_1)$ is an epimorphism, we obtain that

$$\theta_{T_A(R)}T_AH_AT_A(\iota)T_A(\Phi_I) = \tau\sigma$$

is a monomorphism since the maps on the right are monomorphisms, and the same holds for

$$T_A(\Phi_R)t_A(\iota) = T_A H_A T_A(\iota) T_A(\Phi_I)$$

using the fact that $T_A(R) \cong A$. Because $T_A(\Phi_R)$ is an isomorphism, $t_A(\iota)$ is one-to-one as desired.

For a finite p-group G, let e(A) denote the smallest $n < \omega$ such that $p^nG = 0$.

Corollary 2.5. Every finite valuated p-group A is a direct summand of a finite valuated p-group B such that e(A) = e(B) and B is flat as a module over its endomorphism ring.

Proof. Choose $n < \omega$ minimal with the property that $p^n A = 0$, and consider the group $B = \mathbb{Z}/p^n\mathbb{Z} \oplus A$ where \mathbb{Z}/p^n carries the height valuation h. Since h is the smallest valuation on $\mathbb{Z}/p^n\mathbb{Z}$, and every B-generated group is bounded by p^n , the kernel of every map between any two B-generated groups is a \mathcal{V}_p -epimorphic image of $(\mathbb{Z}/p^n\mathbb{Z}, h)$. By Theorem 2.4, B is projective over its endomorphism ring.

We continue our discussion by looking at simply presented groups. A (p-) valuated tree is a set X, on which a partial multiplication by p is defined, together with a function v assigning a value v(x) to each $x \in X$ which is either an ordinal or ∞ subject to the rules

- i) If $p^n x = x$ for some $0 < n < \omega$, then px = x, and there is exactly one element in X with this property, called the *root of X*.
- ii) v(px) > v(x) whenever px is defined.

Moreover, if X_1, \ldots, X_n are rooted valuated trees, then the co-product $\bigcup_{i=1}^n X_i$ in the category of valuated p-tree is the tree that is obtained by joining X_1, \ldots, X_n at their roots.

Associated with any rooted tree X is a *simply presented* valuated p-group S(X) defined as F_X/R_X where F_X is a free \mathbb{Z}_p -module with basis $\{\langle x \rangle | x \in X\}$ and R_X is generated by the elements $p\langle x \rangle - \langle px \rangle$. If we set $\overline{x} = \langle x \rangle + R_X$, then every $g \in S(X)$ has a unique presentation $g = \sum_{x \in X} n_x \overline{x}$ with $0 \le n_x < p$, and the valuation on S(X) is defined by

$$v(g) = \min\{v(x) \mid n_x \neq 0\}.$$

Finally, a valuated cyclic *p*-group G of order p^n is of the form G = S(X) for a valuated p-tree $X = \{x_0, \ldots, x_{n-1}\}$ such that $G = \langle x_0 \rangle$ and $x_i = px_{i-1}$ for $i = 1, \ldots, n$.

A map $\psi: X \to Y$ between valuated trees is a tree map if $\psi(px) = p\psi(x)$ if px exists and $v(\psi(x)) \geq v(x)$. A tree map $r: X \to X$ is a retraction if $r^2 = r$. Hunter, Richman and Walker showed that there is an order preserving retraction from S(X) onto X for all valuated trees [7]. Moreover, every tree map $\psi: X \to Y$ induces a \mathcal{V}_p -map $\overline{\psi}: S(X) \to S(Y)$.

Corollary 2.6. The following conditions are equivalent for a finite valuated p-group A:

- a) A is a cyclic group.
- b) A is an indecomposable simply presented group which is projective as an R-module.

Proof. It remains to show that an indecomposable simply presented group A is cyclic if it is projective as an R-module. Since A is indecomposable, R is a local ring. Therefore, all projective R-modules are free. Consequently, we can find $a \in A$ such that A = Ra, and $ra \neq 0$ for all non-zero $r \in R$.

Write A = S(X) for some valuated tree X. Since A is indecomposable, X is irretractable and has a unique element y of order p. Let x_1, \ldots, x_n be the elements of maximal order of X, and select $r_1, \ldots, r_n \in R$ such that $x_i = r_i a$ for $i = 1, \ldots, n$.

If $r_1, \ldots, r_n \in J(R)$, then A = J(R)A because x_1, \ldots, x_n generate A as an Abelian group, which is impossible by Nakayama's Lemma. Therefore, we may, without loss of generality, assume $r_1 \notin J(R)$. Thus, r_1 is a unit in R, and

$$A = Ra = Rr_1a = Rx_1.$$

Moreover, if $sx_1 = 0$, then

$$0 = sx_1 = sr_1(r_1^{-1}x_1) = sr_1a$$

from which we obtain $sr_1 = 0$. Then s = 0 since r_1 is a unit of R. Therefore, $\phi(x_1) \neq 0$ for all non-zero $\phi \in R$.

Suppose that n > 1, and define a map $r: X \to X$ by r(x) = 0 if $x \neq x_2$ and $r(x_2) = y$. Observe that $v(x_2) \leq v(y)$ by the choice of x_2 and y. For $x \neq x_2$, $px \neq x_2$ because x_2 is an element of maximal order. Thus, r(px) = 0. On the other hand $pr(x_2) = py = 0$ while $r(px_2) = 0$ since $px_2 \neq x_2$. Therefore, r is a map of valuated trees, and induces an endomorphism α of the valuated group A with $\alpha(x_1) = 0$ and $\alpha(x_2) = y \neq 0$, a contradiction. Consequently, X has only one element x_1 of maximal order, and $A = \langle x_1 \rangle$.

However, Corollary 2.5 shows that a simply presented group which is flat as a module over its endomorphism ring need not be a direct sum of cyclic groups. Moreover, there are infinitely many isomorphism classes of indecomposable finite valuated p-groups G such that $p^4G=0$ and $v(g)\leq 9$ for all $0\neq g\in G$ [3, Example 8.2.5]. Furthermore, the category of indecomposable finite valuated p-groups G such that $p^5G=0$ and $v(g)\leq 11$ for all $0\neq g\in G$ has wild representation type [3, Example 8.2.6].

Example 2.7. Let $A_1 = \langle a_1 \rangle$, $A_2 = \langle a_2 \rangle$ and $A_3 = \langle a_3 \rangle$ be cyclic groups of order p^3 , and define a valuation on A_1 by $v(a_1) = 1$, $v(pa_1) = 4$ and $v(p^2a_1) = 5$ and on A_2 by $v(a_2) = 2$, $v(pa_2) = 3$ and $v(p^2a_2) = 5$. Finally, set $v(a_3) = \infty$.

To see that $A = A_1 \oplus A_2 \oplus A_3$ is not flat as an R-module, consider the map $\delta: A_1 \oplus A_2 \to A_3$ defined by $\delta((na_1, ma_2)) = (n - m)a_3$. It is easy to see that $K = \ker \delta = \langle (a_1, a_2) \rangle$ and $v(a_1, a_2) = 1$, $v(pa_1, pa_2) = 3$, and $v(p^2a_1, p^2a_2) = 5$.

If $\phi \in \text{Mor}(A_1, K)$, then $\phi(a_1) \in pK$ for otherwise

$$4 = v(pa_1) \le v(\phi(pa_1)) = v(pa_1, pa_2) = 3.$$

Similarly, if $\psi \in \text{Mor}(A_2, K)$, then $\psi(a_2) \in pK$ since otherwise

$$2 = v(a_2) \le v(\psi(a_2)) = v(a_1, a_2) = 1.$$

Since $Mor(A_3, A_1 \oplus A_2) = 0$, we have $im \ \theta_K \subseteq pK$, and K is not weakly A-generated. By Theorem 2.4, A is not projective as an R-module.

Example 2.8. If $A = \langle x \rangle$ is a cyclic group of order p^2 with the height valuation, then A is free as a module over its endomorphism ring $E = \mathbb{Z}/p^2\mathbb{Z}$. Moreover, v(px) = 1. On the other hand, $M = \mathbb{Z}/p\mathbb{Z}$ is a left E-module which fits into the exact sequence

$$E \xrightarrow{\alpha} E \xrightarrow{\beta} M \to 0$$

where $\alpha(1+p^2\mathbb{Z})=p+p^2\mathbb{Z}$ and $\beta(1+p^2\mathbb{Z})=1+p\mathbb{Z}$. Then $T_A(M)\cong\mathbb{Z}/p\mathbb{Z}$ and setting $v(1+p\mathbb{Z})=0$ yields the cokernel valuation on $T_A(M)$. On the other hand,

the map $\gamma: M \to E$ defined by $\gamma(1 + p\mathbb{Z}) = p + p^2\mathbb{Z}$ induces a monomorphism $T_A(\gamma): T_A(M) \to A$ such that $im(T_A(\gamma)) = \langle px \rangle$. Since

$$0 = v(1 + p\mathbb{Z}) < v(px) = 1,$$

the map $T_A(\gamma)$ does not preserve valuations. If we consider the sequence

$$0 \to M \xrightarrow{\gamma} E \xrightarrow{\beta} M \to 0$$

then $T_A(\gamma): T_A(M) \to T_A(E)$ is not a kernel for $T_A(\beta)$.

Therefore, the class of A-solvable groups may behave quite different from the case that A is either a torsion-free or mixed Abelian group even if A is a finite valuated p-group which is projective over its endomorphism ring. For instance, the kernel of a map between two A-solvable groups need not be A-solvable, nor is a weakly A-generated subgroup U of an A-solvable group necessarily A-solvable.

Corollary 2.9. Let A be a finite valuated p-group which is projective as an R-module. An A-generated subgroup U of an A-solvable group G is A-solvable.

Proof. By Proposition 2.3, it remains to show that θ_U is an isomorphism in \mathcal{V}_p . Since A is projective as an R-module, one can argue as in the case of torsion-free groups that θ_U is an isomorphism of Abelian groups. Select an A-free group F and an A-balanced exact sequence $0 \to V \xrightarrow{\alpha} F \xrightarrow{\beta} U \to 0$. It induces the commutative diagram

Since θ_U is an isomorphism of Abelian groups, $T_A H_A(\beta) \theta_F^{-1} \alpha = 0$. There is a \mathcal{V}_p -map $\lambda : U \to T_A H_A(U)$ such that $T_A H_A(\beta) \theta_F^{-1} = \lambda \beta$ because β is a cokernel of α in \mathcal{V}_p . Then

$$\theta_U \lambda \beta = \theta_U T_A H_A(\beta) \theta_F^{-1} = \beta$$

yields $\theta_U \lambda = 1_U$. Thus, $\lambda \theta_U = 1_{T_A H_A(U)}$ since θ_U is an isomorphism of Abelian groups. Hence

$$v(x) = v(\lambda \theta_U(x)) \ge v(\theta_U(x)) \ge v(x)$$

for all $x \in T_A H_A(U)$. Thus, θ_U is a \mathcal{V}_p -isomorphism.

Corollary 2.10. The following conditions are equivalent for a finite valuated p-group A:

- a) A is a progenerator for $_{R}\mathcal{M}$.
- b) i) Whenever $\phi \in \text{Mor}(G, H)$ for A-solvable valuated p-groups G and H, then ker ϕ is weakly A-generated.
 - ii) Whenever $\phi \in \text{Mor}(G, H)$ is an epimorphism of A-solvable valuated p-groups G and H, then $H_A(\phi)$ is an epimorphism.

Proof. $a) \Rightarrow b$): It remains to show that ii) holds. For this, consider the submodule $M = im \ H_A(\phi)$ of $H_A(H)$, and denote the inclusion map $M \to H_A(H)$ by ι . The evaluation map $\theta : T_A(M) \to H$ is a \mathcal{V}_p -map since it satisfies $\theta = \theta_H T_A(\iota)$. Moreover, it is one-to-one since A is a projective as a right R-module guarantees that $T_A(\iota)$ is a monomorphism of Abelian groups and θ_H is an isomorphism. On the other hand, it also fits into the commutative diagram

$$T_A H_A(G) \xrightarrow{T_A(\phi)} T_A(M) \longrightarrow 0$$

$$\downarrow^{\theta_G} \qquad \qquad \downarrow^{\theta}$$

$$G \xrightarrow{\phi} H \longrightarrow 0.$$

Hence, θ is an isomorphism of Abelian groups, and the same holds for $T_A(\iota)$. However, the latter fits into the exact sequence

$$T_A(M) \xrightarrow{T_A(\iota)} T_A H_A(H) \to H_A(H)/M \to 0.$$

Therefore, $T_A(H_A(H)/M) = 0$. Since A is a projective generator, $M = H_A(H)$.

 $b)\Rightarrow a)$: By [9, Proposition 2.4], every faithful projective module is a generator. Since A is a projective left R-module by Theorem 2.4, it remains to show that it is faithful. Let M be a right R-module with $t_A(M)=0$, and consider an exact sequence $P\to F\to M\to 0$ in which P and F are projective module. By Theorem 2.2, we obtain a right exact sequence $T_A(P)\to T_A(F)\to 0$ of valuated p-groups. By ii), the top sequence in the diagram

$$H_A T_A(P) \longrightarrow H_A T_A(F) \longrightarrow 0$$

$$\downarrow \uparrow \Phi_P \qquad \qquad \downarrow \uparrow \Phi_F$$

$$P \longrightarrow F \longrightarrow M \longrightarrow 0$$

is exact. Thus, M = 0.

3. Hereditary and Quasi-Frobenius Endomorphism Rings

We conclude our discussion by considering finite valuated p-groups A whose endomorphism ring has specific ring-theoretic properties. We focus particularly on the cases that R is either hereditary or self-injective. We want to remind the reader that there is no need to deal with right/left conditions since R is finite [4].

A finite valuated p-group G is A-torsion-less if there is a monomorphism $G \to A^{\ell}$ for some $\ell < \omega$. We say that an exact sequence of valuated groups is A-cobalanced if A is injective with respect to it.

Theorem 3.1. Let R be a finite valuated p-group A:

- a) R is hereditary if and only if A is a direct sum of cyclic groups of order p.
- b) R is (semi-)simple Artinian if and only if $A \cong B^m$ where B is a cyclic group of order p.

c) If R is a quasi-Frobenius ring, then every exact sequence $0 \to U \to G$ in which U is weakly A-generated and G is A-solvable is A-cobalanced. If A is a projective R-module, then the converse holds, and every A-presented group is A-torsionless.

Proof. a) If R is hereditary, then so is eRe for any idempotent e of R [4]. If B is an indecomposable summand of A, then there is a primitive idempotent e of R such that eRe is the \mathcal{V}_p -endomorphism ring of B. Since eRe is a hereditary local ring, all right ideals of eRe are free eRe-modules. However, this means that eRe is a field since it is finite. Because, pE(B) is a proper ideal of E(B), we have pB = 0. By [8], B is a cyclic group. Hence, A is a direct sum of cyclic groups of order p.

Conversely, if A has the described form, then $A = A_1 \oplus \ldots \oplus A_n$ where $A_i \cong B_i^{\ell_i}$ and each B_i is a cyclic group of order p. If $B_i = \langle b_i \rangle$, then no generality is lost if we assume $v(b_i) < v(b_j)$ for i < j and $v(b_i) \neq \infty$ for i < n. Then $\operatorname{Mor}(B_i, B_j) \cong \mathbb{Z}/p\mathbb{Z}$ if $i \leq j$, and $\operatorname{Mor}(B_i, B_j) = 0$ otherwise. Therefore, R is Morita-equivalent to a lower triangular matrix ring over $\mathbb{Z}/p\mathbb{Z}$. By [5], R is hereditary.

- b) We continue using the notation from a). If $A = A_1 \oplus \ldots \oplus A_n$ and n > 1, then $\operatorname{Mor}(A_i, A_j) = 0$ for i > j, but $\operatorname{Mor}(A_i, A_j) \neq 0$ for i < j. In particular, $N(R) \neq 0$. b) now follows immediately.
- c) If R is quasi-Frobenius, then we consider an exact sequence $0 \to U \xrightarrow{\alpha} G$ in which U is an epimorphic image of an A-projective group and G is A-solvable. For $\phi \in \operatorname{Mor}(U,A)$, we can find a map $\psi : H_A(G) \to R$ such that $\psi H_A(\alpha) = \phi$. Since both, α and ϕ , fit into the commutative diagram

$$T_A H_A(U) \xrightarrow{T_A H_A(.)} T_A H_A(G)$$

$$\downarrow^{\theta_U} \qquad \qquad \downarrow^{\theta_G}$$

$$U \xrightarrow{\quad \cdot \quad} G,$$

we obtain

$$T_A(\psi)\theta_G^{-1}\alpha\theta_U = \theta_A T_A(\psi)T_A H_A(\alpha) = \theta_A T_A H_A(\phi) = \phi\theta_U.$$

Because θ_U is a \mathcal{V}_p -epimorphism, $T_A(\psi)\theta_G^{-1}\alpha = \phi$.

Conversely, let

$$0 \to I \stackrel{\alpha}{\longrightarrow} R$$

be an exact sequence and $\phi \in \operatorname{Hom}_R(I,R)$. Because A is a flat R-module,

$$0 \to T_A(I) \stackrel{T_A(\alpha)}{\longrightarrow} T_A(R)$$

is a \mathcal{V}_p -exact sequence. Since $T_A(I)$ is an image of an A-projective group, there is a map $\psi \in \operatorname{Mor}(T_A(R), T_A(R))$ such that $\psi T_A(\alpha) = T_A(\phi)$. We consider commutative diagrams of the form

$$0 \longrightarrow H_A T_A(I) \xrightarrow{H_A T_A(.)} H_A T_A(R)$$

$$\uparrow^{\Phi_I} \qquad \qquad \downarrow^{\uparrow_{\Phi_R}}$$

$$0 \longrightarrow I \longrightarrow R$$

to obtain

$$\begin{split} \Phi_R^{-1} H_A(\psi) \Phi_R \alpha &= \Phi_R^{-1} H_A(\psi) H_A T_A(\alpha) \Phi_I \\ &= \Phi_R^{-1} H_A T_A(\phi) \Phi_I \\ &= \Phi_R^{-1} \Phi_R \phi = \phi. \end{split}$$

Finally, if G is an A-presented group, then $G \cong T_A(M)$ for some finitely generated right R-module M by [2] as mentioned before. Let E be an injective hull of M. Since R is quasi-Frobenius, E is projective. Thus, M can be embedded into a free R-module F, which can be chosen to be finite since M is finite. Then $T_A(M)$ is isomorphic to a submodule of $T_A(F)$ since A is projective.

Corollary 3.2. Let A be a finite valuated p-group whose endomorphism ring is self-injective. Every exact sequence

$$0 \to P \xrightarrow{\alpha} G$$

such that P is A-projective and G is A-solvable splits.

We conclude with two examples that show that the endomorphism ring of a direct sum of cyclic valuated p-groups may or may not be quasi-Frobenius:

Example 3.3. a) Let A_1 be a cyclic group of order p^n , and A_2 a cyclic valuated group of order p^n whose generator x satisfies $v(p^{n-1}x) > n$. Then, the endomorphism ring of $A = A_1 \oplus A_2$ is the lower triangular matrix ring over $\mathbb{Z}/p^n\mathbb{Z}$, which is not self-injective.

b) By [6, Example 1], the ring

$$R = \begin{bmatrix} \mathbb{Z}/p^3 \mathbb{Z} & p \mathbb{Z}/p^3 \mathbb{Z} \\ p \mathbb{Z}/p^3 \mathbb{Z} & \mathbb{Z}/p^3 \mathbb{Z} \end{bmatrix}$$

is quasi-Frobenius. Consider two cyclic valuated groups $A_1=(\langle x_1\rangle,v_1)$ and $A_2=(\langle x_2\rangle,v_2)$ of order p^3 such that $v_1(x_1)=1,\,v_1(px_1)=4,\,v_2(x_2)=2,\,v_2(px_2)=3$ and $v_1(p^2x_1)=v_2(p^2x_2)\geq 5$. In view of the fact that $\mathrm{Mor}(A_i,A_j)\cong \mathbb{Z}/p^2\mathbb{Z}$ for $i\neq j$, we obtain that $A=A_1\oplus A_2$ has R as its \mathcal{V}_p -endomorphism ring.

References

- [1] Albrecht, U., Bewertete p-Gruppen und ein Satz von Szele, J. Algebra, 97(1985), 201-220.
- [2] Albrecht, U., A-presented valuated groups, preprint.
- [3] Arnold, D.M., Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, Springer, 2000.
- [4] Chatters, A.W., Hajarnavis, C.R., Rings with Chain Conditions, Pitman, 1980.
- [5] Goodearl, K.R., Ring Theory, Pure and Applied Mathematics, No. 33, Marcel Dekker, New York - Basel, 1976.
- [6] Hanulla, T.A., On the construction of quasi-Frobenius rings, J. Algebra, 25(1973), 403-414.
- [7] Hunter, R., Richman, F., Walker, E.A., Simply presented valuated p-groups, J. Algebra, 49(1977), 125-133.

- [8] Hunter, R., Richman, F., Walker, E.A., Finite direct sums of cyclic valuated p-groups, Pacific J. Math., 69(1977), 97-133.
- [9] Ishikawa, T., Faithfully exact functors and their applications to projective modules and injective modules, Nagoya Math. J., 44(1964), 29-42.
- [10] Richman, F., Walker, E.A., Ext in pre-Abelian categories, Pacific J. Math., 71(1977), 521-535.
- [11] Richman, F., Walker, E.A., Valuated groups, J. Algebra, 56(1979), 145-167.
- [12] Stenstrom, Bo, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217, Springer-Verlag, New York Heidelberg, 1975.
- [13] Ulmer, F., A flatness criterrion in Groethendick categories, Invent. Math., 19(1973), 331-336.
- [14] Yakolev, A.V., Homological algebra in pre-abelian categories, Journal of Soviet Mathematics, 19(1982), 1060-1067.

Ulrich Albrecht
Department of Mathematics
Auburn University
Auburn, AL 36849, U.S.A.
e-mail: albreuf@mail.auburn.edu