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Properties of m-complex symmetric operators
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Abstract. In this paper, we study several properties of m-complex symmetric
operators. In particular, we prove that if T ∈ L(H) is an m-complex symmetric
operator and N is a nilpotent operator of order n > 2 with TN = NT , then
T+N is a (2n+m−2)-complex symmetric operator. Moreover, we investigate the
decomposability of T +A and TA where T is an m-complex symmetric operator
and A is an algebraic operator. Finally, we provide various spectral relations
of such operators. As some applications of these results, we discuss Weyl type
theorems for such operators.
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1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex
Hilbert space H. A conjugation on H is an antilinear operator C : H → H which
satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H and C2 = I. For any conjugation C, there
is an orthonormal basis {en}∞n=0 for H such that Cen = en for all n (see [14] for
more details). An operator T ∈ L(H) is said to be complex symmetric if there exists
a conjugation C on H such that T = CT ∗C.
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In 1970, J. W. Helton [18] initiated the study of operators T ∈ L(H) which
satisfy an identity of the following form;

m∑
j=0

(−1)m−j
(
m
j

)
T ∗jTm−j = 0. (1.1)

In the light of complex symmetric operators, using the identity (1.1), we define
m-complex symmetric operators as follows; an operator T ∈ L(H) is said to be an
m-complex symmetric operator if there exists some conjugation C such that

m∑
j=0

(−1)m−j
(
m
j

)
T ∗jCTm−jC = 0

for some positive integer m. In this case, we say that T is an m-complex symmetric
operator with conjugation C. In particular, if m = 1, T is called a 1-complex sym-
metric operator (simply a complex symmetric operator). The authors have studied
spectral properties and local spectral properties of m-complex symmetric operators.
In particular, they have shown that if T is an m-complex symmetric operator with
the conjugation C, then T is decomposable if and only if T ∗ has the property (β) (see

[9]). Set ∆m(T ) :=
∑m

j=0(−1)m−j
(
m
j

)
T ∗jCTm−jC. Then T is an m-complex sym-

metric operator with conjugation C if and only if ∆m(T ) = 0. An operator T ∈ L(H)
is said to be a strict m-complex symmetric operator if T is an m-complex symmetric
operator but it is not an (m− 1)-complex symmetric operator. Note that

T ∗∆m(T )−∆m(T )(CTC) = ∆m+1(T ). (1.2)

Hence, if T is an m-complex symmetric operator with conjugation C, then T is an n-
complex symmetric operator with conjugation C for all n ≥ m. In sequel, it was shown
from [10] that if m is even, then ∆m(T ) is complex symmetric with the conjugation
C, and if m is odd, then ∆m(T ) is skew complex symmetric with the conjugation C.
Moreover, we investigate conditions for (m + 1)-complex symmetric operators to be
m-complex symmetric operators and characterize the spectrum of ∆m(T ). All normal
operators, algebraic operators of order 2, Hankel matrices, finite Toeplitz matrices, all
truncated Toeplitz operators, some Volterra integration operators, nilpotent operators
of order k, and nilpotent perturbations of Hermitian operators are included in the class
of m-complex symmetric operators (see [14], [15], [16], [19], and [9] for more details).
The class of m-complex symmetric operators is surprisingly large class.

Many authors have studied Hermitian, isometric, unitary, and normal operators
perturbed by nilpotent operators (see [2], [6], [8], and [21], etc). In 2014, T. Bermudez,
A. Martinon, V. Muller, and J. Noda ([6]) have been studied the perturbation of m-
isometries by nilpotent operators. In light of m-complex symmetric operators, we
consider the nilpotent perturbations of m-complex symmetric operators. In partic-
ular, we prove that if T ∈ L(H) is an m-complex symmetric operator and N is a
nilpotent operator of order n > 2 with TN = NT , then T + N is a (2n + m − 2)-
complex symmetric operator. Moreover, we investigate the decomposability of T +A
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or TA where T is m-complex symmetric operators. Finally, we provide various spec-
tral relations of such operators. As some applications of these results, we focus on
Weyl type theorems for such operators.

2. Preliminaries

If T ∈ L(H), we write σ(T ), σsu(T ), Γ(T ), σp(T ), σap(T ), σe(T ), σle(T ), σre(T ),
σb(T ), σw(T ), σse(T ), and σes(T ) for the spectrum, the surjective spectrum, the com-
pression spectrum, the point spectrum, the approximate point spectrum, the essential
spectrum, the left essential spectrum, the right essential spectrum, Browder spectrum,
Weyl spectrum, the semi-regular spectrum, and the essentially semi-regular spectrum
of T , respectively.

An operator T ∈ L(H) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any H-valued analytic function f on G
such that (T − λ)f(λ) ≡ 0 on G, we have f(λ) ≡ 0 on G. For an operator T ∈ L(H)
and for a vector x ∈ H, the local resolvent set ρT (x) of T at x is defined as the union
of every open subset G of C on which there is an analytic function f : G → H such
that (T−λ)f(λ) ≡ x on G. The local spectrum of T at x is given by σT (x) = C\ρT (x).
We define the local spectral subspace of T ∈ L(H) by HT (F ) = {x ∈ H : σT (x) ⊂ F}
for a subset F of C. An operator T ∈ L(H) is said to have Dunford’s property (C)
if HT (F ) is closed for each closed subset F of C. An operator T ∈ L(H) is said to
have Bishop’s property (β) if for every open subset G of C and every sequence {fn}
of H-valued analytic functions on G such that (T − λ)fn(λ) converges uniformly to
0 in norm on compact subsets of G, we get that fn(λ) converges uniformly to 0 in
norm on compact subsets of G. An operator T ∈ L(H) is said to be decomposable if
for every open cover {U, V } of C there are T -invariant subspaces X and Y such that

H = X + Y, σ(T |X ) ⊂ U, and σ(T |Y) ⊂ V .

It is well-known that

Decomposable ⇒ Bishop’s property (β)
⇒ Dunford’s property (C)⇒ SVEP.

The converse implications do not hold, in general (see [20] for more details).

We say that Weyl’s theorem holds for T ∈ L(H) if

σ(T ) \ σw(T ) = π00(T ),

where π00(T ) = {λ ∈ isoσ(T ) : 0 < dim ker(T − λ) < ∞} and iso∆ denotes the
set of all isolated points of ∆. We say that Browder’s theorem holds for T ∈ L(H) if
σb(T ) = σw(T ). We recall the definitions of some spectra;

σea(T ) := ∩{σa(T +K) : K ∈ K(H)}

is the essential approximate point spectrum, and

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K(H)}
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is the Browder essential approximate point spectrum. We put

π00(T ) := {λ ∈ iso σ(T ) : 0 < dim ker(T − λ) <∞}

and

πa
00(T ) := {λ ∈ iso σap(T ) : 0 < dim ker(T − λ) <∞}.

For an operator T ∈ L(H), we say that

(i) a-Browder’s theorem holds for T if σea(T ) = σab(T );

(ii) a-Weyl’s theorem holds for T if σap(T ) \ σea(T ) = πa
00(T );

(iii) T has the property (w) if σap(T ) \ σea(T ) = π00(T ).

It is known that

Property (w) =⇒ a-Browder’s theorem

⇓ ⇑

Weyl’s theorem⇐= a-Weyl’s theorem.

We refer the reader to [1] for more details.

Let Tn = T |ran(Tn) for each nonnegative integer n; in particular, T0 = T . If Tn is
upper semi-Fredholm for some nonnegative integer n, then T is called a upper semi-
B-Fredholm operator. In this case, by [7], Tm is a upper semi-Fredholm operator and
ind(Tm) = ind(Tn) for each m ≥ n. Thus, one can consider the index of T , denoted
by indB(T ), as the index of the semi-Fredholm operator Tn. Similarly, we define lower
semi-B-Fredholm operators. We say that T ∈ L(H) is B-Fredholm if it is both upper
and lower semi-B-Fredholm. In [7], Berkani proved that T ∈ L(H) is B-Fredholm if
and only if T = T1 ⊕ T2 where T1 is Fredholm and T2 is nilpotent. Let SBF−+ (H) be
the class of all upper semi-B-Fredholm operators such that indB(T ) ≤ 0, and let

σSBF−+
(T ) := {λ ∈ C : T − λ 6∈ SBF−+ (H)}.

An operator T ∈ L(H) is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T − λ is not a B-Weyl operator }.

We say that λ ∈ σap(T ) is a left pole of T if it has finite ascent, i.e., a(T ) < ∞ and

ran(T a(T )+1) is closed where a(T ) = dim ker(T ). The notation p0(T ) (respectively,
pa0(T )) denotes the set of all poles (respectively, left poles) of T , while π0(T ) (respec-
tively, πa

0 (T )) is the set of all eigenvalues of T which is an isolated point in σ(T )
(respectively, σap(T )).
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3. Main Results

In this section, we study several properties of m-complex symmetric operators.
Recall that an operator N ∈ L(H) is said to be nilpotent of order n if Nn = 0 and
Nn−1 6= 0 for some positive integer n. It is well-known from [13, Theorem 5] that
every nilpotent of order 2 is a complex symmetric (or 1-complex symmetric in our
definition) operator. However if T is nilpotent of order n with n > 2, then T may
not be a complex symmetric operator. We first give the following example of (strict)
m-complex symmetric operators.

Example 3.1. Let C be a conjugation given by C(z1, z2, z3) = (z3, z2, z1) on C3. If

N =

0 1 0
0 0 7
0 0 0

 on C3, then N is nilpotent of order 3 and N∗ 6= CNC. Since

N∗2 = CN2C, it follows that

∆3(N) =

3∑
j=0

(−1)3−j
(

3
j

)
N∗jCN3−jC = −3N∗2CNC + 3N∗CN2C

= −3CN3C + 3N∗3 = 0.

Hence N is a strict 3-complex symmetric operator with conjugation C.

On the other hand, let J be a conjugation given by J(z1, z2, z3) = (z1, z2, z3) on
C3. Then N is a 5-complex symmetric operator with conjugation J from [9]. Since
N3 = 0, we have

4∑
j=0

(−1)4−j
(

4
j

)
N∗jJN4−jJ = 6N∗2JN2J =

0 0 0
0 0 0
0 0 294

 6= 0.

Thus N is not a 4-complex symmetric operator. Hence N is a strict 5-complex sym-
metric operator with conjugation J .

In the following theorem, we examine conditions for the operator T +N to be a
(2n+m− 2)-complex symmetric operator.

Theorem 3.2. Let T ∈ L(H) be strict m-complex symmetric with a conjugation C and
let N be nilpotent of order n > 2 with TN = NT. Then T+N is a (2n+m−2)-complex
symmetric operator with conjugation C.

Proof. Let R = T +N and k = 2n+m− 2. Since

[(a+ b)− (c+ d)]k = [{(a− c) + b} − d)]k

=

k∑
i=0

(−1)i
(
k

i

)
[(a− c) + b]k−idi

=

k∑
i=0

k−i∑
j=0

(−1)i
(
k

i

)(
k − i
j

)
bj(a− c)k−i−jdi

=
∑

k1+k2+k3=m

(
k

k1, k2, k3

)
bk3(a− c)k1dk2 ,
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it follows that

∆k(R) =
∑

k1+k2+k3=k

(
k

k1, k2, k3

)
N∗k3∆k1

(T )CNk2C

=

k∑
i=0

k−i∑
j=0

(−1)i
(
k

i

)(
k − i
j

)
N∗j∆k−i−j(T )CN iC. (3.1)

(i) If j ≥ n or i ≥ n, then N∗j = 0 and N i = 0. Hence (3.1) implies that ∆k(R) = 0
due to the fact that Nn = 0.
(ii) If j < n and i < n, then

k − i− j = (2n+m− 2)− i− j
≥ 2n+m− 2− (n− 1)− (n− 1) = m.

Thus ∆k−i−j(T ) = 0 and so ∆k(R) = 0 from (3.1). Hence T +N is a (2n+m− 2)-
complex symmetric operator with conjugation C. �

From Theorem 3.2, we also know that T+N is not necessarily a strict (2n+m−2)-
complex symmetric operator. For example, if T is a complex symmetric operator and
N is nilpotent of order n > 2 with TN = NT , then T = T +N + (−N) is not a strict
(4n− 3)-complex symmetric operator.

Example 3.3. Let N be a nilpotent operator of order n > 2 with N∗ 6= CNC. Then
I + N is an (2n − 1)-complex symmetric operator from Theorem 3.2. In particular,
assume that C is a conjugation given by C(z1, z2, z3) = (z1, z2, z3) on C3. If R =1 1 0

0 1 3
0 0 1

 = I + N where N =

0 1 0
0 0 3
0 0 0

 on C3, then N3 = 0 and N2 6= 0.

Then we have ∆4(R) = ∆4(N) = 6N∗2CN2C 6= 0. Hence R is a strict 5-complex
symmetric operator from the previous note.

Remark 3.4. If we omit “strict” in Theorem 3.2, it is not necessarily that T +N is a
(2n+m− 2)-complex symmetric operator. For example, if T = A⊕ 0 and N = 0⊕Q
where A is an m-complex symmetric operator and Q is a nilpotent operator of order n,
then it is clear that T is an m-complex symmetric operator, N is a nilpotent operator
of order n, and T commutes with N . Hence T+N = A⊕Q is an k-complex symmetric
operator for k = max{m, 2n− 1}.

Recall that an operator T ∈ L(H) is said to be hyponormal if T ∗T ≥ TT ∗. We
next study some properties of ∆m(T ).

Proposition 3.5. Let T be (m+1)-complex symmetric with a conjugation C. If ∆m(T )
is hyponormal, then ker(∆m(T )−λ)∩ ker(∆1(T )−λ) = {0} for any nonzero λ ∈ C.

Proof. If x ∈ ker(∆m(T )−λ)∩ ker(∆1(T )−λ), then ∆m(T )x = ∆1(T )x = λx. Since
ker(∆m(T )− λ) ⊂ ker(∆m(T )− λ)∗, it follows from (1.2) that

0 = 〈∆m+1(T )x, x〉 = 〈[T ∗∆m(T )−∆m(T )CTC]x, x〉
= 〈∆m(T )x, Tx〉 − 〈CTCx,∆m(T )

∗
x〉
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= λ (〈T ∗x, x〉 − 〈CTCx, x〉)
= λ〈∆1(T )x, x〉 = λ2‖x‖2.

Hence we have x = 0. �

Corollary 3.6. Let C be a conjugation operator on H. Suppose that H and K are
Hermitian operators which satisfy HCK = KCH and CSC ≥ S, where S = i(HK −
KH). For an operator T = H+ iK, if T is 2-complex symmetric with the conjugation
C, then ker(∆1(T )− λ) = {0} for any nonzero λ ∈ C.

Proof. If T = H + iK, then

∆1(T ) = T ∗ − CTC = (H − iK)− C(H + iK)C = ∆1(H)− i∆1(K). (3.2)

Since ∆1(H) and ∆1(K) are Hermitian, HCK = KCH, and CSC ≥ S, it follows
from (3.2) that

∆1(T )
∗
∆1(T )−∆1(T )∆1(T )

∗
= 2i[∆1(K)∆1(H)−∆1(H)∆1(K)]
= 2i[−(HK −KH) + (HCK −KCH)C

+C(HCK −KCH)− C(HK −KH)C]
= −2i(HK −KH) + C[2i(HK −KH)C]
= 2(CSC − S) ≥ 0.

Hence, ∆1(T ) is hyponormal and the proof follows by Proposition 3.5. �

Lemma 3.7. Let T be in L(H) and let C be a conjugation on H. If T commutes with
N and CN∗C, then

∆m(T +N) =

m∑
j=0

(
m
j

)
∆j(T ) ·∆m−j(N) (3.3)

where ∆0(T ) = ∆0(N) = I. In particular, if T is complex symmetric with the conju-
gation C, then

∆m(T +N) = ∆m(N) (3.4)

for any m ∈ N.

Proof. Let R = T +N . If T commutes with N and CN∗C, then it holds

T · CN∗jC = CN∗jC · T and N · CT ∗jC = CT ∗jC ·N
for every positive integers j. Then (3.3) obviously holds for m = 1. Suppose that (3.3)
holds for m. Then (1.2) and (3.3) imply

∆m+1(R) = (T ∗ +N∗) ·∆m(R)−∆m(R) · (CTC + CNC)

=

m∑
j=0

(
m
j

)
(T ∗ +N∗) ·∆j(T ) ·∆m−j(N)

−
m∑
j=0

(
m
j

)
∆j(T ) ·∆m−j(N) · (CTC + CNC)

=

m∑
j=0

(
m
j

)(
T ∗ ·∆j(T )−∆j(T ) · CTC

)
∆m−j(N)
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+

m∑
j=0

(
m
j

)
∆j(T )

(
N∗ ·∆m−j(N)−∆m−j(N) · CNC

)
=

m∑
j=0

(
m
j

)
∆j+1(T ) ·∆m−j(N) +

m∑
j=0

(
m
j

)
∆j(T ) ·∆m+1−j(N)

=

m+1∑
j=0

(
m+ 1
j

)
∆j(T ) ·∆m+1−j(N).

Hence (3.3) holds for any positive integer m.
We will show the second statement. Suppose that T is complex symmetric with

the conjugation C. By induction, we prove that ∆m(R) = ∆m(N) for any m ∈ N.
If m = 1, it is obvious. Assume that ∆m−1(R) = ∆m−1(N). Since N and CN∗C
commute with T , it follows that

T ∗∆m−1(N) = T ∗[

m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
N∗jCNm−1−jC]

= [

m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
N∗jCNm−1−jC]T ∗ = ∆m−1(N)T ∗.

Moreover, since CTC = T ∗ and T ∗ commutes with ∆m−1(R), we obtain from (1.2)
that

∆m(R) = R∗∆m−1(R)−∆m−1(R)CRC

= (T ∗ +N∗)∆m−1(N)−∆m−1(N)(CTC + CNC)

= (T ∗ +N∗)∆m−1(N)−∆m−1(N)(T ∗ + CNC)

= N∗∆m−1(N)−∆m−1(N)CNC = ∆m(N).

So this completes the proof. �

Proposition 3.8. Let T ∈ L(H) commute with N and CN∗C where C is a conjugation
on H. If T is k-complex symmetric for all k with 0 ≤ k ≤ (2l + k − 2) and N is a
nilpotent of order l, then T + N is (2l + k − 2)-complex symmetric. In particular,
if T is complex symmetric with the conjugation C, then T + N is (2n − 1)-complex
symmetric if and only if N is a nilpotent of order n.

Proof. If T is m-complex symmetric and N is a nilpotent of order n, then ∆m(T ) = 0
and ∆2n−1(N) = 0 from [9]. Thus (3.3) and (1.2) implies ∆2n+m−2(T + N) = 0.
Hence T +N is (2n+m− 2)-complex symmetric. The remaining cases also hold by
a similar method.

For the second statement, if T is complex symmetric, then by (3.4), T + N is
(2n− 1)-complex symmetric if and only if N is a nilpotent of order n. �

We next consider the decomposability of T + A and TA where T is m-complex
symmetric operator and A is an algebraic operator. For any set G ⊂ C, we denote
G∗ = {z : z ∈ G}.
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Theorem 3.9. Let T ∈ L(H) be an m-complex symmetric operator and A be an alge-
braic operator of order k. If R = T + A or R = TA where T commutes with A, then
the following statements are equivalent:
(i) T is decomposable.
(ii) T ∗ has the property (β).
(iii) R is decomposable.
(iv) R∗ has the property (β).

Proof. Since the proof of (i) ⇔ (ii) and (iii) ⇔ (iv) follow from [9, Theorem 4.7], we
only consider the following implication (ii) ⇔ (iv).

(1) In the case R = T + A. Assume that T ∗ has the property (β). Since A
is an algebraic operator of order k, there exists a nonconstant polynomial p(λ) =
(λ − γ1)(λ − γ2)(λ − γ3) · · · (λ − γk) such that p(A) = 0. Set p0(λ) = 1 and pj(λ) =
(λ − γ1)(λ − γ2) · · · (λ − γj) for j = 1, 2, · · · , k . Let G be an open set in C and
fn : G→ H be a sequence of analytic functions such that

lim
n→∞

‖(T ∗ +A∗ − z)fn(z)‖K = 0 (3.5)

for every compact set K in D. Fix any compact subset K of D. Since

(A∗ − γ1)(A∗ − γ2)(A∗ − γ3) · · · (A∗ − γk) = 0,

pk−1(A)∗A∗ = γkpk−1(A)∗. This gives that

lim
n→∞

‖(T ∗ + γk − z)pk−1(A)∗fn(z)‖K
= lim

n→∞
‖pk−1(A)∗(T ∗ +A∗ − z)fn(z)‖K = 0. (3.6)

Moreover, since T ∗ + γk has the property (β), we have

lim
n→∞

‖pk−1(A)∗fn(z)‖K = 0. (3.7)

Equations (3.5) and (3.7) imply that

lim
n→∞

‖(T ∗ + γk−1 − z)pk−2(A)∗fn(z)‖K
= lim

n→∞
‖pk−2(A)∗(T ∗ +A∗ − z)fn(z)‖K = 0.

Since T ∗ + γk−1 has the property (β), we get that limn→∞ ‖pk−2(A)∗fn(z)‖K =
0. Hence, by induction we get that limn→∞ ‖fn(z)‖K = 0. Therefore, R∗ has the
property (β).

(2) In the case R = TA. Assume that T ∗ has the property (β). Let G be an
open set in C and fn : G→ H be a sequence of analytic functions such that

lim
n→∞

‖(R∗ − z)fn(z)‖K = lim
n→∞

‖(T ∗A∗ − z)fn(z)‖K = 0 (3.8)

for every compact set K in D. Thus, it holds that

lim
n→∞

‖(A∗ − γk)T ∗fn(z) + γkT
∗fn(z)− zfn(z)‖K = 0. (3.9)

Since T ∗A∗ = A∗T ∗ and p(A)∗ = 0, we obtain from (3.9) that

lim
n→∞

‖(γkT ∗ − z)pk−1(A)∗fn(z)‖K = 0. (3.10)
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In addition, since γkT
∗ has the property (β), (3.10) implies that

lim
n→∞

‖pk−1(A)∗fn(z)‖K = 0. (3.11)

Then we get from (3.8) that

lim
n→∞

‖(A∗ − γk−1)T ∗fn(z) + γk−1T
∗fn(z)− zfn(z)‖K = 0. (3.12)

Since T ∗A∗ = A∗T ∗ and p(A)∗ = 0, we obtain from (3.12) that

lim
n→∞

‖(γk−1T ∗ − z)pk−2(A)∗fn(z)‖K = 0. (3.13)

Moreover, since γk−1T
∗ has the property (β), (3.13) implies that

lim
n→∞

‖pk−2(A)∗fn(z)‖K = 0. (3.14)

Hence, by induction we get limn→∞ ‖fn(z)‖K = 0, and so R∗ has the property (β).
The converse implication holds by similar arguments above. So this completes the
proof. �

We observe that the order k of A played a role to eliminate A in the proof of
Theorem 3.9. Moreover, we need an m-complex symmetric operator to prove (i) ⇔
(ii)(see [9, Theorem 4.7]).

Corollary 3.10. Let T ∈ L(H) be a complex symmetric operator and A be an algebraic
operator of order k. If R = T + A or R = TA where T commutes with A, then the
following statements are equivalent:
(i) T is decomposable.
(ii) T ∗ has the property (β).
(iii) T has the property (β).
(iv) R is decomposable.
(v) R∗ has the property (β).
(vi) R has the property (β).

Proof. Suppose that T is a complex symmetric operator. Since the implications
(i)⇒(ii) and (i)⇒(iii) hold by [20, Theorems 1.2.29 and 2.2.5], we consider the reverse
implications. If T ∗ has the property (β), then T is decomposable from [9]. If T has the
property (β), then T is decomposable from [19]. Therefore, we have (i)⇔(ii)⇔(iii).
Moreover, we get that (iii)⇔(vi) by a similar method. Hence we get this result from
Theorem 3.9. �

Recall that an operator T ∈ L(H) is called a 2-normal operator if T is unitarily

equivalent to an operator matrix of the form

(
T1 T2
T3 T4

)
∈ L(H ⊕ H) where Ti are

mutually commuting normal operators.

Example 3.11. Let R ∈ L(H ⊕H) be a 2-normal operator. Then R is complex sym-

metric from [16] and R is unitarily equivalent to

(
N1 N2

0 N3

)
. If N1N2 = N2N3, then(

N1 0
0 N3

)
and

(
0 N2

0 0

)
commute and

(
0 N2

0 0

)
is nilpotent of order 2. Moreover,



Properties of m-complex symmetric operators 243

since N1
∗⊕N3

∗ has the property (β), it follows that

(
N1 N2

0 N3

)
is decomposable from

Theorem 3.9. Hence R is decomposable.

Let us recall that for an operator T ∈ L(H), a closed subspace M ⊂ H is
invariant for T if TM⊂M, and it is hyperinvariant for T if it is invariant for every
operator in the commutant {T}′ = {S ∈ L(H) : TS = ST} of T . A subspaceM of H
is nontrivial if it is different from {0} and H. As some applications of Theorem 3.9,
we get the following corollary.

Corollary 3.12. Let R = T + A or R = TA be in L(H) where T is an m-complex
symmetric operator and A is an algebriac operator of order k with TA = AT . If T ∗

has the property (β), then the following statements hold:
(i) R and R∗ have the property (β) and the single-valued extension property.
(ii) If σ(R) has nonempty interior, then R has a nontrivial invariant subspace.
(iii) HR(F ) is a hyperinvariant subspace for R.
(iv) If f is any function analytic on a neighborhood of σ(R), then both Weyl’s and
Browder’s theorems hold for f(R) and

σw(f(R)) = σb(f(R)) = f(σw(R)) = f(σb(R)).

Proof. (i) From [20], we know that R is decomposable if and only if R and R∗ have
the property (β). Hence this completes the proof.

(ii) Since T ∗ has the property (β), it follows from Theorem 3.9 that R is de-
composable. Moreover, since R has the property (β) by [20] and σ(R) has nonempty
interior, the proof follows from [12, Theorem 2.1].

(iii) If T ∗ has the property (β), then R is decomposable from Theorem 3.9.
Therefore HR(F ) is a spectral maximal space of R by [11, Proposition 3.8] and [20,
Theorem 1.2.29]. Hence HR(F ) is a hyperinvariant subspace for R.

(iv) Since f(R) is decomposable from [20, p 145], it follows that f(R) is clearly
subscalar. Hence f(R) satisfies Weyl’s theorem from [1, p 175]. Moreover, since f(R)
has the single-valued extension property, Browder’s theorem holds for f(R) and the
last relations are satisfied from [1, Theorem 3.71]. �

Proposition 3.13. Let R = T+N where T ∈ L(H) is an m-complex symmetric operator
with a conjugation C and N is a nilpotent operator of order n with TN = NT . Then
the following arguments hold;
(i) If T ∗ has the single-valued extension property, then R and R∗ has the single-valued
extension property.
(ii) If T has Dunford’s property (C) and σT (x) ⊂ σR(Nn−1x) ∩ σR(x) for all x ∈ H,
then R has Dunford’s property (C).

Proof. (i) Let R = T +N . If T is m-complex symmetric and T ∗ has the single-valued
extension property, then T has the single-valued extension property from [9, Theorem
4.10]. Let G be an open set in C and let f : G→ H be an analytic function such that
(R− z)f(z) ≡ 0 on G, which implies

(T − z)f(z) +Nf(z) = 0. (3.15)
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Since Nn = 0 and TN = NT , it follows that (T − z)Nn−1f(z) = 0. Since T has the
single-valued extension property, we have Nn−1f(z) = 0. Moreover, (3.15) implies
(T − z)Nn−2f(z) = 0. Since T has the single-valued extension property, we get that
Nn−2f(z) = 0. By similar process, we obtain that f(z) = 0. Hence R has the single-
valued extension property. Similarly, we get that R∗ have the single-valued extension
property. Hence R and R∗ have the single-valued extension property.

(ii) Let T have Dunford’s property (C) and σT (x) ⊂ σR(Nn−1x) for all x ∈ H.
Then it suffices to show that σR(Nn−1x) ⊂ σT (x). Indeed, we assume z0 ∈ ρT (x).
Then there is an H-valued analytic function f(z) in a neighborhood D of z0 such that
(T − z)f(z) = x for every z ∈ D. Since TN = NT and Nn = 0, it follows that

(R− z)Nn−1f(z) = (T − z)Nn−1f(z) ≡ Nn−1x on D.

Since Nn−1f(z) is analytic on D, we get z0 ∈ ρR(Nn−1x). Hence σR(Nn−1x) ⊂
σT (x). Thus σT (x) = σR(Nn−1x). Therefore, we have Nn−1HR(F ) = HT (F ). Since
Nn−1HR(F ) ⊂ HR(F ), it follows that HT (F ) ⊂ HR(F ) where F is a closed subset of
C. Moreover, since σT (x) ⊂ σR(x) for all x ∈ H, it follows that HR(F ) ⊂ HT (F ) and
so HR(F ) = HT (F ) is closed for each closed subset F of C. Hence R has Dunford’s
property (C). This completes the proof. �

For an operator T ∈ L(H), the quasinilpotent part of T is defined by

H0(T ) := {x ∈ H : lim
n→∞

‖Tnx‖ 1
n = 0}.

Then H0(T ) is a linear (not necessarily closed) subspace of H. We remark from [3]
that if T has the single-valued extension property, then

H0(T − λ) = {x ∈ H : lim
n→∞

‖(T − λ)nx‖ 1
n = 0} = HT ({λ})

for all λ ∈ C. It is well known from [1] and [3] that if H0(T − λ) = {0} for all λ ∈ C,
then T has the single-valued extension property.

Corollary 3.14. Let R = T+N be in L(H) with the same hypotheses as in Proposition
3.13. If T ∗ has the single-valued extension property, then the following properties hold:
(i) σ(R) = σsu(R) = σap(R) = σse(R).
(ii) σes(R) = σb(R) = σw(R) = σe(R).
(iii) H0(R− λ) = HR({λ}) and HR∗({λ}) = H0(R∗ − λ) for all λ ∈ C.

Proof. Since T ∗ has the single-valued extension property, it follows that R and R∗ have
the single-valued extension property from Proposition 3.13. Hence the proof follows
from [1, Corollaries 2.45 and 3.53], and [3, Theorem 1.5]. �

We next state various spectral relations of m-complex symmetric operators.

Lemma 3.15. If T is an m-complex symmetric operator, then the following relations
hold;
(i) σp(T ) ⊆ σp(T ∗)∗, σap(T ) ⊂ σap(T ∗)∗, Γ(T ∗)∗ ⊆ Γ(T ), σsu(T ∗)∗ ⊆ σsu(T ), and

σ(T ) = σap(T ∗)∗ = σsu(T ).
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(ii) σle(T ) ⊆ σle(T ∗)∗, σre(T ∗)∗ ⊆ σre(T ), and σe(T ) = σre(T ).
(iii) If T ∗ has the single-valued extension property, then

σ(T ) = σap(T ) = σap(T ∗)∗ = σ(T ∗)∗.

Proof. (i) From [9, Theorem 4.1], σp(T ) ⊆ σp(T ∗)∗ and σap(T ) ⊂ σap(T ∗)∗. Since
Γ(S)∗ = σp(S∗) and σsu(S)∗ = σap(S∗) for any S ∈ L(H), Γ(T ∗)∗ ⊆ Γ(T ) and
σsu(T ∗)∗ ⊆ σsu(T ). On the other hand, since T is an m-complex symmetric operator,
it follows from [17, Corollary, page 222] that σ(T ) = σap(T ) ∪ σap(T ∗)∗ ⊆ σap(T ∗)∗.
Since σsu(S)∗ = σap(S∗) for any S ∈ L(H), we get that σ(T ) ⊆ σap(T ∗)∗ = σsu(T ) ⊂
σ(T ). Hence we obtain

σ(T ) = σap(T ∗)∗ = σsu(T ).

(ii) If λ ∈ σle(T ), then there exists a sequence {xn} of unit vectors inH such that
{xn} weakly converges to 0 and limn→∞ ‖(T −λ)xn‖ = 0 for any T ∈ L(H). Then we
have limn→∞(CTC − λ)Cxn = 0. Since T is an m-complex symmetric operator with
conjugation C, it follows that

0 = lim
n→∞

‖

 m∑
j=0

(−1)m−j
(
m

j

)
T ∗jCTm−jC

Cxn‖

= lim
n→∞

‖

 m∑
j=0

(−1)m−j
(
m

j

)
T ∗jλ

m−j

Cxn‖

= lim
n→∞

‖(T ∗ − λ)mCxn‖.

Moreover, since {xn} weakly converges to 0, {Cxn} weakly converges to 0. Hence we
get that σle(T ) ⊆ σle(T ∗)∗. Since σre(S)∗ = σle(S

∗) for any S ∈ L(H), it follows that
σre(T

∗)∗ ⊆ σre(T ). Moreover, since σe(S) = σle(S) ∪ σre(S) for any S ∈ L(H), we
obtain that

σe(T ) = σle(T ) ∪ σre(T ) ⊆ σle(T ∗)∗ ∪ σre(T ) = σre(T ).

Since σre(S) ⊆ σe(S) for any S ∈ L(H), we obtain that σre(T ) = σe(T ).
(iii) If T ∗ has the single-valued extension property, then T has the single-valued

extension property from [9]. Note that σ(S)∗ = σ(S∗) and σsu(S)∗ = σap(S∗) for any
S ∈ L(H). Since T and T ∗ have the single-valued extension property, it follows from
[20] that σ(T )∗ = σ(T ∗) = σsu(T ∗) = σap(T )∗. Moreover, since σap(T ) ⊂ σap(T ∗)∗

by (i), it follows that σ(T ) = σap(T ) ⊆ σap(T ∗)∗ ⊆ σ(T ∗)∗ = σ(T ). Hence we get

σ(T ) = σap(T ) = σap(T ∗)∗ = σ(T ∗)∗.

This completes the proof. �

Proposition 3.16. Let T ∈ L(H) be an m-complex symmetric operator and N be a
nilpotent operator of order n with TN = NT . If R = T + N , then the following
properties hold:
(i) σp(R) ⊂ σp(T ∗)∗ ∪ {0}, Γ(R∗)∗ ⊂ Γ(T ) ∪ {0}, σap(R) ⊆ σap(T ∗)∗ ∪ {0}, and
σap(R) ⊆ σ(T ) ∪ {0}.
(ii) σle(R) ⊂ σle(T ) and σre(R

∗)∗ ⊂ σre(T
∗)∗. In addition, if T ∗ is an m-complex

symmetric operator, then σe(R) ⊆ σe(T ).
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Proof. (i) Assume that R = T + N where T is an m-complex symmetric operator,
Nn = 0, and TN = NT . Since T commutes with N , it follows from Lemma 3.15 and
[20, Page 256] that

σap(R) ⊆ σap(T ) + σap(N) ⊆ σap(T ∗)∗ ∪ {0}.

Hence σap(R) ⊆ σ(T ) ∪ {0} from Lemma 3.15. By the similar method, we get that
σp(R) ⊂ σp(T ∗)∗ ∪ {0}. On the other hand, since Γ(S)∗ = σp(S∗) for any S ∈ L(H)
and the previous result, we conclude that Γ(R∗)∗ ⊂ Γ(T ) ∪ {0}.

(ii) If λ ∈ σle(R), then there exists a sequence {xi} of unit vectors in H such

that {xi} weakly converges to 0 and limi→∞ ‖(R− λ)xi‖ = 0. Put yi = Nn−1xi

‖Nn−1xi‖ for

some n ≥ 1. Since T commutes with N and Nn = 0, it follows that

lim
i→∞

‖(T − λ)yi‖ = lim
i→∞

‖(T − λ)
Nn−1xi
‖Nn−1xi‖

‖

= lim
i→∞

‖Nn−1(T +N − λ)
xi

‖Nn−1xi‖
‖

= lim
i→∞

‖Nn−1(R− λ)
xi

‖Nn−1xi‖
‖ = 0.

In addition, if {xi} weakly converges to 0, then {yi} weakly converges to 0. Therefore
λ ∈ σle(T ). So, σle(R) ⊆ σle(T ). Since σre(S)∗ = σle(S

∗) for any S ∈ L(H), we
obtain σre(R

∗)∗ ⊂ σre(T ∗)∗. If T ∗ is an m-complex symmetric operator, then we get
σle(R

∗) ⊂ σle(T ∗) in a similar way. Thus σe(R) = σle(R)∪σre(R) ⊆ σle(T )∪σre(T ) =
σe(T ). Hence σe(R) ⊆ σe(T ). This completes the proof. �

Finally, we deal with Weyl type theorems for m-complex symmetric operators.

Theorem 3.17. Let T ∈ L(H) be m-complex symmetric. Suppose that T ∗ has the
single-valued extension property. Then the following statements are equivalent:
(i) T ∗ satisfies a-Weyl’s theorem.
(ii) T ∗ satisfies Weyl’s theorem.
(iii) T ∗ has the property (w).
In addition, the following statements are equivalent.
(iv) T ∗ satisfies generalized a-Weyl’s theorem.
(v) T ∗ satisfies generalized Weyl’s theorem.

Proof. (a) Suppose that T ∗ satisfies Weyl’s theorem. Since T is m-complex symmetric,
it follows from Lemma 3.15 that σap(T ∗)∗ = σ(T ) = σ(T ∗)∗ and so σap(T ∗) = σ(T ∗).
On the other hand, since σea(T ∗) ⊂ σw(T ∗) is obvious, it suffices to show σw(T ∗) ⊂
σea(T ∗). Indeed, if λ 6∈ σea(T ∗), then T ∗ − λ is semi-Fredholm and ind(T ∗ − λ) ≤ 0.
Since T ∗ has the single-valued extension property, it follows from [9] and [1] that
T = (T ∗)

∗
has the single-valued extension property and ind(T ∗ − λ) ≥ 0 for every

λ 6∈ σea(T ∗), respectively. Therefore ind(T ∗ − λ) = 0 for every λ 6∈ σea(T ∗). Thus
λ 6∈ σw(T ∗). Hence σea(T ∗) = σw(T ∗). This gives that

πa
00(T ∗) = π00(T ∗) = σ(T ∗) \ σw(T ∗) = σap(T ∗) \ σea(T ∗).

Hence a-Weyl’s theorem holds for T ∗. Similarly, since πa
00(T ∗) = π00(T ∗), we can

show that (i) ⇔ (iii). It is clear that (i) ⇒ (ii). So we have this result.
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(b) By [5, Theorem 3.7], it suffices to prove that (ii) ⇒ (i). Suppose that T ∗

satisfies generalized Weyl’s theorem. Then σBW (T ∗) = σ(T ∗) \ π0(T ∗). Since T is
m-complex symmetric, it follows from Lemma 3.15 that σap(T ∗) = σ(T ∗) and so

σBW (T ∗) = σ(T ∗) \ π0(T ∗) = σap(T ∗) \ πa
0 (T ∗).

Hence it suffices to show that σSBF−+
(T ∗) = σBW (T ∗). If λ 6∈ σSBF−+

(T ∗), then

T ∗ − λ is semi-B-Fredholm and indB(T ∗ − λ) ≤ 0. Since T is m-complex symmetric
operator and T ∗ has the single-valued extension property, it follows from [1] that
indB(T ∗ − λ) ≥ 0 for every λ 6∈ σSBF−+

(T ∗). Thus indB(T ∗ − λ) = 0 for every

λ 6∈ σSBF−+
(T ∗). Therefore σSBF−+

(T ∗) ⊃ σBW (T ∗). Since σSBF−+
(T ∗) ⊂ σBW (T ∗) is

clear, we obtain that

σSBF−+
(T ∗) = σBW (T ∗) = σap(T ∗) \ πa

00(T ∗).

Hence the generalized a-Weyl’s theorem holds for T ∗. �

Corollary 3.18. Let T ∈ L(H) be an m-complex symmetric operator. Then the follow-
ing arguments are equivalent:
(i) T ∗ satisfies Browder’s theorem.
(ii) T ∗ satisfies a-Browder’s theorem.
(iii) T ∗ satisfies the generalized Browder’s theorem.
(iv) T ∗ satisfies the generalized a-Browder’s theorem.

Proof. Since it is well known that (i) ⇔ (iii) and (ii) ⇔ (iv) from [4, Theorem 2.1
and Theorem 2.2], we only consider (iii) ⇔ (iv). Since σ(T ∗) = σap(T ∗) from Lemma
3.15, we have p0(T ∗) = pa0(T ∗). Moreover, σSBF−+

(T ∗) = σBW (T ∗) as in the proof

of Theorem 3.17. Using these results, we get that (iii) ⇔ (iv). This completes the
proof. �
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