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Abstract. Motivated by the recent applications of bicomplex theory to the study
of functions of large class, in this paper, we define bicomplex Mellin transform
of bicomplex-valued functions. Also, we derive some of it’s basic properties and
inversion theorem in bicomplex space. Application of bicomplex Mellin transform
in networks with time-varying parameters problem has been illustrated.
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1. Introduction

In this paper, we extend the Mellin transform of complex-valued function in com-
plex variable to Mellin transform of bicomplex-valued function in bicomplex variable.
In 1892, Segre Corrado [18] defined bicomplex numbers as

C2 = {ξ : ξ = x0 + i1x1 + i2x2 + jx3| x0, x1, x2, x3 ∈ C0},

or

C2 = {ξ : ξ = z1 + i2z2| z1, z2 ∈ C1}.
where i1 and i2 are imaginary units such that i21 = i22 = −1, i1i2 = i2i1 = j, j2 = 1
and C0, C1 and C2 are sets of real numbers, complex numbers and bicomplex num-
bers, respectively. The set of bicomplex numbers is a commutative ring with unit and
zero divisors. Hence, contrary to quaternions, bicomplex numbers are commutative
with some non-invertible elements situated on the null cone.

In 1928 and 1932, Futagawa Michiji originated the concept of holomorphic func-
tions of a bicomplex variable in a series of papers [10], [11]. In 1934, Dragoni [8] gave
some basic results in the theory of bicomplex holomorphic functions while Price G.B.
[16] and Rönn S. [17] have developed the bicomplex algebra and function theory.
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In recent developments, authors have done efforts to extend Polygamma func-
tion [13], inverse Laplace transform, it’s convolution theorem [2], Stieltjes transform
[1], Tauberian Theorem of Laplace-Stieltjes transform [3] and Bochner Theorem of
Fourier-Stieltjes transform [4] in the bicomplex variable from their complex counter-
part. In their procedure, the idempotent representation of bicomplex numbers plays
a vital role.

Hjalmar Mellin (1854-1933, see, e.g. [15]) gave his name to the Mellin transform
that associates to a complex-valued function f(t) defined over the interval (0,∞), the
function of complex variable s, as

f̄(s) =

∫ ∞
0

ts−1f(t)dt.

The change of variables t = e−x shows that the Mellin transform is closely related to
the Laplace transform. General properties of the Mellin transform are usually treated
in detail in books on integral transforms, like those of Poularikas A.D. [15] and Davies
B. [6]. In 1959, Francis R.G. [12] discussed the application of complex Mellin transform
to networks with time-varying parameters. In 1995, Flajolet P. et al. [9] used Mellin
transform for the asymptotic analysis of harmonic sums.

For solving the large class of bicomplex partial differential equations, we need
integral transforms defined for large class. In this process we derive bicomplex Mellin
transform with convergence conditions that can be capable of transferring the signals
from real-valued t domain to bicomplexified frequency ξ domain.
Idempotent Representation: Every bicomplex number can be uniquely expressed as a
complex combination of e1 and e2, viz.

ξ = (z1 + i2z2) = (z1 − i1z2)e1 + (z1 + i1z2)e2,

(where e1 = 1+j
2 , e2 = 1−j

2 ; e1 + e2 = 1 and e1e2 = e2e1 = 0).
This representation of a bicomplex number is known as Idempotent Represen-

tation of ξ. The coefficients (z1 − i1z2) and (z1 + i1z2) are called the Idempotent
Components of the bicomplex number ξ = z1 + i2z2 and {e1, e2} is called Idempotent
Basis.
Cartesian Set: The Auxiliary complex spaces A1 and A2 are defined as follows:

A1 = {w1 = z1 − i1z2, ∀ z1, z2 ∈ C1}, A2 = {w2 = z1 + i1z2, ∀ z1, z2 ∈ C1}.

A cartesian set X1 ×e X2 determined by X1 ⊆ A1 and X2 ⊆ A2 and is defined as:

X1 ×e X2 = {z1 + i2z2 ∈ C2 : z1 + i2z2 = w1e1 + w2e2, w1 ∈ X1, w2 ∈ X2}.

With the help of idempotent representation, we define projection mappings P1 : C2 →
A1 ⊆ C1, P2 : C2 → A2 ⊆ C1 as follows:

P1(z1 + i2z2) = P1[(z1 − i1z2)e1 + (z1 + i1z2)e2] = (z1 − i1z2) ∈ A1, ∀ z1 + i2z2 ∈ C2,

P2(z1 + i2z2) = P2[(z1 − i1z2)e1 + (z1 + i1z2)e2] = (z1 + i1z2) ∈ A2, ∀ z1 + i2z2 ∈ C2.

In the following theorem, Price G.B. discussed the convergence of bicomplex
function with respect to it’s idempotent complex component functions. This theorem
is useful in proving our results.
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Theorem 1.1. (Price G.B. [16]). F (ξ) = Fe1(ξ1)e1+Fe2(ξ2)e2 is convergent in domain
D ⊆ C2 iff Fe1(ξ1) and Fe2(ξ2) under functions P1 : D → D1 ⊆ C1 and P2 : D →
D2 ⊆ C1 are convergent in domains D1 and D2, respectively.

The organization of this paper is as follows:
In Section 2, we establish bicomplex Mellin transform with convergence conditions. In
Section 3, we present some useful properties of bicomlex Mellin transform. In Section
4, we establish the inversion theorem for bicomplex Mellin transform. In section 5, we
discuss application of bicomplex Mellin transform in finding the solution of bicomplex
partial differential equation generated by network model and last Section 6 contains
the conclusion.

2. Bicomplex Mellin transform

Let f1(t) be a complex-valued continuous function on the interval (0,∞) with
f1(t) = O (t−α1) as t → 0+ and f1(t) = O

(
t−β1

)
as t → ∞, where α1 < β1. Then

Mellin transform of f1(t) is

M [f1(t); s1] =

∫ ∞
0

ts1−1f1(t)dt = f̄1(s1), s1 ∈ C1 (2.1)

where f̄1(s1) is analytic and convergent in the vertical strip

Ω1 = {s1 ∈ C1 : α1 < Re(s1) < β1} . (2.2)

Similarly,f2(t) be a complex-valued continuous function on the interval (0,∞) with
f2(t) = O (t−α2) as t → 0+ and f2(t) = O

(
t−β2

)
as t → ∞, where α2 < β2. Then

Mellin transform of f2(t) is

M [f2(t); s2] =

∫ ∞
0

ts2−1f2(t)dt = f̄2(s2), s2 ∈ C1 (2.3)

where f̄2(s2) is analytic and convergent in the vertical strip

Ω2 = {s2 ∈ C1 : α2 < Re(s2) < β2} . (2.4)

Since f̄1(s1) and f̄2(s2) are complex functions which are analytic and convergent in
the strips Ω1 and Ω2 respectively. Now, we have linear combination of f̄1(s1) and
f̄2(s2) w.r.t. e1 and e2 respectively

f̄1(s1)e1 + f̄2(s2)e2 =

(∫ ∞
0

ts1−1f1(t)dt

)
e1 +

(∫ ∞
0

ts2−1f2(t)dt

)
e2

f̄(ξ) =

∫ ∞
0

t(s1e1+s2e2)−1 (f1(t)e1 + f2(t)e2) dt

f̄(ξ) =

∫ ∞
0

tξ−1f(t)dt (2.5)

where ξ = s1e1 + s2e2 and f̄(ξ) is analytic and convergent in the strip

Ω = {ξ : ξ = s1e1 + s2e2 ∈ C2;α < Re(P1 : ξ) < β;α < Re(P2 : ξ) < β;

α = max(α1, α2) and β = min(β1, β2)} . (2.6)
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∵ α < Re(s1) = x1 < β and α < Re(s2) = x2 < β, we have

ξ = (x1 + i1y1)e1 + (x2 + i1y2)e2 = (x1 + i1y1)

(
1 + i1i2

2

)
+ (x2 + i1y2)

(
1− i1i2

2

)
=
x1 + x2

2
+

(
y1 + y2

2

)
i1 +

(
y2 − y1

2

)
i2 +

(
x1 − x2

2

)
i1i2.

Now, there are three possible cases:

1. If x1 = x2 = a0 (say) then x1−x2

2 = 0 and x1+x2

2 = a0.
Hence, if ξ = a0 + a1i1 + a2i2 + a3i1i2, then α < a0 < β and a3 = 0.

2. If x1 > x2, then x1−x2

2 > 0,
x1+x2

2 < β+x2

2 < β+x2

2 + β−x1

2 = β − x1−x2

2

and x1+x2

2 > α+x1

2 > α+x1

2 + α−x2

2 = α+ x1−x2

2 .
Thus, α+ a3 < a0 < β − a3 and a3 > 0.

3. If x1 < x2, then x1−x2

2 < 0,
x1+x2

2 < β+x1

2 < β+x1

2 + β−x2

2 = β + x1−x2

2

and x1+x2

2 > α+x2

2 > α+x2

2 + α−x1

2 = α− x1−x2

2 .
Thus, α− a3 < a0 < β + a3 and a3 < 0.

These three conditions can be written in the following set builder form

Ω1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α < a0 < β and a3 = 0},
Ω2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α+ a3 < a0 < β − a3 and a3 > 0},
Ω3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α− a3 < a0 < β + a3 and a3 < 0}.

Thus, α < Re(P1 : ξ) < β and α < Re(P2 : ξ) < β implies ξ ∈ Ω1 ∪ Ω2 ∪ Ω3 = Ω
which can be defined as:

Ω = {ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ C2 : α+ |a3| < a0 < β − |a3|} (2.7)

or equivalently,

Ω = {ξ ∈ C2 : α+ |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|}

where Imj(ξ) denotes the imaginary part w.r.t. j unit of a bicomplex number.
Conversely, the existence condition of bicomplex Mellin transform f̄(ξ) can be

obtained in the following way:
If ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ Ω,

α+ |a3| < a0 < β − |a3|. (2.8)

Now, in idempotent components, ξ can be expressed as

ξ = a0 + a1i1 + a2i2 + a3i1i2

= [(a0 + a3) + i1(a1 − a2)] e1 + [(a0 − a3) + i1(a1 + a2)] e2

= s1e1 + s2e2.

Depending on the value of a3, there arises three cases:

1. a3 = 0 and α < a0 < β which trivially leads α < a0+a3 < β and α < a0−a3 < β.
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2. When a3 > 0, from the inequality (2.8) α+a3 < a0 < β−a3, we get α < a0−a3

and a0 + a3 < β. This result can be interpreted as α < a0 − a3 < a0 + a3 < β.
3. When a3 < 0, from the inequality (2.8) α−a3 < a0 < β+a3, we get α < a0 +a3

and a0 − a3 < β. This result can be interpreted as α < a0 + a3 < a0 − a3 < β.

Hence the result.
Now, we define the Mellin transform in the bicomplex space as follows:

Definition 2.1. Let f(t) be a bicomplex-valued continuous function on the interval
(0,∞) with f(t) = O (t−α) as t → 0+ and f(t) = O

(
t−β
)

as t → ∞, where α < β.
Then bicomplex Mellin transform of f(t) defined as

M[f(t); ξ] =

∫ ∞
0

tξ−1f(t)dt = f̄(ξ), ξ ∈ Ω

where f̄(ξ) is analytic and convergent in Ω defined in

Ω = {ξ ∈ C2 : α+ |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|} (2.9)

where Imj(ξ) denotes the imaginary part w.r.t. j unit of a bicomplex number.

Following is the illustration to explain the process of finding the bicomplex Mellin
transform of a bicomplex valued function.

Example 2.2. Let f(t) = taU(t− t0), where U(t− t0) is unit-step function, then

M[f(t); ξ] = − tξ+a0

ξ + a
, Re(ξ + a) < − |Imj(ξ + a)| .

Solution. By applying the definition of bicomplex Mellin transform

M[f(t); ξ] =

∫ ∞
0

tξ−1taU(t− t0)dt

=

∫ ∞
t0

tξ+a−1dt

= − tξ+a0

ξ + a
.

Table 1. Bicomplex Mellin transform of some basic functions

S.No. f(t)

Bicomplex
Hankel
Transform
F (ξ)

Region of Convergence

1. (1 + t)−a Γ(ξ)Γ(a−ξ)
Γ(a)

|Imj(a− ξ)| < Re(a− ξ)
2. (1 + t)−1 π

sin(πξ)
|Imj(ξ)| < Re(ξ) < 1− |Imj(ξ)|

3. ent, n > 0 Γ(ξ)
nξ

Re(ξ) > |Imj(ξ)|

4. sin(at), a > 0
Γ(ξ) sin(πξ2 )

aξ
−1+ |Imj(ξ)| < Re(ξ) < 1−|Imj(ξ)|

5. cos(at), a > 0
Γ(ξ) cos(πξ2 )

aξ
|Imj(ξ)| < Re(ξ) < 1− |Imj(ξ)|

6. log(1 + t) π
ξ sin(πξ)

−1 + |Imj(ξ)| < Re(ξ) < − |Imj(ξ)|
7. t−a − 1

ξ−a Re(ξ − a) < − |Imj(ξ − a)|
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3. Properties of bicomplex Mellin transform

In this section, we discuss the basic properties of bicomplex Mellin transform
viz. linearity property, change of scale property, shifting property, Mellin transform of
derivatives and operators, relation with bicomplex Laplace transform and some other
properties.

Theorem 3.1. (Linearity Property). Let f(t) and g(t) are bicomplex-valued functions
with f(t) = O (t−α1) , g(t) = O (t−α2) as t → 0+ and f(t) = O

(
t−β1

)
, g(t) =

O
(
t−β2

)
as t → ∞, with max(α1, α2) + |Imj(ξ)| < Re(ξ) < min(β1, β2) − |Imj(ξ)|,

then

M[c1f(t) + c2g(t); ξ] = c1M[f(t); ξ] + c2M[g(t); ξ] (3.1)

where c1 and c2 are arbitrary constants.

Proof. By applying the definition of bicomplex Mellin transform

M[c1f(t) + c2g(t); ξ] =

∫ ∞
0

tξ−1[c1f(t) + c2g(t)]dt

= c1

∫ ∞
0

tξ−1f(t)dt+ c2

∫ ∞
0

tξ−1g(t)dt

= c1M[f(t); ξ] + c2M[g(t); ξ].

�

Theorem 3.2. (Change of scale property). Let f̄(ξ) be the bicomplex Mellin transform
of bicomplex-valued function f(t), then

M[f(at); ξ] = a−ξ f̄(ξ), ξ ∈ Ω, a > 0 (3.2)

where Ω is defined in (2.9).

Proof. By applying the definition of bicomplex Mellin transform

M[f(at); ξ] =

∫ ∞
0

tξ−1f(at)dt, [where ξ = s1e1 + s2e2]

=

(∫ ∞
0

ts1−1f1(at)dt

)
e1 +

(∫ ∞
0

ts2−1f2(at)dt

)
e2

Put at = u, to obtain

=
1

as1

(∫ ∞
0

ts1−1f1(u)dt

)
e1 +

1

as2

(∫ ∞
0

ts2−1f2(u)dt

)
e2

=
1

as1e1+s2e2

∫ ∞
0

ts1e1+s2e2−1 (f1(u)e1 + f2(u)e2) dt

=
1

aξ

∫ ∞
0

tξ−1f(u)dt

=
f̄(ξ)

aξ
.

�
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Theorem 3.3. (Bicomplex Mellin Transform of Derivatives). Let f̄(ξ) be bicomplex
Mellin transform of bicomplex-valued function f(t), then

M
[
f (n)(t); ξ

]
= (−1)n

Γ(ξ)

Γ(ξ − n)
f̄(ξ − n), (ξ − n) ∈ Ω (3.3)

where Ω is defined in (2.9) and provided tξ−r−1f (r)(t) vanishes as t→ 0 and as t→∞
for r = 0, 1, 2, · · · , (n− 1).

Proof. For n = 1, according to the definition of bicomplex Mellin transform,

M
[
f

′
(t); ξ

]
=

∫ ∞
0

tξ−1f
′
(t)dt

which on integration by parts, gives

M
[
f

′
(t); ξ

]
= tξ−1f(t)|∞0 − (ξ − 1)

∫ ∞
0

tξ−2f(t)dt

= −(ξ − 1)f̄(ξ − 1).

Therefore, the result is true for n = 1. Let the the above result is true for n = m

M
[
f (m)(t); ξ

]
= (−1)m

Γ(ξ)

Γ(ξ −m)
f̄(ξ −m). (3.4)

Now, for n = m+ 1

M
[
f (m+1)(t); ξ

]
=

∫ ∞
0

tξ−1f (m+1)(t)dt

Integrating by parts, we get

M
[
f (m+1)(t); ξ

]
= tξ−1f (m)(t)|∞0 − (ξ − 1)

∫ ∞
0

tξ−2f (m)(t)dt

= −(ξ − 1)(−1)m
Γ(ξ − 1)

Γ(ξ −m− 1)
f̄(ξ −m− 1), [using (3.4)]

= (−1)m+1 Γ(ξ)

Γ(ξ −m− 1)
f̄(ξ −m− 1).

Therefore, the result is true for n = m + 1. Hence, by the principal of mathematical
induction the result is true for all n = 1, 2, · · · . Therefore,

M
[
f (n)(t); ξ

]
= (−1)n

Γ(ξ)

Γ(ξ − n)
f̄(ξ − n). �

Theorem 3.4. (Shifting Property). Let f̄(ξ) be bicomplex Mellin transform of
bicomplex-valued function f(t). Then

M [taf(t); ξ] = f̄(ξ + a), (ξ + a) ∈ Ω, a ∈ C2 (3.5)

where Ω is defined in (2.9).

Proof. By applying the definition of bicomplex Mellin transform,

M [taf(t); ξ] =

∫ ∞
0

tξ−1taf(t)dt =

∫ ∞
0

tξ+a−1f(t)dt = f̄(ξ + a). �
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Theorem 3.5. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued function
f(t). Then

M [f(ta); ξ] =
1

a
f̄

(
ξ

a

)
,

ξ

a
∈ Ω, 0 6= a ∈ C0 (3.6)

where Ω is defined in (2.9).

Proof. By applying the definition of bicomplex Mellin transform,

M [f(ta); ξ] =

∫ ∞
0

tξ−1f(ta)dt

=
1

a

∫ ∞
0

u
ξ
a−1f(u)du [substituting ta = u]

=
1

a
f̄

(
ξ

a

)
.

�

Theorem 3.6. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued function
f(t). Then

M
[
tnf (n)(t); ξ

]
= (−1)n

Γ(ξ + n)

Γ(ξ)
f̄(ξ), ξ ∈ Ω (3.7)

where Ω is defined in (2.9) and provided tξ−rf (r)(ξ) vanishes as t→ 0 and as t→∞
for r = 0, 1, 2, · · · , (n− 1).

Proof. By applying the definition of bicomplex Mellin transform,

M
[
tnf (n)(t); ξ

]
=

∫ ∞
0

tξ−1tnf (n)(t)dt, [where ξ = s1e1 + s2e2]

=

(∫ ∞
0

ts1−1tnf
(n)
1 (t)dt

)
e1 +

(∫ ∞
0

ts2−1tnf
(n)
2 (t)dt

)
e2

= (−1)n
Γ(s1 + n)

Γ(s1)
f̄1(s1)e1 + (−1)n

Γ(s2 + n)

Γ(s2)
f̄2(s2)e2,

[using [7, Equation (8.3.12)]]

= (−1)n
Γ(s1e1 + s2e2 + n)

Γ(s1e1 + s2e2)

(
f̄1(s1)e1 + f̄2(s2)e2

)
= (−1)n

Γ(ξ + n)

Γ(ξ)
f̄(ξ).

�

Theorem 3.7. (Bicomplex Mellin Transform of Differential Operators). Let f̄(ξ) be
bicomplex Mellin transform of bicomplex-valued function f(t). Then

M

[(
t
d

dt

)2

f(t); ξ

]
= M

[
t2f

′′
(t) + tf

′
(t); ξ

]
= (−1)2ξ2f̄(ξ), ξ ∈ Ω (3.8)

where Ω is defined in (2.9).
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Proof. By applying the definition of bicomplex Mellin transform,

M

[(
t
d

dt

)2

f(t); ξ

]
= M

[
t2f

′′
(t) + tf

′
(t); ξ

]
= M

[
t2f

′′
(t); ξ

]
+ M

[
tf

′
(t); ξ

]
= ξ(ξ + 1)f̄(ξ)− ξf̄(ξ)

= (−1)2ξ2f̄(ξ).

In general,

M

[(
t
d

dt

)n
f(t); ξ

]
= (−1)nξnf̄(ξ). �

Theorem 3.8. (Bicomplex Mellin Transform of Integrals). Let f̄(ξ) be bicomplex Mellin
transform of bicomplex-valued function f(t). Then

M

[∫ t

0

f(x)dx; ξ

]
= −1

ξ
f̄(ξ + 1), (ξ + 1) ∈ Ω (3.9)

where Ω is defined in (2.9).

Proof. We write

g(t) =

∫ t

0

f(x)dx

so that g
′
(t) = f(t) with g(0) = 0. Taking the bicomplex Mellin transform of g

′
(t)

and using Theorem 3.3 therein, we get

M
[
g

′
(t); ξ

]
= −(ξ − 1)M[g(t); ξ − 1]

= −(ξ − 1)M

[∫ t

0

f(x)dx; ξ − 1

]
Replacing ξ by ξ + 1, we get the desired result (3.9). �

3.1. Relation with Bicomplex Laplace Transform

The bicomplex Laplace transform and its properties are discussed by Kumar A.
and Kumar P. [14]. It is defined as

Definition 3.9. Let f(t) be a bicomplex-valued function of exponential order α ∈ C0.
Then Laplace Transform of f(t) for t ≥ 0 can be defined as:

L{f(t)} =

∫ ∞
0

f(t)e−ξtdt = F (ξ)

Here F (ξ) exist and is convergent for all ξ ∈ D = D1 ∪D2 ∪D3

or

D = {ξ ∈ C2 : Hρ(ξ) represent a Right half-plane a0 > α+ |a3|},
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where

D1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > α, a3 = 0},
D2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > α+ a3, a3 > 0}

and

D3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > α− a3, a3 < 0}.

In D, there are infinite ξ which have same Hρ hyperbolic projection because a1 and a2

are free from restriction.

Therefore, the usual right-sided bicomplex Laplace transform is analytic in half-
plane Re(ξ) > α+ |Imj(ξ)|. In the same way, left-sided bicomplex Laplace transform
is analytic in the region Re(ξ) < β−|Imj(ξ)|. If the two half-planes overlap, the region
of analyticity of the two-sided bicomplex Laplace transform is thus the strip

D = {ξ ∈ C2 : α+ |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|} .

Hence, D is equivalent to Ω defined in (2.9).

Theorem 3.10. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued function
f(t). Then

M[f(t); ξ] =

∫ ∞
−∞

eξxf(e−x)dx = L
[
f(e−x); ξ

]
, ξ ∈ Ω (3.10)

where Ω is defined in (2.9).

Proof. Taking t = e−x in the definition of bicomplex Mellin transform

M[f(t); ξ] =

∫ ∞
0

tξ−1f(t)dt,

we get

M[f(t); ξ] =

∫ ∞
−∞

eξxf(e−x)dx = L
[
f(e−x); ξ

]
. �

4. Inversion of bicomplex Mellin transform

In this section, we discuss the inversion of bicomplex Mellin transform. Let f̄(ξ)
be the bicomplex Mellin transform of bicomplex-valued continuous function f(t). Then
f̄(ξ) = f̄1(s1)e1 + f̄2(s2)e2 is analytic in the strip Ω, which is defined in (2.6). The
inverse formula for complex mellin transform (see, e.g. Poularikas A.D. [15, chapter
11] and Davies B. [6, p. 195-210]) is

f1(t) =
1

2πi1

∫ c1+i1∞

c1−i1∞
t−s1 f̄1(s1)ds1, α1 < c1 < β1

=
1

2πi1

∫
Ω1

t−s1 f̄1(s1)ds1 (4.1)
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where, Ω1 is defined in (2.2). Similarly, another inverse formula for complex Mellin
transform is

f2(t) =
1

2πi1

∫ c2+i1∞

c2−i1∞
t−s2 f̄2(s2)ds2, α2 < c2 < β2

=
1

2πi1

∫
Ω2

t−s2 f̄2(s2)ds2 (4.2)

where, Ω2 is defined in (2.3).
Now, using complex inversions (4.1) and (4.2), we obtain the bicomplex-valued

function as

f(t) = f1(t)e1 + f2(t)e2

=

(
1

2πi1

∫
Ω1

t−s1 f̄1(s1)ds1

)
e1 +

(
1

2πi1

∫
Ω2

t−s2 f̄2(s2)ds2

)
e2

=
1

2πi1

(∫
(Ω1,Ω2)

t−(s1e1+s2e2)
(
f̄1(s1)e1 + f̄2(s2)e2

)
d(s1e1 + s2e2)

)

=
1

2πi1

∫
Ω

t−s1 f̄(ξ)dξ (4.3)

where, Ω is defined in (2.9).
Consider the problem of asymptotically expanding f(t) as t → 0+, when f̄(ξ)

is known to be continuable in −M + |Imj(ξ)| ≤ Re(ξ) ≤ α − |Imj(ξ)| for some
M > 0. We also postulate that f̄(ξ) has finitely many poles λk such that Re(λk) >
−M + |Imj(λk)|. Then

f(t) =
∑
λk∈K

Res
[
t−ξ f̄(ξ), ξ = λk

]
+O

(
tM
)
, as t→ 0+

where K is the set of singularities and M is as large as we want. Similarly, for problem
of asymptotically expanding f(t) as t→∞. Then contour taken in right and side of
the fundamental strip, we have

f(t) = −
∑
λk∈K

Res
[
t−ξ f̄(ξ), ξ = λk

]
+O

(
t−M

)
, as t→∞.

Following is the illustration to explain the process of finding the inverse bicomplex
Mellin transform.

Example 4.1. Let f̄(ξ) = 1
(ξ−a)(ξ−b) , for Re(ξ − a) < − |Imj(ξ − a)| and Re(a− b) <

− |Imj(a− b)|. Then find the inverse bicomplex Mellin transform f(t) of f̄(ξ).
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Solution. By applying the inverse bicomplex Mellin transform on f̄(ξ)

f(t) =
1

2πi1

∫
Ω

t−ξ f̄(ξ)dξ

= −
[
Res

(
t−ξ

1

(ξ − a)(ξ − b)
, ξ = a

)
+ Res

(
t−ξ

1

(ξ − a)(ξ − b)
, ξ = b

)]
=

1

b− a
(
t−a − t−b

)
.

5. Application of bicomplex Mellin transform

In this paper, we are interested in determining the extent to which the output
voltage V and current I using by bicomplex concept differs from their input values
as the length of the transmission line tends to a very small value.

Now, let us define bicomplex scalar field as

F ≡ V + i2I (5.1)

where voltage V and current I are complex scalar fields. Now, we consider an equiv-
alent circuit of a transmission line of small length ∆x containing resistance R∆x,
capacitance C∆x, and inductance L∆x as shown in Figure 1.

Figure 1. Equivalent circuit of a transmission line

The above figure is a symmetrical network. By using the Kirchhoff’s voltage law
(KVL), we have

V =
1

2
RI∆x+

1

2
L
∂I

∂t
∆x+

1

2
L
∂

∂t
(I + ∆I)∆x+

1

2
R(I + ∆I)∆x+ V + ∆V. (5.2)

Dividing (5.2) by ∆x and simplifying, we get

∆V

∆x
= −

[
RI + L

∂I

∂t
+

(
L

2

∂

∂t

∆I

∆x
+
R

2

∆I

∆x

)
∆x

]
. (5.3)

Taking limit as ∆x→ 0, we get

∂V

∂x
= −

[
RI + L

∂I

∂t

]
. (5.4)
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By applying Kirchhoff’s current law (KCL) on the equivalent circuit of the transmis-
sion line, we get

I = Ic + I + ∆I

= C
∂

∂t

(
V +

∆V

2

)
∆x+ I + ∆I. (5.5)

Dividing (5.5) by ∆x and simplifying, we get

∆I

∆x
= −

[
C
∂V

∂t
+
C

2

∂

∂t

(
∆V

∆x

)
∆x

]
. (5.6)

Taking limit as ∆x→ 0, we get

∂I

∂x
= −C ∂V

∂t
. (5.7)

The differential equations in (5.4) and (5.7) describes the evaluation of current and
voltage in a lossy transmission line. Differentiating (5.4) w.r.t. x and simplifying using
(5.7), we get

∂2V

∂x2
= CL

∂2V

∂t2
+ CR

∂V

∂t
. (5.8)

Similarly, differentiating (5.7) w.r.t. x and simplifying using (5.4), we get

∂2I

∂x2
= CL

∂2I

∂t2
+ CR

∂I

∂t
. (5.9)

Equations (5.8) and (5.9) are hyperbolic partial differential equations which describes
the voltage and current along power transmission lines.

Combining equation (5.8) and (5.9) with the help of bicomplex unit i2 as

∂2V

∂x2
+ i2

∂2I

∂x2
= CL

(
∂2V

∂t2
+ i2

∂2I

∂t2

)
+ CR

(
∂V

∂t
+ i2

∂I

∂t

)
⇒ ∂2

∂x2
(V + i2I) = CL

∂2

∂t2
(V + i2I) + CR

∂

∂t
(V + i2I)

⇒ ∂2

∂x2
F (x, t) = CL

∂2

∂t2
F (x, t) + CR

∂

∂t
F (x, t) (5.10)

where F (x, t) is bicomplex-valued function defined by (5.1).
In particular, a circuit which has resistance R = 1

t , capacitance C = t2 and
inductance L = 1. The differential equation (5.10) of bicomplex-valued function be-
comes

∂2

∂x2
F (x, t) = t2

∂2

∂t2
F (x, t) + t

∂

∂t
F (x, t). (5.11)

For finding the solution of partial differential equation (5.11), we assume boundary
conditions as

F (0, t) = 0 and F (1, t) = A

(
1

ta
+

1

tb

)
(5.12)
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where A ∈ C2, Re(b − a) > |Imj(b− a)|. By taking the bicomplex Mellin transform
of (5.11) w.r.t. t and making use of Theorem 3.7, we get

d2

dx2
F̄ (x, ξ) = ξ2F̄ (x, ξ). (5.13)

Therefore, by taking the bicomplex Mellin transform of (5.12) and using in solution
of (5.13), we get

F̄ (x, ξ) = A

[
(−2ξ + a+ b)

(
eξx − e−ξx

)
(ξ − a)(ξ − b) (eξ − e−ξ)

]
. (5.14)

By taking the inverse bicomplex Mellin transform (5.14), we get

F (x, t) =
1

2πi1

∫
Ω

t−ξF̄ (x, ξ)dξ (5.15)

where F̄ (x, ξ) is analytic in Re(ξ − a) > |Imj(ξ − a)|. Then taking a semi-circle on
the right-hand side of a large radius and using by residue theorem, we have

F (x, t) = A

[
sinh(ax)

sinh(a)
t−a +

sinh(bx)

sinh(b)
t−b
]

= A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
e1

+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]
e2

where A = A1e1 +A2e2, a = a1e1 + a2e2 and b = b1e1 + b2e2. Therefore,

F (x, t) ≡ V + i2I

=
1

2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
+ i2

i1
2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
−A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
. (5.16)

Separating the bi-real and bi-imaginary parts of (5.16), we obtain the voltage and
current of above model as

V (x, t) =
1

2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
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and

I(x, t) =
i1
2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
−A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
.

6. Conclusion

The concept of bicomplex numbers has been applied for finding the solution of
differential equations of bicomplex-valued function generated by network diagram. In
this paper, we derive Mellin transform and its inverse in bicomplex space which is the
generalization of complex Mellin transform. The application has been illustrated to
find the solution of partial differential equation of bicomplex-valued function gener-
ated by a network. The bicomplex analysis has great advantage that it separates the
voltage and current as complex components.
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