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Abstract. In this paper, the estimate for the third Hankel determinant H3,1(f)

of Taylor coefficients of function f(z) = z+

∞∑
n=2

anz
n, belonging to certain classes

of analytic functions in the open unit disk D, are investigated.
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1. Introduction

Let H(D) denote the class of analytic functions in the open unit disk

D = {z ∈ C : |z| < 1}

and A be the class of functions f ∈ H(D), having the form

f(z) = z +

∞∑
n=2

an z
n, z ∈ D, (1.1)

with the standard normalization f(0) = 0, f ′(0) = 1. We denote by S, the subclass
of A consisting of functions which are also univalent in D, and P denotes the class of
functions p ∈ H(D) with <(p(z)) > 0, z ∈ D.

A function f ∈ A is called starlike (with respect to origin 0), if f is univalent in
D and f(D) is a starlike domain. We denote this class of starlike functions by S∗. A
function f ∈ S maps the unit disk D onto a convex domain is called convex function,
and this class of functions is denoted by K. LetM(λ) be the subclass of A consisting
of functions f(z) which satisfy the inequality

<
(
zf ′(z)

f(z)

)
< λ, z ∈ D, (1.2)
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for some λ (λ > 1). And let N (λ) be the subclass of A consisting of functions f(z) if
and only if zf ′(z) ∈M(λ), i.e. f(z) satisfy the inequality

<
(

1 +
zf ′′(z)

f ′(z)

)
< λ, z ∈ D, (1.3)

for some λ (λ > 1). These classes M(λ) and N (λ) were investigated recently by
Nishiwaki and Owa [19] (see also [23]). For 1 < λ ≤ 4/3, the classes M(λ) and N (λ)
were investigated by Uralegaddi et al. [32].

Throughout the present paper, by M we always mean the class of functions
M(3/2), and by N we always mean the class of functions N (3/2). Ozaki [24] proved
that functions inN are univalent in D. Moreover, if f ∈ N , then (see e.g. [11, Theorem
1] and [21, p. 196]) one have

zf ′(z)

f(z)
≺ g(z) =

2(1− z)
2− z

, z ∈ D,

where ≺ denotes the subordination [18]. We see that g above is univalent in D and
maps D onto the disk |w − (2/3)| < 2/3. Thus, functions in M are starlike in D.

For f ∈ A of the form (1.1), a classical problem settled by Fekete and Szegö [9]
is to find the maximum value of the coefficient functional Φλ(f) := a3 − λa2

2 for each
λ ∈ [0, 1], over the function f ∈ S. By applying the Löewner method they proved that

max
f∈S
|Φλ(f)| =

{
1 + 2 exp

(
−2λ
1−λ

)
, λ ∈ [0, 1),

1, λ = 1.

The problem of calculating the maximum of the coefficient functional Φλ(f) for vari-
ous compact subfamilies of A, as well as λ being an arbitrary real or complex number,
has been studied by many authors (see e.g. [1, 12, 13, 17, 30, 31]).

We denote by Hq,n(f) where n, q ∈ N = {1, 2, · · · }, the Hankel determinant of
functions f ∈ A of the form (1.1), which is defined by

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣ (a1 = 1). (1.4)

The Hankel determinant Hq,n(f) has been studied by several authors including Cantor
[6], Noonan and Thomas [20], Pommerenke [26, 25], Hayman [10], Ehrenborg [8], which
are useful, in showing that a function of bounded characteristic in D.

Indeed, H2,1(f) = Φ1(f) is the Fekete-Szegö coefficient functional. Many authors
have studied the problem of calculating max

f∈F
|H2,2(f)| for various subfamily F of the

class f ∈ A (see e.g. [2, 4, 14]). Recently, several authors including Babalola [3],
Bansal et al. [5], Prajapat et al. [28], Raza and Malik [29] have obtained the bounds
on the third Hankel determinant H3,1(f) for certain families of analytic functions,
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which is defined by

H3,1(f) =
a1 a2 a3

a2 a3 a4

a3 a4 a5

= a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2). (1.5)

In the present paper, we investigate the bounds on H3,1(f) for the functions
belonging to the classesM and N defined above. In order to get the main results, we
need the following known results.

Lemma 1.1. ([16]) If p ∈ P be of the form p(z) = 1 +

∞∑
n=1

cnz
n, then

2c2 = c21 + x(4− c21),

and

4c3 = c31 + 2c1x(4− c21)− c1x2(4− c21) + 2(4− c21)(1− |x|2)z,

for some x, z with |x| ≤ 1 and |z| ≤ 1.

Lemma 1.2. ([22, Theorem 1]) If f ∈ N be given by (1.1), then

|an| ≤
1

n(n− 1)
, n ≥ 2.

The result is sharp for the function fn such that f ′n(z) = (1− zn−1)1/(n−1), n ≥ 2.

As it is known that, if f(z) ∈ N then zf ′(z) ∈ M, therefore from Lemma 1.2,
we conclude that

Lemma 1.3. If f(z) ∈M be given by (1.1), then

|an| ≤
1

n− 1
, n ≥ 2.

The result is sharp for the function gn(z) = z(1− zn−1)1/(n−1), n ≥ 2.

Lemma 1.4. ([22, Corollary 2]) If f ∈ N be given by (1.1), then

|a3 − a2
2| ≤ 1/4.

Equality is attained for the function f such that f ′(z) = (1− z2eiθ)1/2, θ ∈ [0, 2π].

2. Main results

Our first main result is contained in the following theorem:

Theorem 2.1. Let the function f ∈M be given by (1.1), then

|a3 − a2
2| ≤ 1. (2.1)

The result (2.1) is sharp and equality in (2.1) is attained for the function

e1(z) = z − z2.
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Proof. If the function f ∈M be given by (1.1), then we may write

zf ′(z)

f(z)
=

3

2
− 1

2
p(z), (2.2)

where p(z) = 1 +

∞∑
n=1

cnz
n is analytic in D and <(p(z)) > 0 in D. Also, we have

|cn| ≤ 2 for all n ≥ 1 (see [7]). In terms of power series expansion, the last identity is
equivalent to

∞∑
n=1

nanz
n =

(
1− 1

2

∞∑
n=1

cnz
n

)( ∞∑
n=1

anz
n

)
,

where a1 = 1. Equating the coefficients of zn on both sides, we deduce that

a2 = −1

2
c1, a3 =

1

8
(c21 − 2c2), a4 =

1

48
(6c1c2 − 8c3 − c31). (2.3)

Now using Lemma 1.1 for some x such that |x| ≤ 1, we have

|a3 − a2
2| =

∣∣∣∣18(c21 − 2c2)− 1

4
c21

∣∣∣∣ =
1

8
|2c21 + x(4− c21)|.

As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Hence applying
the triangle inequality with µ = |x|, we obtain

|a3 − a2
2| ≤

1

8
[2c2 + µ(4− c2)]

= F1(c, µ).

Let Ω = {(c, µ) : 0 ≤ c ≤ 2 and 0 ≤ µ ≤ 1}. Differentiating F1 with respect to µ, we
get

∂F1

∂µ
=

1

8
(4− c2) ≥ 0 for 0 ≤ µ ≤ 1.

Therefore F1(c, µ) is a non-decreasing function of µ on the closed interval [0, 1]. Thus,
it attains maximum value at µ = 1. Let

max
0≤µ≤1

F1(c, µ) = F1(c, 1) =
c2 + 4

8
= G1(c).

We observe that G1(c) is an increasing function in [0, 2], so it will attains maximum
value at c = 2. Next, to find the critical point on the boundary of Ω, we examine
all the four line segments of Ω. Along the line segment c = 2 with 0 ≤ µ ≤ 1,
we have F1(c, µ) = F1(2, µ) = 1, which is a constant, thus every point on the line
segment is the critical point. For the line segment c = 0 with 0 ≤ µ ≤ 1, we have
F1(c, µ) = F1(0, µ) = µ/2. For the line segment µ = 0 with 0 ≤ c ≤ 2, we have
F1(c, µ) = F1(c, 0) = c2/4, which gives the critical point (0, 0) and F1(0, 0) = 0. Also,
for the line segment µ = 1 with 0 ≤ c ≤ 2, we have F1(c, µ) = F1(c, 1) = (c2 + 4)/8,
which gives another critical point (0, 1) and F1(0, 1) = 1/2.

Putting this all together we can conclude that the maximum of F1(c, µ) lie at
each point along the line segment c = 2 with 0 ≤ µ ≤ 1, which can also be verified
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through the mathematica plot of F1(c, µ) over the region Ω given below in the Figure 1.
Hence

max
Ω

F1(c, µ) = F1(2, µ) = 1.

Figure 1. Mapping of F1(c, µ) over Ω

To find the extremal function, setting c1 = 2 and x = 1 in Lemma 1.1, we find
that c2 = c3 = 2, using these values in (2.3), we get that a2 = −1 and a3 = a4 = 0,
therefore the extremal function would be e1(z) = z − z2. A simple calculation shows
that e1(z) ∈M. This complete the proof of Theorem 2.1. �

Theorem 2.2. Let the function f ∈M be given by (1.1), then

|a2a4 − a2
3| ≤

1

4
. (2.4)

The result (2.4) is sharp and equality is attained for the function

e2(z) = z − 1

2
z3 and e3(z) = z(1− z2)1/2.

Proof. Using (2.3) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a4 − a2
3| =

∣∣∣∣− 1

96
c1(6c1c2 − 8c3 − c31)− 1

64

(
c21 − 2c2

)2∣∣∣∣
=

1

192

∣∣−3x2(4− c21)2 + 2c21x(4− c21)− 4c21x
2(4− c21)

+8c1(4− c21)(1− |x|2)z
∣∣ .
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As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Thus applying
the triangle inequality with µ = |x|, we obtain

|a2a4 − a2
3| ≤

1

192

[
(4− c2){3µ2(4− c2) + 2c2µ+ 4µ2c2 + 8c(1− µ2)}

]
=

1

192

[
(4− c2){(12− 8c+ c2)µ2 + 2c2µ+ 8c}

]
= F2(c, µ).

Differentiating F2(c, µ) in the above equation with respect to µ, we get

∂F2

∂µ
=

(4− c2)

96

{
(12− 8c+ c2)µ+ c2

}
≥ 0 for 0 ≤ µ ≤ 1.

Therefore F2(c, µ) is a non-decreasing function of µ on closed interval [0, 1]. Thus, it
attains maximum value at µ = 1. Let

max
0≤µ≤1

F2(c, µ) = F2(c, 1) =
16− c4

64
= G2(c).

We observe that G2(c) is a decreasing function in [0, 2], so it will attains maximum
value at c = 0. Next, to find the critical point on the boundary of Ω, we examine all the
four line segments of Ω by the earlier method used in Theorem 2.1, and we are getting
(0, 0), (2/

√
3, 0) and (0, 1) are the critical points and F2(0, 0) = 0, F2(2/

√
3, 0) =

2/9
√

3 and F2(0, 1) = 1/4. Therefore maximum value of F2(c, µ) is obtained by
putting c = 0 and µ = 1, which can also verified through the mathematica plot of
F2(c, µ) over Ω given below in Figure 2. Hence

max
Ω

F2(c, µ) = F2(0, 1) =
1

4
.

Figure 2. Mapping of F2(c, µ) over Ω
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Now, to find extremal function, set c1 = 0 and selecting x = 1 in Lemma 1.1, we
find that c2 = 2 and c3 = 0. Using these values in (2.3), we get a2 = a4 = 0 and a3 =
1/2, therefore one of the extremal function of (2.4) would be e2(z) = z− 1

2z
3. We can

also see that equality in (2.4) is attended for the function e3(z) = z(1− z2)1/2 ∈ M.
A simple calculation shows that e2 ∈ M and e3 ∈ M. This complete the proof of
Theorem 2.2. �

Theorem 2.3. Let the function f ∈M be given by (1.1), then

|a2a3 − a4| ≤
2
√

3

9
. (2.5)

Proof. Using (2.3) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a3 − a4| =

∣∣∣∣ 1

16
c1(c21 − 2c2) +

1

48
(6c1c2 − 8c3 − c31)

∣∣∣∣
=

1

24

∣∣2c1x(4− c21)− c1x2(4− c21) + 2(4− c21)(1− |x|2)z
∣∣ .

As |c1| ≤ 2, letting c1 = c, assume without restriction that c ∈ [0, 2]. Hence applying
the triangle inequality with µ = |x|, we obtain

|a2a3 − a4| ≤
(4− c2)

24
[2 + 2cµ+ (c− 2)µ2]

= F3(c, µ).

To find the maximum of F3 over the region Ω, differentiating F3 with respect to µ
and c, we get

∂F3

∂µ
=

(4− c2)

12
[c+ (c− 2)µ] (2.6)

∂F3

∂c
=

1

24

[
−4c+ (8− 6c2)µ+

(
4 + 4c− 3c2

)
µ2
]
. (2.7)

A critical point of F3(c, µ) must satisfy
∂F3

∂µ
= 0 and

∂F3

∂c
= 0. The condition

∂F3

∂µ
= 0

gives c = ±2 or µ = −c/(c−2). The interior point (c, µ) of Ω satisfying such condition
in only (0, 0), and at that point (0, 0), we have(

∂2F3

∂µ2

)(
∂2F3

∂c2

)
−
(
∂2F3

∂c ∂µ

)2

= 0.

Hence, it is not certain that at (0, 0) function have maximum value in Ω. Since Ω
is closed and bounded and F3 is continuous, the maximum of F3 shall be attained
on the boundary of Ω. Along the line segment c = 2 with 0 ≤ µ ≤ 1, we have
F3(c, µ) = F3(2, µ) = 0, which is a constant. For the line segment c = 0 with 0 ≤
µ ≤ 1, we have F3(c, µ) = F3(0, µ) = (1 − µ2)/3, which gives the same critical point
(0, 0) and F3(0, 0) = 1/3. For the line segment µ = 0 with 0 ≤ c ≤ 2, we have
F3(c, µ) = F3(c, 0) = (4− c2)/12, which gives the same critical point (0, 0). Also, for
the line segment µ = 1 with 0 ≤ c ≤ 2, we have F3(c, µ) = F3(c, 1) = (4c − c3)/8,



190 Jugal K. Prajapat, Deepak Bansal and Sudhananda Maharana

which gives another critical point (2/
√

3, 1) on this line and F3(2/
√

3, 1) = 2
√

3/9.

Therefore, the point (0, 0) and (2/
√

3, 1) are the only critical points of F3 over Ω.

Hence, the largest value of F3(c, µ) over the region Ω lies at (2/
√

3, 1) and

max
Ω

F3(c, µ) = F3(2/
√

3, 1) =
2
√

3

9
. �

Figure 3. Mapping of F3(c, µ) over Ω

Theorem 2.4. Let the function f ∈M be given by (1.1), then

|H3,1(f)| ≤ 81 + 16
√

3

216
.

Proof. Using Lemma 1.3, Theorem 2.1, Theorem 2.2, Theorem 2.3 and the triangle
inequality on H3,1(f), we get

|H3,1(f)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|

≤ 1

2
· 1

4
+

1

3
· 2
√

3

9
+

1

4
· 1 =

81 + 16
√

3

216
.

This completes the proof of Theorem 2.4. �

Theorem 2.5. Let the function f ∈ N be given by (1.1), then

|a2a3 − a4| ≤
1

12
. (2.8)

The result (2.8) is sharp and equality in (2.8) is attained for the function e4 where
e′4(z) = (1− z3)1/3.
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Proof. Let the function f ∈ N be given by (1.1), then by definitions it is clear that
f(z) ∈ N if and only if zf ′(z) ∈M, thus replacing an by nan in (2.3), we get

a2 = −1

4
c1, a3 =

1

24
(c21 − 2c2), a4 =

1

192
(6c1c2 − 8c3 − c31). (2.9)

Now using (2.9) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a3 − a4| =

∣∣∣∣− 1

96
c1(c21 − 2c2)− 1

192
(6c1c2 − 8c3 − c31)

∣∣∣∣
=

1

192

∣∣3c1x(4− c21)− 2c1x
2(4− c21) + 4(4− c21)(1− |x|2)z

∣∣ .
As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Hence applying
the triangle inequality with µ = |x|, we obtain

|a2a3 − a4| ≤
(4− c2)

192
[4 + 3cµ+ 2(c− 2)µ2]

= F4(c, µ).

Following the earlier method used in Theorem 2.3, we can show that the global max-
imum of F4(c, µ) over the region Ω is achieved at (0, 0) and F4(0, 0) = 1/12. This
can also be verified through the mathematica plot of F4(c, µ) over Ω given below in
Figure 4.

Figure 4. Mapping of F4(c, µ) over Ω

Also observe that equality in (2.8) is attained for the function e4 where

e′4(z) = (1− z3)1/3.

A computation shows that e4 ∈ N . Hence the result is obtained. �
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Theorem 2.6. Let the function f ∈ N be given by (1.1), then

|a2a4 − a2
3| ≤

9

320
. (2.10)

Proof. Using (2.9) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a4 − a2
3| =

1

192

∣∣∣∣−1

4
c1(6c1c2 − 8c3 − c31)− 1

3

(
c21 − 2c2

)2∣∣∣∣
=

1

192

∣∣∣∣ 1

12
c41 +

1

6
c21c2 +

4

3
c22 − 2c1c3

∣∣∣∣
=

1

2304

∣∣3xc21(4− c21)− 6x2c21(4− c21) + 12zc1(4− c21)(1− |x|2)

−4(4− c21)2x2
∣∣ .

As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Thus applying
the triangle inequality with µ = |x|, we obtain

|a2a4 − a2
3| ≤

(4− c2)

2304

{
12c+ 3c2µ+ 2(8− 6c+ c2)µ2

}
= F5(c, µ).

Differentiating F5(c, µ) with respect to µ, we get

∂F5

∂µ
=

(4− c2)

2304

{
4µ(c2 − 6c+ 8) + 3c2

}
≥ 0 for 0 ≤ µ ≤ 1.

Therefore F5(c, µ) is a non-decreasing function of µ on closed interval [0, 1]. Thus, it
attains maximum value at µ = 1. Let

max
0≤µ≤1

F5(c, µ) = F5(c, 1) =
1

2304
(64 + 4c2 − 5c4) = G5(c).

We can see that G5(c) is an increasing function in [0,
√

2/5], so G5(c) attains maxi-

mum value at c =
√

2/5. Next, to find the critical points on the boundary of Ω, we
examine all the four line segments of Ω by the earlier method used in Theorem 2.1
and 2.3, and we get (0, 0), (2/

√
3, 0) and (0, 1) are the critical points and F5(0, 0) = 0,

F5(2/
√

3, 0) = 1/36
√

3 and F5(0, 1) = 1/36. Therefore F5(c, µ) have maximum value

at µ = 1 and c =
√

2/5 in the region Ω. Thus

max
Ω

F5(c, µ) = F5(
√

2/5, 1) =
9

320
.

This completes the proof of Theorem 2.6. �

Remark 2.7. For f ∈ S, Thomas [27, p. 166] conjectured that

|H2,n(f)| = |anan+2 − a2
n+1| ≤ 1, n = 2, 3, 4 · · · .

Subsequently, Li and Srivastava [15, p. 1040] shown that this conjecture is not valid
for n ≥ 4, i.e. conjecture is valid only for n = 2, 3. From Theorem 2.6, we found that,
if function f is member of class N and having form (1.1), then |H2,2(f)| ≤ 9/320.
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Figure 5. Mapping of F5(c, µ) over Ω

Since all functions in N are univalent in D. Therefore, Theorem 2.6 validates the
Thomas conjecture when n = 2 for the function belonging to the classes N .

Theorem 2.8. Let the function f ∈ N be given by (1.1), then

|H3,1(f)| ≤ 139

5760
.

Proof. Using Lemma 1.2, Lemma 1.4, Theorem 2.5, Theorem 2.6 and the triangle
inequality on H3,1(f), we get

|H3,1(f)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|

≤ 1

6

9

320
+

1

12

1

12
+

1

20

1

4
=

139

5760
.

This completes the proof of Theorem 2.8. �
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