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Majorization for certain classes of analytic
functions defined by convolution structure
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Abstract. In this paper, we investigate majorization properties for certain classes
of analytic functions defined by convolution structure. Also we point out some
new and known consequences of our main result.
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1. Introduction

Let f(z) and g(z) be analytic in the open unit disc U = {z ∈ C : |z| < 1}.
For analytic function f(z) and g(z) in U , we say that f(z) is majorized by g(z)

in U (see [10]) and write
f(z) << g(z) (z ∈ U), (1.1)

if there exists a function ϕ(z), analytic in U such that

|ϕ(z)| ≤ 1 and f(z) = ϕ(z)g(z) (z ∈ U). (1.2)

It may be noted that (1.1) is closely related to the concept of quasi-subordination
between analytic functions.

If f(z) and g(z) are analytic functions in U , we say that f(z) is subordinate to
g(z), written symbolically as f(z) ≺ g(z) if there exists a Schwarz function w, which
(by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that
f(z) = g(w(z)), z ∈ U. Furthermore, if the function g(z) is univalent in U, then we
have the following equivalence, (see [11, p.4]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let A (p) denote the class of functions f(z) of the form:

f(z) = zp +

∞∑
k=p+1

akz
k, ( p ∈ N = {1, 2, ......}) (1.3)
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which are analytic and p−valent in the open unit disc. We note that A (1) = A. Let
g(z) ∈ A (p) , be given by

g(z) = zp +

∞∑
k=p+1

bkz
k,

the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) = zp +

∞∑
k=p+1

akbkz
k = (g ∗ f)(z). (1.4)

For λ, ` > 0, p ∈ N,m ∈ N0 = N ∪ {0} and f (z) , g(z) ∈ A (p) , A. O. Mostafa,
[12] defined the linear operator Dm

λ,`,p (f ∗ g) as follows:

Dm
p,`,λ (f ∗ g) = zp +

∞∑
k=p+1

[
p+ `+ λ (k − p)

p+ `

]m
akbkz

k. (1.5)

From (1.5), it is easy to verify that ( see [12]),

λz
(
Dm
λ,`,p(f ∗ g)(z)

)′
= (`+ p)Dm+1

λ,`,p(f ∗g)(z)− [p (1− λ) + `]Dm
λ,`,p(f ∗g)(z). (1.6)

We note that:
(i) For bk = 1 or g(z) = zp

1−z we have Dm
λ,`,pf(z) = Imp (λ, `)f(z), where the

operator Imp (λ, `) was introduced and studied by Cătaş [4], which contains intern the
operators Dm

p , (see [2] and [8]) and Dm
λ (see [1]).

(ii) For bk =
(α1)k−p...(αq)k−p

(β1)k=p...(βs)k−p(1)k−p
, the operator

Dm
λ,`,p(f ∗ g)(z) = Im,`p,q,r,λ(α1, β1)f(z),

where the operator Im,`p,q,r,λ(α1, β1)f(z) was introduced and studied by El-Ashwah and

Aouf [6], α1, α2, ..., αq and β1, β2, ..., βs are real or complex number (βj ∈ C\Z−0 =
{0,−1,−2, ...} ; j = 1, ..., s; )(q ≤ s+ 1; q, s ∈ N0, p ∈ N; z ∈ U) and

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C∗ = C\{0}),
θ(θ − 1)...(θ + ν − 1) (ν ∈ N; θ ∈ C).

Also, for many special operators of the operator Im,`p,q,r,λ(α1, β1)f(z) (see [6]).

(iii) For m = 0, bk =
(α1)k−p...(αq)k−p

(β1)k=p...(βs)k−p(1)k−p
, the operator

Dm
λ,`,p(f ∗ g)(z) = Sjp,q,s(γ;α1)f(z),

where the operator Sjp,q,s(γ;α1)f(z), was introduced and studied by El-Ashwah [5].

(iv) For m = 0 and bk = Γ(p+α+β)Γ(k+β)
Γ(p+β)Γ(k+α+β) , the operator Dm

p,`,λ(f ∗g)(z) = Qαp,β(f)

(α ≥ 0, β > −1, p ∈ N), where the operator Qαp,β was introduced by Liu and Owa [9].

For h(z) given by

h(z) = zp +

∞∑
k=p+1

ckz
k
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A function f(z) ∈ A (p) is said to be in the class Sm,jλ,`,p(γ) of p−valent functions of
complex order γ 6= 0 in U, if and only if

Re

{
1 +

1

γ

(
z(Dm

λ,`,p(f ∗ h)(z))(j+1)

(Dm
λ,`,p(f ∗ h)(z))(j)

− p+ j

)}
> 0

(p ∈ N; j ∈ N0 = N ∪ {0}; `, λ ≥ 0; γ ∈ C∗; z ∈ U). (1.7)

Clearly, we have the following relationships:
(i) S0,0

λ,`,1(γ) = S(γ)(γ ∈ C∗),
(ii) S0,1

λ,`,1(γ) = κ(γ) (γ ∈ C∗),
(iii) S0,0

λ,`,1(1− α) = S∗(α) (0 ≤ α < 1).

The classes S(γ) and κ(γ) are classes of starlike and convex functions of complex
order γ 6= 0 in U which were studied by Nasr and Aouf [13] and S∗(α) is the class of
starlike functions of order α in U.

Also, for m = 0 the operator Sjp(h; γ) was introduced and studied by El-Ashwah
and Aouf [7].
Definition 1.1. Let −1 ≤ B < A ≤ 1, p ∈ N; j ∈ N0, γ ∈ C∗,

|γ(A−B) + (p− j)B| < (p− j), f ∈ A (p) .

Then f ∈ Sm,jλ,`,p (γ;A,B), the class of p−valent functions of complex order γ in U if
and only if {

1 +
1

γ

(
z(Dm

λ,`,p(f ∗ h)(z))(j+1)

(Dm
λ,`,p(f ∗ h)(z))(j)

− p+ j

)}
≺ 1 +Az

1 +Bz
. (1.8)

A majorization problem for the subclasses of analytic function has recently been
investigated by Altintas et al. [3] and MacGregor [11]. In this paper we investigate

majorization problem for the class Sm,jλ,`,p (γ;A,B) and some related subclasses.

2. Main results

Unless otherwise mentioned we shall assume throughout the paper that, −1 ≤
B < A ≤ 1, γ ∈ C∗, `, λ ≥ 0, p ∈ N and m, j ∈ N0.
Theorem 2.1. Let the function f ∈ A(p) and suppose that g ∈ Sm,jλ,`,p (γ;A,B) . If

(Dm
λ,`,p(f ∗ h)(z))(j) is majorized by (Dm

λ,`,p(g ∗ h)(z))(j) in U, then∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣ ≤ ∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ (|z| < r1) , (2.1)

where r1 = r1(p, γ, λ, `, A,B) is the smallest positive root of the equation

|γλ(A−B) + (p+ `)B| r3 − [2λ |B|+ (p+ `)] r2−
[|γλ(A−B) + (p+ `)B|+ 2λ] r + (p+ `) = 0. (2.2)

Proof. Since (g ∗ h)(z) ∈ Sm,jλ,`,p (γ;A,B) , we find from (1.8) that

1 +
1

γ

(
z(Dm

λ,`,p(g ∗ h)(z))(j+1)

(Dm
λ,`,p(g ∗ h)(z))(j)

− p+ j

)
=

1 +Aw(z)

1 +Bw(z)
, (2.3)
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where w is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U). From (2.3), we have

z(Dm
λ,`,p(g ∗ h)(z))(j+1)

(Dm
λ,`,p(g ∗ h)(z))(j)

=
(p− j) + [γ(A−B) + (p− j)B]w(z)

1 +Bw(z)
. (2.4)

In view of

λz
(
Dm
λ,`,p(f ∗ g)(z)

)(j+1)
= (p+ `) (Dm+1

λ,`,p(f ∗ g)(z))(j)

− [p (1− λ) + λj + `] (Dm
λ,`,p(f ∗ g)(z))(j) (2.5)

0 ≤ j ≤ p; p ∈ N, λ > 0; z ∈ U,
(2.4) immediately yields the following inequality:∣∣∣(Dm

λ,`,p(g ∗ h)(z))(j)
∣∣∣ ≤ (p+ `)(1 + |B| |z|)

(p+ `)− |γλ(A−B) + (p+ `)B| |z|

∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ .
(2.6)

Next, since (Dm
λ,`,p(f ∗ h)(z))(j) is majorized by (Dm

λ,`,p(g ∗ h)(z))(j) in U, from (1.2),
we have

(Dm
λ,`,p(f ∗ h)(z))(j) = ϕ(z)(Dm

λ,`,p(g ∗ h)(z))(j). (2.7)

Differentiating (2.7) with respect to z, we have

z(Dm
λ,`,p(f ∗ h)(z))(j+1) = zϕ

′
(z)(Dm

λ,`,p(g ∗ h)(z))(j) + zϕ(z)(Dm
λ,`,p(g ∗ h)(z))(j+1).

(2.8)
From (2.5) and (2.8), we have

(Dm+1
λ,`,p(f ∗h)(z))(j) =

λz

p+ `
ϕ
′
(z)(Dm

λ,`,p(g∗h)(z))(j) +ϕ(z)(Dm+1
λ,`,p(g∗h)(z))(j). (2.9)

Thus, by noting that ϕ(z) satisfies the inequality (see [14]),∣∣∣ϕ′(z)∣∣∣ ≤ 1− |ϕ(z)|2

1− |z|2
(z ∈ U),

we see that ∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣
≤

(
|ϕ(z)|+ 1− |ϕ(z)|2

1− |z|2
.

λ |z| (1 + |B| |z|)
(p+ `)− |γλ(A−B) + (p+ `)B| |z|

)∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ ,
(2.10)

which upon setting

|z| = r and |ϕ(z)| = ρ (0 ≤ ρ ≤ 1),

leads us to the inequality ∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣
≤ Θ(ρ)

(1− r2)((p+ `)− |γλ(A−B) + (p+ `)B| r)

∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ ,
where

Θ(ρ) = −rλ (1 + |B| r) ρ2 + (1− r2) [(p+ `)− |γλ(A−B) + (p+ `)B| r] ρ
+rλ (1 + |B| r) , (2.11)
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takes its maximum value at ρ = 1, with r1 = r1(p, γ, λ, `, A,B), where
r1(p, γ, λ, `, A,B) is the smallest positive root of (2.2). Therefore the function Φ(ρ)
defined by

Φ(ρ) = −σλ (1 + |B|σ) ρ2 + (1− σ2) [(p+ `)− |γλ(A−B) + (p+ `)B|σ] ρ

+σλ (1 + |B|σ) (2.12)

is an increasing function on the interval 0 ≤ ρ ≤ 1, so that

Φ(ρ) ≤ Φ(1) = (1− σ2) [(p+ `)− |γ(A−B) + (p+ `)B|σ] (2.13)

(0 ≤ ρ ≤ 1; 0 ≤ σ ≤ r0(p, γ, j, A,B)) .

Hence upon setting ρ = 1 in (2.12), we conclude that (2.1) holds true for |z| ≤
r1 = r1(p, γ, λ, `, A,B), where r1(p, γ, λ, `, A,B), is the smallest positive root of (2.2).
This completes the proof of Theorem 1.

Putting A = 1 and B = −1 in Theorem 1, we obtain the following result.
Corollary 2.2. Let the function f ∈ A(p) and suppose that g ∈ Sm,jλ,`,p (γ) .

If (Dm
λ,`,p(f ∗ h)(z))(j) is majorized by (Dm

λ,`,p(g ∗ h)(z))(j) in U, then∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣ ≤ ∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ (|z| < r1) ,

where r1 = r1(p, γ, λ, `) is given by

r1 = r1(p, γ, λ, `) =
k −

√
k2 − 4(p+ `) |2γλ− (p+ `)|

2 |2γλ− (p+ `)|
, (2.14)

where k = 2λ+ (p+ `)) + |2γλ− (p+ `))| .
Putting A = 1, B = −1 and p = j = 1 in Theorem 1, we obtain the following

result.
Corollary 2.3. Let the function f ∈ A and suppose that g ∈ Sm,0λ,` (γ) .

If (Dm
λ,`(f ∗ h)(z)) is majorized by (Dm

λ,`(g ∗ h)(z)) in U, then∣∣∣(Dm+1
λ,` (f ∗ h)(z))

∣∣∣ ≤ ∣∣∣(Dm+1
λ,` (g ∗ h)(z))

∣∣∣ (|z| < r2) ,

where r2 = r2(γ, λ, `) is given by

r2 = r2(γ, λ, `) =
k −

√
k2 − 4(1 + `) |2γλ− (1 + `)|

2 |2γλ− (1 + `)|
, (2.15)

where k = 2λ+ (1 + `)) + |2γλ− (1 + `))| .
Putting A = λ = 1, B = −1,m = ` = 0, and h(z) = zp

1−z (or ck+p = 1) in
Theorem 1, we obtain the following result.
Corollary 2.4. Let the function f ∈ A(p) and suppose that g ∈ Sp. If f(z) is majorized
by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r3) ,

where r3 = r3(p, γ) is given by

r3 = r3(p; γ) =
k −

√
k2 − 4p |2γ − p|
2 |2γ − p|

,

where k = 2 + p+ |2γ − p| .
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Putting γ = 1 in Corollary 3, we obtain the following result.
Corollary 2.5. Let the function f ∈ A(p) and suppose that g ∈ Sp (γ) . If f(z) is
majorized by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r4) ,

where r4 is given by

r4 = r4(p) =
k −

√
k2 − 4p |2− p|
2 |2− p|

,

where k = 2 + p+ |2− p|
Remarks 2.6. (i) Putting p = 1 in Corollary 3 we obtain the results obtained by
Altintas et al. [3],
(ii) Putting p = 1 in Corollary 4 we obtain the results obtained by MacGregor [10].
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