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The first Zolotarev case in the Erdos-Szego

solution to a Markov-type extremal problem
of Schur

Heinz-Joachim Rack

Abstract. Schur’s [14] Markov-type extremal problem asks to find the maximum
(1) sup sup  |P{M(€)], where By eo = {P, € B, : P{P(¢§) =0} C B, =
—1<£<1 P71€Bn,§,2

{Py : |Pn(z)| <1 for |z| < 1} and P, is an algebraic polynomial of degree < n.
Erdos and Szego [3] found that for n > 4 this maximum is attained if £ = +1
and P, € B, ¢ 2 is a (unspecified) member of the 1-parameter family of hard-core
Zolotarev polynomials Z, ;. Our first result centers around the proof in [3] for the
initial case n = 4 and is three-fold: (¢) the numerical value for (1) in ([3], (7.9))
is not correct, but sufficiently precise; (i¢) from preliminary work in [3] can in
fact be deduced a closed analytic expression for (1) if n = 4, allowing numerical
evaluation to any precision; (4i%) even the explicit power form representation of an
extremal Z4 ¢+ = Za 4+ can be deduced from [3], thus providing an exemplification
of Schur’s problem that seems to be novel. Additionally, we cross-check its validity
twice: firstly by deriving Z4 ¢+ conversely from a general formula for Z4; that we
have given in [12], and secondly by applying Theorem 5.10 in [11]. We then turn
to a generalized solution of Schur’s problem, to k -th derivatives, by Shadrin
[16]. Again we provide in explicit form the corresponding maximum as well as an
extremizer polynomial for the first non-trivial degree n = 4. Finally, we contribute
to the fuller description of Z4+ by providing its critical points in explicit form.
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1. Introduction

The famous A. A. Markov inequality of 1889 [8] asserts an estimate on the size
of the first derivative of an algebraic polynomial P, of degree < n and can be restated
as follows:

sup sup |P{V(€)] = n® = TV(1), (L.1)
&€l P,eB,
where I = [—1,1] and B,, = {P,, : |P,(z)| < 1 for x € I}. As indicated, this maximum
will be attained if, up to the sign, P,, = T;, € B,, is the n-th Chebyshev polynomial
of the first kind on I (defined by T,(z) = 22T,,—1(z) — Th—2(x) with Ty (z) = =z,
To(x) =1) and if £ = £1, see e.g. ([10], p. 529), ([13], p. 123).
In 1919 I. Schur ([14], §2), inspired by (1.1), was led to the problem of finding
the maximum of \Pygl)(fﬂ under the additional restriction P\% (&) = 0: Determine
P, = P} which attains, for n > 3,

sup  sup  |P(€)| = n>M,, (1.2)
E€l PrEBy g2

where B, c2 = {P, € B, : P,SQ)(f) = 0} and M, is a constant (depending on n).
Schur ([14], (9)) proved that there holds

1 1
sup sup |P,§1)(§)| < =n?,so that M,, < —. (1.3)
€€l P,EB, ¢ 2 2 2
In 1942 P. Erdos and G. Szegd addressed this problem of Schur and they provided

the following solution ([3], Theorem 2):

The maximum (1.2) will be attained, for n > 4, only if € = 1 and P, = P
is a (unspecified) member of the 1-parameter family (with parameter t) of hard-core
Zolotarev polynomials £Z,, ;; or if ¢ = —1 and P, = P} is a (unspecified) member of
the family +Z, ,, where Z, (x) = Zy t(—).

We leave aside the simple case n = 3 (with solution £ = 0 and P; = Py = £7T5
([3], p. 466)). Henceforth we will confine ourselves to specify only one extremal poly-
nomial P for a given problem on I, but will keep in mind that — P} as well as +Q},
where Q7 (x) = +P*(—x), may likewise be extremal. The solutions to (1.1) and
(1.2) have in common that the maximum is attained at the endpoints £ = £1 of the
unit interval I. But, on the other hand, the solutions differ greatly when it comes to
exhibit an explicit extremal polynomial from B,, resp. B, ¢ 2: Whereas in (1.1) an
extremizer is, for all n > 1, the well-known n -th Chebyshev polynomial T;, [13], the
explicit power form of the intricate extremizers Z, ; in (1.2) remained arcane for all
n > 4. This is due to the fact that for a general degree n the explicit power form of
a hard-core Zolotarev polynomial Z, ; is not known ([16], p. 1185). Rather, Z,, ; can
be expressed with the aid of elliptic functions (see ([1], pp. 280), ([10], p. 407), [18])
which amounts to an extremely complicated concoction of elliptic quantities ([17], p.
52).
It is a purpose of this note to provide, nearly one hundred years after the origin of
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Schur’s problem, the explicit power form of a particular hard-core Zolotarev poly-
nomial Z,, ; = Z, 4~ which is extremal for (1.2), at least for the first nontrivial case
n = 4. Such a solution was coined Schur polynomial in ([11], Section 5d), where a
numerical method (solution of a system of nonlinear equations) is advised in order to
determine it.

We will first tackle the explicit analytic expression for (1.2) if n = 4. Once it has been
established, to calculate its numerical value to arbitrary precision becomes immediate.
Incidentally, we notice that the numerical value for 16 My as given in ([3], (7.9)) is not
correct from the third decimal place on. We then deduce, in three alternative fashions,
an extremal hard-core Zolotarev polynomial P; = Z, ;« with optimal value ¢* of the
parameter ¢t. This Schur polynomial P; may well serve as illustrative example of the
result in ([3], Theorem 2). Finally, we will consider a recent generalization of Schur’s
problem (1.2), due to A. Shadrin [16], to higher derivatives of P,, and again we will
exemplify the quartic case n = 4. In a closing remark we reveal the critical points of
Zys+ to get a fuller picture of the quartic hard-core Zolotarev polynomial.

2. Analytical and numerical value of the maximum in the quartic case

To determine the value in (1.2) for n = 4 we rely on preliminary work in ([3],
Section 7) and will therefore retain, for the reader’s convenience, the notation used
there. A sought-for extremal hard-core Zolotarev polynomial P; which solves (1.2)
can be assumed to be from class By 1 2 and be represented as, see ([3], (7.3)),

Pi(z)=1—-X1—2)(By —z)(y1 — x)?, (2.1)
where A, By, y; are parameters which reflect properties of PJ, such as:
Pi(~1)=—1, Pi(yr) =1, ;'Y (y1) =0, P;(1) = P{(By) = 1.
The first and second derivative of P} at x = 1 read:
P (1) = MBa—1)(1—y2)* and P (1) = 2051 = D(2(1 = Ba) — (51 — 1), (2.2)

so that the condition PZ(Q)(l) = 0 yields y; = 3 — 2B, which, when inserted into

Pz(l)(l), eliminates there the parameter y;. From P;(—1) = —1 one deduces, upon
inserting the said value of y;, that

\— 1
~ (By+1)(4—2B,)?’
see (2.1). This implies
. By—1)3
PrO(1) = (Bs—1)

(Bs —2)*(Bs + 1)
The identity

9 11— /33 +21/5(5 + v/33)
By—1 8 ’
which is given in an equivalent form in ([3], (7.8)), allows to evaluate By (see (3.2)

below). Inserting this value of By into the preceding expression for Py ) (1) eventually
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yields the analytical expression for the maximum, which can be evaluated numerically
to any desired precision:

*(1 1
P4( )(1) = SUPEGI SuPP4EB4,5,2 P4( )(5)‘ = 16]\44
—561 4+ 16133 + \/30(15215 + 3329+/33) (2.3)
- 288

= 4.7876468942...,

being a root of Py(x) = —65536 — 394242 — 191522 + 1683x3 + 21624
By contrast, Formula (7.9) in [3] states that

P (1) = 4.7831... (2.4)

holds, a value which is now seen to be biased in the third and fourth decimal place.
But that bias does not harm the argument in [3] for n = 4 since the first two valid
decimal places are sufficiently conclusive for P; to be the extremal element (as a com-

parison is drawn with competitor polynomial T, and value ’Tf) (%)‘ = 4.3546...,

see (3], (7.2)))-
The constant M, itself can thus be represented as

1
Pr(1) ‘Pi )(f)‘
M, = —g ~ = SUP¢e1SUPp,eB, ., —
—561 + 1614/33 + \/30(15215 + 3329v/33) (2.5)
B 4608

= 0.2992279308... .

We note that according to ([3], (1.3), (1.4)) there holds lim M, = 0.3124....
n— oo
Schur ([14], p. 277) had obtained the weaker result 0.217... <lim sup M,, < 0.465... .

n— oo

3. Explicit power form representation of an extremal hard-core
Zolotarev polynomial in the quartic case

Having expressed the parameters A = A\(By) and y; = y1(B4) as functions of By
alone and knowing the value of the constant By, it is possible to even retrieve the
explicit power form of an extremal P;. In fact, according to the preceding Section we
have

Pi(z) = 1-A1-2)(Bs—a)(y — =)
(1—2)(By — 2)(3 — 2By — 2)2 (3.1)

= 1= (Bs + 1)(4 — 2B,)?




The first Zolotarev case in the Erdos-Szego solution 155

Inserting now

177-—17NA§§+-\/30(5274-97\/55)
By = 144 (3.2)

1.8034303689...

and expanding (3.1) leads us, after some algebraic manipulations, to the explicit power
form representation of an extremal quartic hard-core Zolotarev polynomial Pj with

4

Pf(x) = Zafzi

=0

and with coefficients

21207 - 2081/35 — |/30(3160847 + 628577 /33) 0.5328330303

9216
291——1139xﬂ§§——\/30(—1236313—%427337x/§§)
= —2.6688925571...

4608

7849—#161\ﬂ§§4—\/30(152154—3329\/§§)
= 2.8407351706...
384
4317-+1139\/334-\/30(—12363134—427337\/33)
= 3.6688925571...

4608
—921 — 17833 47\/330(7595554F64243\Ai§)

9316 = —2.3079021403... .

(3.3)

These optimal coeflicients a are roots of the following respective quartic polynomials
P, ; with integer coefficients:

,0lT

IR

o(z)
()
Pya(x)
Py 3(x)

a(z)

Py4(x

= —7951932 — 7463259x + 116974242% — 408902423 + 442368x*

= 12221 + 273251z — 712022 — 349223 + 13824z

= —236196 — 112023z + 1772022 + 1358423 + 15362* (3.4)
= 288684 — 303831z + 6534822 — 518042 + 13824z

= 314928 + 2644083z — 861584x2 + 17683223 + 442368x%.

This result constitutes, to the best of our knowledge, the first explicit example of an
extremal P} which solves Schur’s problem according to Erdds-Szegé ([3], Theorem
2) (here for the first Zolotarev case n = 4). It is therefore worth summarizing the
properties of that Schur polynomial P; € By:
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(i) The equiripple property on I, i.e., 4 alternation points, including the endpoints +1:

Pi(-1) = -1,
Pi(y1) = 1land P:(l)(yﬂ = 0, where
yio= (39+17V33 \/30(527 +97+/33)) = —0.6068607378...,
Pf(y2) = —1land Pz(l)(yQ) = 0, where (35)
y2 = =5(105— /33 - \/M) — 0.3226516930...,
Pr(1) = 1.

(ii) The Zolotarev property at three points A4 < By < Cy to the right of I (of which
B, and Cjy are two additional alternation points)

P4y = 0, where
279 + 25v/33 + \/ 30(2879 + 561/33)
Ay = 76 = 1.4764907146...,
Pf(Bs) = 1, where By is given in (3.2), (3.6)
Pf(Cy) = -1, where
201 + 55v/33 — \/330(61 +19+/33)
Cy = i = 1.9444055070... .

Additionally, by construction, P; satisfies

Pz(2)(1) = 2(a3 + 3a% + 6a;) = 0,i.e., Py € By (3.7)
Pz(l)(l) = a} +2a}+ 3a3 +4a} = 16My, see (2.3), .
and we add, by inspection, that
a3 =1—aj and a} = —aj — aj. (3.8)

That particular hard-core Zolotarev polynomial P; may well serve as elucidating
example to provide for explanation purposes in lectures or expository writings on
Schur’s problem, respectively on its solution by Erdos-Szego, see e.g. [4].

4. Alternative deductions of an explicit extremal hard-core Zolotarev
polynomial in the quartic case

In ([12], p. 357) we have provided explicit expressions for the parameterized
coefficients of an arbitrary fourth-degree hard-core Zolotarev polynomial on I. But
since the assumption was made there that it attains the value 1 at © = —1, we prefer
to consider here the negative form of that polynomial in order to be compliant with
[3]. We hence set

4
Zig(x) =Y —ai(t)a’, with 1 <t <1+ V2 (4.1)
=0

(2
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where the coefficients a;(t) read as follows:

ao(t) = (—a®—b*+a*(—2+3b) +a®(—1+6b— 3b%)+
+a(3b* — 2b%) + a?(3b 4 20> + b?)) &,

ai(t) = (a*(—16b+ 8b?) + a(—12b + 8b? — 4b) )k, (4.2)
az(t) = (a®(8 —16b) + 6b — 4b? + 20> + a(6 — 4b + 2b?))k, '
as(t) = (—4+ 8a®+ 8b+ 8ab — 4b%)k,
as(t) = (—4—06a+2b)k
with
B 1
" (1+a)2(—a+b)3
Y - 1-3t—t2—¢t* 13
(1+1¢)3 (43)
by = 1+t43t> -t
N (1+4¢)3

Here a and b with a < b are the alternation points of Z4 ; in the interior of I. We now
proceed to determine the optimal parameter ¢ = ¢t* and the corresponding explicit
4

coefficients —a;(t*) of an extremal polynomial Zy; with Zy ;- (x) = . —a;(t*)z’
i=0
which, according to the general result in ([3], Theorem 2), solves Schur’s problem
(1.2) for n = 4.
2)

The assumption Z4; € By 1 2, i€, Zi’t (1) = 0, implies
az(t) + 3as(t) + 6as(t) = 0. (4.4)
Employing the definition of a;(¢) in (4.2),(4.3) this amounts to the following equation,
after some algebraic manipulations:
(L+3B+t2+t)(—2+t(—T+t(1+3(—1+t)1)))
4(t +13)2

= 0. (4.5)

The numerator vanishes, for 1 < ¢t < 1+ /2, only if we choose

34+ v33+4/30(—1+ v/33)
t=t"= 3 = 1.7229220588..., (4.6)
which is a root of the polynomial Py(r) = —2 — 7z + 22 — 323 + 32%. Inserting the
optimal parameter (4.6) into the coefficients —a;(t) of Z4 , see (4.2), (4.3), shows that
—a;(t*) indeed coincides for i = 0,1,2,3,4 with a} as given in (3.3). We check only
the coefficient —a4(t) and leave it to the reader to check the remaining coefficients:
4+ 6a — 2b 1—1)(1+1t)°
—(L4(t) = 2 3 = ( 3 )( 2 )2 ’ (47)
(I1+a)?(—a+Db) 32t3(1 + t2)

and inserting now ¢ = t* according to (4.6) indeed yields —a4(t*) = a} as given in
(3.3). After all, we so obtain an alternative and independent deduction of the extremal
hard-core Zolotarev polynomial P; = Z4 ;- which we had already found in Section 3,
based on preliminary work in [3].
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A third argument can be brought forward to prove that P = Z,;~ is a sought-
for extremizer in (1.2) for n = 4, see ([11], Theorem 5.10): It suffices to verify that
the following five equations hold true

—1+2(-y1+y2) = (1+ By —Cy4) =0 (4.8)
1+2(-yi+y3) —(1+Bi—Cj) =0 (4.9)
—1+2(—f +u3) - (1+B{-C{)=0 (4.10)

16(A4 — 1)? 2 1 1
=1+2 — — 4.11
Bi-DCi-1 T\ -1 Bl G -1 (4.11)

3 1

Ay = g(B4 +C4) — Z(yl +42), (4.12)

where y; and ys are defined in (3.5), A4 and C4 are defined in (3.6), and By is defined
n (3.2). We leave it to the reader to check the validity of equations (4.8) - (4.12).
Summarizing, we have thus established

4 .
Proposition 4.1. Polynomial P; with Py(xz) = > afa® and explicit coefficients a}
i=0
(i=0,1,2,3,4) according to (3.3) is a sought-for extremal hard-core Zolotarev poly-
nomial of degree four which solves, according to Erdés-Szegd ([3], Theorem 2), Schur’s

problem (1.2) for n = 4. The corresponding mazimum

sup sup
€I P1€By ¢ 2

P()] = 160,

is explicitly given in (2.3), so that My equals the constant given in (2.5).

5. A generalized Schur problem and its solution for the quartic case

A. A. Markov’s inequality (1.1) for the first derivative of P, was generalized in
1892 by his half-brother V. A. Markov (][9], p. 93) to the k -th derivative and can be
restated as follows, see also ([10], p. 545) ([13], Theorem 2.24):

=TP(1), (1< k<n), (5.1)

sup sup n ‘ = 2] n 1 »
7=0

(el P,eB,

indicating that the maximum is attained if P, = T;, and & = 1. Shadrin [16] has
analogously generalized Schur’s problem (1.2) to the k -th derivative. This generalized
problem can be stated as follows:
Determine, for 1 <k <n — 2 and n > 4, an algebraic polynomial P, = P of degree
< n which attains the maximum

2

_1 n _ ¢2
P (¢ ‘ = [ 5 M e = T (1) M, (5.2)

sup sup 23 +1 ok n

€l PreBy, ¢ k41

where By, ¢ 141 = {P, € By, : P,S’““)(g) = 0} and M, 1, is a constant (depending on n
and k). Shadrin ([16], Proposition 4.4) found that, for k¥ > 2, this maximum is attained
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if¢ =1and P, = P} € By, 1,541 is a Zolotarev polynomial Z,, (not necessarily a hard-

core one), or if £ = wy 4, the rightmost zero of TT(L]HI), and P, = P* = T,, so that
altogether there holds:

sup  sup
€L ProEBy ¢ k41

PI(€)| = max{| 28 (1) 1T (wr.n) - (5.3)

We are now going to determine that maximum as well as an extremizer polynomial
for the quartic case n = 4 and for the second derivative, i.e., k = 2 = n — 2 (the
case k = 1 is settled in Proposition 4.1). It is well known that Zolotarev polynomials
Z,, of degree n > 4 on I satisty ||Z,||cc = 1 (maximum-norm) and exhibit at least
n equiripple points on I where the values +1 are attained alternately, see ([16], p
1190). Apart from sign and reflection, the Zolotarev polynomial Z, takes on the role
(see also ([1], pp. 280), ([10], p. 406)):

(1) Z4 = T‘g7 with T3(.’L‘) = -3+ 4.’1’33,
(11) Z4 = T4, with T4(I’) =1- 8I2 + 8584,

oes . 21: _ _|_ 1
(iil) Zy =Ty .8, With Ty B(x) =Ty (1—&—%)

where 1 < 8 <1+ 2tan? (§) =7 — 4v/2 = 1.3431457505...

(iv) Z4 = Zy, the hard-core Zolotarev polynomial, as given in (4.1).

We first calculate |Z£2)( 1)], subject to the constraint Z, (3)( 1) = 0, and observe that

polynomials (i), (i), (iii) cannot be extremal due to T(g)( 1) =24 #0, resp. T4(3)(1) =
1536(3

192 # 0, resp. T )(1) 1536(3 — 8) #0if 1 < 8 < 7—4v/2. For polynomial (iv) we

o (1+68)*
get, after some algebraic manipulations,

(1+1)5(=1+t(—8 + 2t + 3t3))

Z8) ) = 5.4
| 4t( )| ‘ 8t3(1 +t2)2 ( )
The numerator vanishes for 1 <t < 1+ /2 only if
1+4/2(-1+3)
= = = 1.2759444802... . (5.5)
V3
Inserting this parameter ¢** into |Z4 7 (1)] yields, again after some manipulations,
22 10
123 (1) = ‘—12 BV R 2V/3| = 14.2729495641... . (5.6)

In view of (5.3), we have next to compare (5.6) to \T4(2) (wa,4)]- Since the only, and
hence the rightmost, zero of Tf) is wo 4 = 0, we get

2 2
T (0) = | — 16| = 16 > [2{7).. (1)
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So eventually we arrive at the identity

sup sup  [P(6)] = max{|Z{”(1)],|T (0)]} = 16
€I P4€By ¢ 3
1 42 7]' (57)
= Mo =80M, .,
jl;[o 2 + 1 4,2 = 4,2

1
yielding My 2 = 5= 0.2. Summarizing, we have thus established

Proposition 5.1. Polynomial P; = Ty with Ty(x) = 1 — 822 + 8x* is a sought-for ex-
tremal polynomial of degree four which solves, according to Shadrin (|16], Proposition
4.4), the generalized Schur problem (5.2) for n = 4 and k = 2. The corresponding
mazximum sup — sup |P4(2)(§)| = 80My,2 is 16, so that My equals the constant &.
€l P4€By ¢ 3
Shadrin ([16], Theorem 7.1) has added to (5.3) the following estimate which can
be viewed as an extension, to the k-th derivative, of Schur’s estimate (1.3):

sup  sup [P < H ‘7 )\n r=TEDN\r 1<k<n-2), (58)
&€l PoeBy e ir1

1 n—1
h - : .
where A, i P R 13 1
Thus for k = 2 and n = 4 we get Ay o = =3 5:520.2:M472, see (5.7). However,
1 3 3
forkzlandn:4weget/\4,1:§~i—§—0375>M4—0299 , see (2.5) and

([16], Remark 5.5).

6. Concluding remarks

1. In deducing (2.3) we have been guided by a computer algebra system which
the authors of [3], who have paved the way, certainly did not have at their disposal.

2. Our explicit power form representation ([12], p. 357) for the fourth hard-
core Zolotarev polynomial Z, ; remained unnoticed, and several related formulas have
been published afterwards, e.g. ([2], p. 184), ([15], p. 242), ([18], p. 721). Shadrin [15]
attributes his formula (with a different range of the parameter t) to V. A. Markov
[9] and remarks: But already for n = 4 it seems that nobody really believed that an
explicit form can be found. As a matter of fact it was, by V. Markov in 1892. In a
private communication Professor Shadrin kindly called our attention to p. 73 in [9]
from which his formula can be recovered. However, one has first to exploit the relation
4z = t3+1 (see p. 71 in [9]), then fix the parameter o and finally rearrange the Taylor
form of the given fourth-degree polynomial, centered at xy = 2z, to the usual power
form centered at xy = 0. It is under these side conditions that priority for the power
form representation of Z, ; belongs indeed to V. A. Markov [9].

3. In Section 4 we have alternatively deduced the Schur polynomial P} from the
explicit power form Z4,(x) = ... as given, up to the sign, in ([12], p. 357). P} can
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likewise be deduced from the explicit power form Z4(x,t) = ... as given in ([15], p.

242), however instead of th)(l) =0 (see (4.4)) one has then to set Zf)(—l,t) =0.

4. For the quartic Schur polynomial Py = Z,+ we have determined its five
critical points y1,y2 € I and Ay, By, Cy with 1 < Ay < By < C4. As Zy 4+ is a special
case of the general quartic hard-core Zolotarev polynomial Z, ; it is desirable to know
the corresponding five (general) critical points of Zy; as well. These are, as can be
verified by insertion: y;(t) = a(t) = a and y2(t) = b(t) = b as given in (4.3), and
furthermore

1+ 4t + 2t + 4¢3 + t*

Al = O ha e (6.1)
142t +6t° — ¢*

By = Trmaroe (6:2)
—1+ 6t 4 2t3 4 t*

Calt) = (—1+t) (1 +1t)3 (6:3)

Choosing t = t* according to (4.6) takes us back to the five critical points of
Pl =Zy4-.

5. The optimal parameter ¢ = t* according to (4.6) which selects the quartic
Schur polynomial Z,;« among all Z,, with 1 < t < 1+ /2 can alternatively be
determined as follows: In (4.11) replace A4 by A4(t), By by Ba(t) and Cy by Cy(t)
according to (6.1) - (6.3). Then solve this generalized equation (4.11) for the unknown
number t. The solution will turn out as t = t*.

6. As some progress has been achieved in the computation of Z, ; for the next
higher polynomial degrees n > 5 (see [5], [6], [7], [11]), we hope that we will be able to
extend our results to some n > 5. Meanwhile, we have succeeded so for the case n = 5.
(The second Zolotarev case in the Erdos-Szego solution to a Markov-type extremal
problem of Schur, J. Numer. Anal. Approx. Theory 46(2017), to appear).
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