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Ball convergence of a stable fourth-order
family for solving nonlinear systems under
weak conditions
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Abstract. We present a local convergence analysis of fourth-order methods in
order to approximate a locally unique solution of a nonlinear equation in Banach
space setting. Earlier studies have shown convergence using Taylor expansions and
hypotheses reaching up to the fifth derivative although only the first derivative
appears in these methods. We only show convergence using hypotheses on the
first derivative. We also provide computable: error bounds, radii of convergence
as well as uniqueness of the solution with results based on Lipschitz constants not
given in earlier studies. The computational order of convergence is also used to
determine the order of convergence. Finally, numerical examples are also provided
to show that our results apply to solve equations in cases where earlier studies
cannot apply.
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1. Introduction

Let B1, B2 be Banach spaces and D be a convex subset of B1. Let also L(B1, B2)
denote the space of bounded linear operators from B1 into B2.

In the present paper, we deal with the problem of approximating a locally unique
solution x∗ of the equation

F (x) = 0, (1.1)

where F : D ⊆ B1 → B2 is a Fréchet-differentiable operator.
Numerous problems can be written in the form of (1.1) using Mathematical

Modelling [3, 5, 8, 9, 12, 13, 18, 19, 22, 26, 28, 29, 30]. Analytical methods for solving
such problems are almost non-existent and therefore, it is only possible to obtain
approximate solutions by relying on numerical methods based on iterative procedure
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[1-24]. In particular, we present the local convergence of the methods studied in [14]
and defined for each n = 0, 1, 2, 3, . . . by

yn = xn − F ′(xn)−1F (xn),

zn = yn −
1

β
F ′(xn)−1F (yn),

xn+1 = zn − F ′(xn)−1 (αF (yn) + βF (zn)) ,

(1.2)

where α = 2− 1
β − β, β ∈ R\{0} and α ∈ R.

Method (1.2) has fourth-order of convergence, except for β = 1/5. For this partic-
ular value, method attains fifth-order of convergence. The fourth order of convergence
was based on Taylor expansions and hypotheses reaching up to the fifth derivative of
function F although only the first derivative appears in these methods. Moreover, no
computable error bounds on the distances ‖xn − x∗‖ or uniqueness results or com-
puatble radius of convergence were given. These problems reduce the applicability of
these methods.

As a motivational example, define function F on D = [−12 ,
5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.

Choose x∗ = 1. We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, the results in [14] cannot be used to solve the equation F (x) = 0, since function
F ′′′ is unbounded on D.

In the present study, we only use hypotheses on the first derivative and find
error bounds, radii of convergence and uniqueness results based on Lipschitz con-
stants. Moreover, since we avoid derivatives of order higher than one, we compute the
computational order of convergence which does not require the knowledge of x∗ or
the existence of high order derivatives. This way we expand the applicability of these
methods.

The rest of the paper is organized as follows: The local convergence of both meth-
ods is given in Section 2, whereas numerical examples are provided in the concluding
Section 3.

2. Local convergence

We present the local convergence analysis of method (1.2) in this section.

The local convergence analysis is based on some scalar functions and parameters.
Let L0 > 0, L > 0, M ≥ 1, β ∈ R\{0} and α ∈ R be given parameters. Define function



Ball convergence of a stable fourth-order family 129

g1, g2, h2, g3 and h3 on the interval [0, 1
L0

) by

g1(t) =
Lt

2(1− L0t)
,

g2(t) =
(

1 +
M

|β|(1− L0t)

)
g1(t),

h2(t) =g2(t)− 1,

g3(t) =g2(t) +
M

1− L0t
(|α|g1(t) + |β|g2(t)) ,

h3(t) =g3(t)− 1

and parameter rA by

rA =
2

2L0 + L
.

We have that g1(rA) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, rA).
We also get that h2(0) = h3(t) = −1 < 0 and h2(t) → +∞, h3(t) → +∞ as

t → 1−

L0
. It follows from intermediate value theorem that functions h2 and h3 have

zeros in the interval (0, 1
L0

). Denote by r2 and r3 the smallest such zeros.
Define the convergence radius r by

r = min{rA, r2, r3}. (2.1)

Then, we have that

0 < r ≤ rA (2.2)

and
0 ≤ gi(t) < 1, i = 1, 2, 3. (2.3)

Let U(v, ρ) and Ū(v, ρ) stand, respectively for the open and closed balls in B1 with
center v ∈ B1 and of radius ρ > 0. Next, we present the local convergence analysis of
method (1.2) using the preceding notation.

Theorem 2.1. Let F : D ⊆ B1 → B2 be a Fréchet-differentiable operator. Suppose
that there exist x∗ ∈ D and L0 > 0 such that for each x ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(B2, B1), (2.4)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖. (2.5)

Moreover, suppose that there exist constants L > 0 and M ≥ 1 such that for each

x, y ∈ D0 := D ∩ U
(
x∗, 1

L0

)
‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, (2.6)

‖F ′(x∗)−1F ′(x)‖ ≤M (2.7)

and

Ū(x∗, r) ⊆ D, (2.8)

where the radius of convergence r is defined by (2.1). Then, the sequence {xn} gener-
ated for x0 ∈ U(x∗, r)-{x∗} by method (1.2) is well defined, remains in U(x∗, r) and
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converges to the solution x∗ of equation F (x) = 0. Moreover, the following estimates
hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.9)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (2.10)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.11)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

), the limit

point x∗ is the only solution of F (x) = 0 in D1 := U(x∗, T ) ∩D.

Proof. We shall show estimates (2.9)–(2.11) using mathematical induction. By hy-
pothesis x0 ∈ U(x∗, r)-{x∗}, (2.1), (2.4) and (2.5), we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.12)

It follows from (2.12) and the Banach lemma on invertible functions [7, 26, 28, 30]
that F ′(x0)−1 ∈ L(B2, B1) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
. (2.13)

Hence, y0, z0, x1 are well defined by method (1.2) for n = 0. We can have that

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0). (2.14)

Using (2.1), (2.2), (2.3) (for i = 1), (2.6), (2.13) and (2.14), we obtain in turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0)‖ ≤ ‖F ′(x0)−1F ′(x∗)‖

‖
∫ 1

0

F ′(x∗)−1
(
F ′(x∗ + θ(x0 − x∗))− F ′(x0)

)
(x0 − x∗)dθ‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.15)

which shows (2.9) for n = 0 and y0 ∈ U(x∗, r). We also have that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (2.16)

Notice that ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r).
Then, by (2.7) and (2.16), we get that

‖F ′(x∗)−1F (x0)‖ ≤M‖x0 − x∗‖. (2.17)

In view of (2.1), (2.2), (2.3) (for i = 2), (2.13), (2.15) and (2.17) (for x0 = y0), we get
that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+
M‖y0 − x∗‖

|β|(1− L0‖x0 − x∗‖)

≤
(

1 +
M

|β|(1− L0‖x0 − x∗‖)

)
g1(‖x0 − x∗‖))‖x0 − x∗‖

= g2(‖x0 − x∗‖))‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.18)
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which shows (2.10) for n = 0 and z0 ∈ U(x∗, r). By (2.1), (2.2), (2.3) (for i = 3),
(2.13), (2.15) and (2.17) (for x0 = y0), we get that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
M

1− L0(‖x0 − x∗‖)
(
|α|‖y0 − x∗‖+ |β|‖z0 − x∗‖

)
≤
[
g2(‖x0 − x∗‖) +

M

1− L0(‖x0 − x∗‖)
(
|α|g1(‖x0 − x∗‖)

+ |β|g2(‖x0 − x∗‖)
)]
‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(2.19)

which shows (2.11) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by
xn, yn, xn+1 in the preceding estimates, we complete the induction for estimates (2.9)–
(2.11). Then, in view of the estimate

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1),

we deduce that lim
n→∞

xn = x∗ and xn+1 ∈ U(x∗, r). Finally, to show the uniqueness

part, let y∗ ∈ D1 with F (y∗) = 0. Define

Q =

∫ 1

0

F ′(x∗ + θ(y∗ − x∗)dθ.

Using (2.5), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ L0

2
‖x∗ − y∗‖ ≤ L0

2
T < 1. (2.20)

Hence, Q−1 ∈ L(B2, B1). Then, by the identity 0 = F (y∗)− F (x∗) = Q(y∗ − x∗), we
conclude that x∗ = y∗. �

Remark 2.2. 1. The condition (2.7) can be dropped, since this condition follows
from (2.5), if we set

M(t) = 1 + L0t

or

M(t) = M = 2,

since t ∈ [0, 1
L0

).
2. The results obtained here can also be used for operators F satisfying autonomous

differential equations [5, 7] of the form:

F ′(x) = P (F (x)),

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing x∗. For example, let
F (x) = ex − 1. Then, we can choose P (x) = x+ 1.

3. The radius r̄A = 2
2L0+L1

was shown by us to be the convergence radius of

Newton’s method [5]

xn+1 = xn − F ′(xn)−1F (xn), for each n = 0, 1, 2, . . . (2.21)
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provided the conditions (2.4)–(2.6) hold on D. Let L1 be the corresponding to
L constant. It follows from the definition of r that the convergence radius r of
the method (1.2) cannot be larger than the convergence radius r̄A of the second
order Newton’s method (3.3). As already noted in [5], r̄A is at least as large as
the convergence ball given by Rheinboldt [28]

rR =
2

3L1
.

In particular, for L0 < L1, we have that

rR < r1

and
rR
r̄A
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball r̄A is atmost three times larger than Rheinboldt’s.
The same value of rR was given by Traub [30]. Notice that L ≤ L1, since D0 ⊆ D.
Therefore, r̄A ≤ rA.

4. It is worth noticing that method (1.2) is not changing when we use the conditions
of Theorem 2.1 instead of stronger conditions used in [14]. Moreover, we can
compute the computational order of convergence (COC) defined by

ξ∗ = sup
ln
(
‖xn+1−x∗‖
‖xn−x∗‖

)
ln
(
‖xn−x∗‖
‖xn−1−x∗‖

) ,
or the approximate computational order of convergence (ACOC) defined by

ξ = sup
ln
(
‖xn+1−xn‖
‖xn−xn−1‖

)
ln
(
‖xn−xn−1‖
‖xn−1−xn−2‖

) .
This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates using estimates higher than the first Fréchet
derivative of operator F. Notice also that the computation of ξ does not require
knowledge of x∗.

3. Numerical examples

We present numerical examples in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on
D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet derivative is given by

F ′(w) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1


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We have that L0 = e − 1, L = e
1

L0 = 1.789572397, M = e
1

L0 = 1.7896 and L1 = e.
The parameters using method (1.2) are:

rA = 0.382692, r2 = 0.145318, r3 = 0.0826175, r = 0.0826175, r̄A = 0.324947.

Example 3.2. Let B1 = B2 = C[0, 1], the space of continuous functions defined on
[0, 1] and be equipped with the max norm. Let D = Ū(0, 1) and B(x) = F ′′(x) for
each x ∈ D. Define function F on D by

F (φ)(x) = φ(x)− 5

∫ 1

0

xθφ(θ)3dθ. (3.1)

We have that

F ′(φ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθφ(θ)2ξ(θ)dθ, for each ξ ∈ D. (3.2)

Then, we get that x∗ = 0, L0 = 7.5, L1 = 15, L = 15,M = 2. The parameters using
method (1.2) are:

rA = 0.0666667, r2 = 0.0198959, r3 = 0.0101189, r = 0.0101189, r̄A = 0.0666667.

Example 3.3. Let B1 = B2 = R, D = Ū(0, 1). Define F on D by

F (x) = ex − 1.

Then, F ′(x) = ex and ξ = 0. We get that L0 = e−1 < L = e
1

L0 < L1 = e and M = 2.
Then, for method (1.2) the parameters are:

rA = 0.382692, r2 = 0.13708, r3 = 0.0742433,

r = 0.0742433, r̄A = 0.324947, ξ = 3.8732.

Example 3.4. Let B1 = B2 = R and define function F on D = R by

F (x) = βx− γ sin (x)− δ, (3.3)

where β, γ, δ are given real numbers. Suppose that there exists a solution ξ of
F (x) = 0 with F ′(ξ) 6= 0. Then, we have

L1 = L0 = L =
|γ|

|β − γ cos ξ|
, M =

|γ|+ |β|
|β − γ cos ξ|

.

Then one can find the convergence radii for different values of β, γ and δ. As a specific
example, let us consider Kepler’s equation (3.3) with β = 1, 0 ≤ γ < 1 and 0 ≤ δ ≤ π.
A numerical study was presented in [15] for different values of γ and δ. Let us take
γ = 0.9 and δ = 0.1. Then the solution is given by x∗ = 0.6308435.
Hence, for method (1.2) the parameters are:

rA = 0.202387, r2 = 0.032669, r3 = 0.00804637,

r = 0.00804637, r̄A = 0.202387, ξ = 4.0398.
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Example 3.5. Returning back to the motivational example at the introduction of this
paper, we have that L = L0 = 146.6629073, M = 2, L1 = L. The parameters using
method (1.2) are:

rA = 0.00689682, r2 = 0.0033639187, r3 = 0.00230533728667086,

r = 0.00230533728667086, r̄A = 0.00689682 and ξ = 3.4324.
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