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An existence theorem for a non-autonomous
second order nonlocal multivalued problem
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Abstract. In this paper we prove the existence of mild solutions for a nonlocal
problem governed by an abstract semilinear non-autonomous second order differ-
ential inclusion, where the non-linear part is an upper-Caratheodory semicontin-
uous multimap. Our existence theorem is obtained thanks to the introduction of
a fundamental Cauchy operator. Finally we apply our main result to provide the
controllability of a problem involving a non-autonomous wave equation.
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1. Introduction

Recently in [8] H.R. Henŕıquez, V. Poblete, J.C. Pozo have studied the existence
of mild solutions for a nonlocal problem governed by the following non-autonomous
wave equation

∂2w(t, ξ)

∂t2
=
∂2w(t, ξ)

∂ξ2
+ b(t)

∂w(t, ξ)

∂ξ
+ f̃(t, w(t, ξ)), t ∈ J = [0, a], (1.1)

Starting from this paper, we are interested to study the following control problem

∂2w(t,ξ)
∂t2 = ∂2w(t,ξ)

∂ξ2 + b(t)∂w(t,ξ)
∂ξ + f(t, w(t, ξ), u(t, ξ)), t ∈ J

w(t, 0) = w(t, 2π), t ∈ J,
∂w(t,0)
∂ξ = ∂w(t, 2π)

∂ξ , t ∈ J,
w(0, ξ) =

∑m
i=1

2πti
ξi
, ξ ∈ R,

∂w(0,ξ)
∂t =

∑m
i=1

2π
ξi
, ξ ∈ R,

u(t, ξ) ∈ U(t, w(t, ξ))

(1.2)

where 0 < t1 < ... < ti < ... < tm < a and 0 < ξ1 < ... < ξi < ... < ξm < 2π,
b : J → R, f : J ×R×R→ R and U : J ×R→ P(R).
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By using the classical arguments (see, for example [15]) the controllability of (5.1) is
brought back to the existence of mild solutions for a problem described by the non-
autonomous semilinear second order differential inclusion with nonlocal conditions

x′′(t) ∈ A(t)x(t) + F (t, x(t)), t ∈ J
x(0) = g(x)

x′(0) = h(x)

(1.3)

where J = [0, a] is an interval of the real line, {A(t)}t∈J is a family of bounded,
linear operators defined in a subspace D(A(t)) = D(A) dense in a real Banach space
X generating a ”fundamental system”, and g, h are two operators defined on the
trajectories and assuming values in X.
Recently the existence of nonlocal mild solutions in Banach space has been investi-
gated for semilinear non-autonomous second order differential equations in [9], in [7]
and in [8], while there exists an extensive literature for the autonomous case (see, for
example, [6], [11], [12] , [13] and [14]).
The note is organized in the following way. We start by introducing the fundamental
Cauchy operator and by characterizing some of its properties, which play a key role
to prove the existence of mild nonlocal solutions for problem (1.3) in the case that the
nonlinear part of the semilinear second order differential inclusion is given by an upper-
Caratheodory semicontinuous multimap. In order to obtain our main existence result
we use the powerful tools introduced in [9], [7] and a fixed point theorem for condensing
multimaps. Our existence theorem extends in a broad sense all the existence results
above mentioned. In the last section we apply our existence proposition for (1.3) in
order to establish the controllability of (1.2).

2. Preliminaries

Let X,Y be topological spaces and P(Y ) be the family of all nonempty subsets
of Y . We recall that a map F : X → P(Y ) is said to be upper semicontinuous
(lower semicontinuous) if F+(V ) = {x ∈ X : F (x) ⊂ V } (F−(V ) = {x ∈ X :
F (x) ∩ V 6= ∅}) is an open subset of X, for every open V ⊂ Y ; the multimap F is
said to have closed graph if the set graphF = {(x, y) ∈ X × Y : y ∈ F (x)} is closed
in X × Y (see [5]).
In this paper X is a real Banach space endowed with a norm ‖.‖, and we will use the
following notations:

Pb(X) = {H ∈ P(X) : H bounded} (2.1)

Pc(X) = {H ∈ P(X) : H convex}; (2.2)

Pf (X) = {H ∈ P(X) : H closed}; (2.3)

Pk(X) = {H ∈ P(X) : H compact}; (2.4)

Pfc(X) = Pf (X) ∩ Pc(X)... (2.5)

Further, let J = [0, a] be an interval of the real line endowed with the usual Lebesgue
measure λ.
A function f : J → X is said to be strongly measurable if there is a sequence of
simple functions (sn)n which converges to f almost everywhere.
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Moreover, we denote by C(J ;X) the space consisting of all continuous functions from
J into X provided with the norm ‖.‖∞ of uniform convergence, by L1(J,X) the space
of all X-valued Bochner integrable functions on J with norm ‖u‖1 =

∫ a
0
‖u(t)‖dt and

L1
+(J) = {f ∈ L1(J,R) : f(t) ≥ 0, for a.e. t ∈ J}.

A countable set {fn}n ⊂ L1(J,X) is said to be semicompact if: (i) {fn}n is
integrably bounded, i.e. there exists ω ∈ L1

+(J) such that ‖fn(t)‖ ≤ ω(t), for a.e.
t ∈ J and for every n ∈ N; (ii) the set {fn(t)}n is relatively compact in X, for a.e.
t ∈ J .
Now let us consider the following nonlocal problem governed by a non-autonomous
abstract semilinear second order differential inclusion

x′′(t) ∈ A(t)x(t) + F (t, x(t)), t ∈ J
x(0) = g(x)

x′(0) = h(x).

(2.6)

In this problem F is an X-valued multimap defined on J×X, g, h : C(J ;X)→ X are
functions; {A(t)}t∈J is a family, generating a ”fundamental system” {S(t, s)}t,s∈J
of bounded linear operators A(t) : D(A) → X (where D(A) is a dense subspace of
X) such that, for each x ∈ D(A), the function t 7→ A(t)x is continuous in J .
First we recall the concept of the ”fundamental system”, introduced by Kozak in [9]
and recently used by H.R. Henŕıquez, V. Poblete, J.C. Pozo in [8].

Definition 2.1. A family {S(t, s)}t,s∈J of bounded linear operators
S(t, s) : X → X is called fundamental system generated by the family {A(t)}t∈J if
(S1) for each x ∈ X, the function S(., .)x : J × J → X is of class C1 and
(a) for each t ∈ J , S(t, t)x = 0, ∀x ∈ X ;
(b) for each t, s ∈ J and for each x ∈ X, ∂

∂tS(t, s) |t=s x = x and
∂
∂sS(t, s) |t=s x = −x;

(S2) for all t, s ∈ J , if x ∈ D(A), then S(t, s)x ∈ D(A), the map S(., .)x : J × J → X
is of class C2 and

(a) ∂2

∂t2S(t, s)x = A(t)S(t, s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

(b) ∂2

∂s2S(t, s)x = S(t, s)A(s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

(c) ∂2

∂s∂tS(t, s) |t=s x = 0, ∀s ∈ J , ∀x ∈ D(A);

(S3) for all s, t ∈ J , if x ∈ D(A), then ∂
∂sS(t, s)x ∈ D(A). Moreover, there exist

∂3

∂t2∂sS(t, s)x and ∂3

∂s2∂tS(t, s)x and

(a) ∂3

∂t2∂sS(t, s)x = A(t) ∂∂sS(t, s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

(b) ∂3

∂s2∂tS(t, s)x = ∂
∂tS(t, s)A(s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

and for all x ∈ D(A) the function (t, s) 7→ A(t) ∂∂sS(t, s)x is continuous in J × J .

Moreover, as in [8], a map S : J×J → L(X), where L(X) denote the space of all
bounded linear operators in X with the norm ‖.‖L(X), is said to be a ”fundamental
operator” if {S(t, s)}t,s∈J is a fundamental system. Moreover, as in [8], we introduce,
for each (t, s) ∈ J × J the operator

C(t, s) = − ∂

∂s
S(t, s) : X → X. (2.7)
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By using the Banach-Steinhaus Theorem it is possible to prove that the fundamental
system {S(t, s)}t,s∈J satisfies the following properties:

there exists two constants K,K∗,K1 > 0 such that

(p1) ‖C(t, s)‖L(X) ≤ K, ∀(t, s) ∈ J × J ;

(p2) ‖S(t, s)‖L(X) ≤ K | t− s |, ∀t, s ∈ J
(p3) ‖S(t, s)‖L(X) ≤ Ka, ∀t, s ∈ J
(p4) ‖S(t2, s)− S(t1, s)‖L(X) ≤ K∗ | t2 − t1 |,∀t1, t2, s ∈ J
(p5) ∃K1 > 0 : ‖ ∂∂sS(t2, s)− ∂

∂sS(t1, s)‖L(X) ≤ K1 | t2 − t1 |,∀t1, t2, s ∈ J.
Now we recall the definition of a mild solutions for the nonlocal problem (2.6)

Definition 2.2. A continuous function u : J → X is a mild solution for (2.6) if

u(t) = − ∂

∂s
S(t, s) |s=0 g(u) + S(t, 0)h(u) +

∫ t

0

S(t, ξ)f(ξ)dξ, ∀t ∈ J

where f ∈ S1
F (.,u(.)) = {f ∈ L1(J ;X) : f(t) ∈ F (t, u(t)) a.e. t ∈ J}.

In the sequel let us denote by 0n the zero-element of Rn and by 4 the partial
ordering given by the standard positive cone Rn0,+ := (R+

0 )n, i.e. x 4 y if and only if
y − x ∈ Rn0,+; clearly, x ≺ y means that x 4 y and x 6= y.

Definition 2.3. A function β : Pb(X) → Rn0,+ is said to be a ”measure of
noncompactness” (MNC, for short) in the Banach space X if, for every Ω ∈ Pb(X),
the following properties are satisfied:

(β1) β(Ω) = 0n if and only if Ω̄ is compact;

(β2) β(c̄o(Ω)) = β(Ω).

Further, a MNC β : Pb(X)→ Rn0,+ is said to be:

monotone if Ω1,Ω2 ∈ Pb(X) : Ω1 ⊂ Ω2 implies β(Ω1) 4 β(Ω2);

nonsingular if β({x} ∪ Ω) = β(Ω), for every x ∈ X, Ω ∈ Pb(X);

invariant under closure if β(Ω̄) = β(Ω), Ω ∈ Pb(X);

invariant with respect to the union with compact set if β(Ω ∪ C) = β(Ω), for every
relatively compact set C ⊂ X and Ω ∈ Pb(X).

In this setting we provide the following definitions (see [2]).

Definition 2.4. If D is a nonempty subset of X, a map φ : D → P(X) is said to be
”condensing” with respect to a MNC β : Pb(X)→ Rn0,+ (shortly, ” β-condensing ”) if

(I) φ(D) is bounded

and

(II) β(Ω) 4 β(φ(Ω)) implies β(Ω) = 0n, Ω ∈ Pb(D)
or equivalently

(II)’ 0n ≺ β(Ω) implies β(Ω) � β(φ(Ω)), Ω ∈ Pb(D) (i.e. β(φ(Ω)) ≺ β(Ω) is true or
β(φ(Ω)) and β(Ω) are not comparable).

We can now recall the following Sadowskii type fixed point theorem for multimaps
condensing with respect to a vectorial measure of noncompactness (see [2], Theorem
2.2).
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Theorem 2.5. Let β : Pb(X) → Rn0,+ be a nonsingular MNC, D be a closed convex
subset of a Banach space X and φ : D → Pfc(D) be a map such that
(φ1) φ has weakly closed graph in D×X, i.e. for every sequence (xn)n in D, xn → x,
x ∈ D, and for every sequence (yn)n, yn ∈ φ(xn), yn → y, then S(x, y) ∩ φ(x) 6= 0,
where S(x, y) = {x+ λ(y − x) : λ ∈ [0, 1]};
(φ2) φ is β-condensing.
Then there exists x ∈ D with x ∈ φ(x).

Next, we consider the set R2
0,+ = R+

0 ×R
+
0 endowed with the partial ordering 4 before

introduced. Fixed a constant L ≥ 0 we can introduce the function νL : Pb(C(J ;X))→
R2

0,+ defined by

νL(Ω) = max
{wn}n⊂Ω

(τ({wn}n), λ({wn}n)), ∀Ω ∈ Pb(C(J ;X)), (2.8)

being

τ({wn}n) = sup
t∈J

e−Ltη({wn(t)}n); (2.9)

and

λ({wn}n) = modC({wn}n) (2.10)

where η is the Hausdorff MNC in the Banach space X and modC is the modulus of
continuity in C(J ;X) (see [3]).

3. The fundamental Cauchy operator

To study the problem (2.6) we introduce the following operator, which will play
a key role in our next existence result.

Definition 3.1. Let {S(t, s)}t,s∈J be the fundamental system generated by the family
{A(t)}t∈J of bounded linear operators in the Banach space X, presented in (2.6). We
will call the operator GS : L1(J ;X)→ C(J ;X) defined by

GSf(t) =

∫ t

0

S(t, s)f(s)ds, t ∈ J = [0, a], f ∈ L1(J ;X) (3.1)

the fundamental Cauchy operator.

First we present the following result, which is analogous to the one proved in
[10] or in [4], respectively for the Cauchy operator and for the generalized Cauchy
operator.

Theorem 3.2. The fundamental Cauchy operator GS satisfies the following properties:

(GS1) ‖GSf(t)−GSg(t)‖ ≤ Ka
∫ t

0
‖f(s)− g(s)‖ds, t ∈ J , f, g ∈ L1(J ;X);

where Ka is the constant presented in (p3);

(GS2) for any compact H ⊂ X and sequence (fn)n, fn ∈ L1(J ;X), such that
{fn(t)}n ⊂ H for a.e. t ∈ J , the weak convergence fn ⇀ f0 implies the convergence
GSfn → GSf0.
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Proof. Let t ∈ J and f, g ∈ L1(J ;X) be fixed. Thanks to the definition of the funda-
mental Cauchy operator and to the property (p3) we have:

‖GSf(t)−GSg(t)‖ = ‖
∫ t

0

S(t, s)(f(s)− g(s))ds‖ ≤ Ka
∫ t

0

‖f(s)− g(s)‖ds (3.2)

Therefore we can deduce that GS satisfies (GS1).

Let us prove the property (GS2).

Fix a compact set H ⊂ X and t ∈ J , let us consider the set Qt ⊆ X defined as
folllows:

Qt =
⋃

s∈[0,t]

S(t, s)H. (3.3)

Now we show that Qt is compact. Let us fix the map qH : J × J ×H → X defined by
qH(t, s, x) = S(t, s)x, (t, s, x) ∈ J × J ×H. Then, for each ε > 0, there exist finitely
many x1, . . . , xp ∈ X such that:

H ⊂ ∪pi=1(xi +
ε

4Ka
B1(0)),

where B1(0) is the open unit ball in X.

Now, by the strongly continuity of S, there exists ηH(ε) > 0 such that for every
(t1, s1), (t2, s2) ∈ ∆ with max{|t1 − t2|, |s1 − s2|} < ηH(ε) we have

‖S(t1, s1)xi − S(t2, s2)xi‖ <
ε

4
, for every i = 1, . . . , p. (3.4)

Put η̃H(ε) = min{ηH(ε), ε
4Ka}, for arbitrary (t1, s1, z1), (t2, s2, z2) ∈ J × J ×H such

that max{|t1− t2|, |s1− s2|, ‖z1− z2‖} < η̃H(ε), since there exists j ∈ {1, . . . , p} such
that ‖z1 − xj‖ < ε

4Ka , by (p3) and (3.4) we get

‖qH(t1, s1, z1)− qH(t2, s2, z2)‖ = ‖S(t1, s1)z1 − S(t2, s2)z2‖
≤ ‖S(t1, s1)z1 − S(t1, s1)xj‖+ ‖S(t1, s1)xj − S(t2, s2)xj‖
+ ‖S(t2, s2)xj − S(t2, s2)z1‖+ ‖S(t2, s2)z1 − S(t2, s2)z2‖
≤ ‖S(t1, s1)(z1 − xj)‖+ ‖[S(t1, s1)− S(t2, s2)]xj‖
+ ‖S(t2, s2)(xj − z1)‖+ ‖S(t2, s2)(z1 − z2)‖

≤ Ka‖z1 − xj‖+
ε

4
+Ka‖xj − z1‖+Ka‖z1 − z2‖ < ε.

Therefore the map qH is uniformly continuous. Hence, being true that

Qt = qH({t} × [0, t]×H) ,

we can say that Qt is compact.

Now, we show that, for every sequence (fn)n, fn ∈ L1(J ;X), such that
{fn(t)}n ⊂ H a.e. t ∈ J we have that the set {GSfn(t)}n is relatively compact
in X, for every t ∈ J . To this end, fixed t ∈ J , it is enough to prove that

{GSfn(t)}n ⊂ tc̄o(Qt). (3.5)
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Let us associate to (fn)+∞
n=1 a sequence (f̃n)+∞

n=1 such that f̃n(t) ∈ H for every t ∈ J
and f̃n = fn a.e. in J . By applying [5, Corollary 3.10.19], we obtain

GSfn(t) =

∫ t

0

S(t, s)f̃n(s) ds ∈ t co {S(t, s)f̃n(s) : s ∈ [0, t]} ⊂ t coQt, ∀n ∈ N .

Next, let us show now that {GSfn}+∞n=1 ⊂ C(J ;X) is (uniformly) equicontinuous in
J . To see this, fixed ε > 0, we can choose δ(ε) = ε

aK2(K+K∗) , where the constants K

and K∗ are respectively that from properties (p1) and (p4) in Section 2, while K2 is
a constant such that

‖fn(t)‖ ≤ K2, a.e. t ∈ J, ∀n ∈ N.
Then, for every t1, t2 ∈ J , |t2 − t1| ≤ δ(ε), and w.l.o.g. t2 > t1, we have (see (p3) and
(p4) in Section 2):

‖GSfn(t2)−GSfn(t1)‖ ≤
∫ t1

0

‖[S(t2, s)− S(t1, s)]fn(s)‖ds

+

∫ t2

t1

‖S(t2, s)‖L(X)‖fn(s)‖ds

≤
∫ t1

0

‖S(t2, s)− S(t1, s)‖L(X)‖fn(s)‖ds+K2Ka(t2 − t1)

≤
∫ a

0

K∗(t2 − t1)K2ds+K2Ka(t2 − t1) ≤ δ(ε)aK2(K +K∗) = ε.

Hence we have the equicontinuity in J of the set {GSfn}n.
Furthermore, the condition (GS1) implies that the linear operator GS is bounded,
hence GS is weakly continuous, i.e. if fn ⇀ f0 then GSfn ⇀ GSf0. Now, by applying
a generalized version of the Ascoli-Arzelà criterion obtained by Ambrosetti in [1], we
get the relative compactness of the set {GSfn}n.
The relative compactness of {GSfn}+∞n=1 provides that the last convergence is in the
norm of the space C(J ;X). So also (GS2) is stated.

Remark 3.3. Condition (GS1) obviously implies the Lipschitz condition
(GS1)′ ‖GSf −GSg‖∞ ≤ Ka‖f − g‖1, for all f, g ∈ L1(J ;X).

4. Existence results

Thanks to the properties of the fundamental Cauchy operator we are able to
prove our main existence result.

Theorem 4.1. Let J = [0, a], X a Banach space and {A(t)}t∈J a family which satisfies
the property:

(A) {A(t)}t∈J is a family of bounded linear operators, defined in a subspace D(A)
dense in X and taking values in X, generating a fundamental system {S(t, s)}(t,s)∈J×J
such that, for each x ∈ D(A), the function t 7→ A(t)x is continuous in J .

Let F : J ×X → Pkc(X) a multimap which satisfies the following hypothesis:
(F1) for every x ∈ X, F (., x) admits a B-measurable selector;
(F2) for a.e. t ∈ J , F (t, .) is upper semicontinuous;
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(F3) there exists a function α ∈ L1
+(J) such that

‖F (t, x)‖ = sup
z∈F (t,x)

‖z‖ ≤ α(t)(1 + ‖x‖)

for a.e. t ∈ J and for all x ∈ X.
(F4) there exists a function m ∈ L1

+(J) such that

η(F (t, B)) ≤ m(t)η(B)

for a.e. t ∈ J and for every B ∈ Pb(X) (where η is the Hausdorff MNC in X).
Let g, h : C(J ;X)→ X be two functions which satisfy the following properties:

(gh1) g, h are compact, i.e. they are continuous and map bounded sets into relatively
compact sets;
(gh2) there exists Q > 0: ‖g(u)‖ ≤ Q , ‖h(u)‖ ≤ Q for every u ∈ C(J ;X).

Then there exists at least one mild solution for the nonlocal problem (2.6).

Proof. We consider the integral multioperator Γ : C(J ;X)→ Pc(C(J ;X)) defined as

Γ(u) = {y ∈ C(J ;X) : y(t) = C(t, 0)g(u) + S(t, 0)h(u)

+

∫ t

0

S(t, ξ)f(ξ)dξ, t ∈ J, f ∈ S1
F (.,u(.))} (4.1)

for all u ∈ C(J ;X).
Note that, for all u ∈ C(J ;X), since SF (.,u(.)) 6= ∅ (see [10], Lemma 5.1.1) we have
Γ(u) 6= ∅ . Moreover Γ takes convex values thanks the convexity of the values of F .
From now on we proceed by steps.
Step 1: There exists a set which is invariant under the action of the operator Γ.
Step 1a: We put

qn = max
t∈J
{
∫ t

0

Kae−n(t−s)α(s)ds} (4.2)

for all n ∈ N, where K, α are respectively from (p1) and (F3) and a is the size of J .
Let us show that

inf
n∈N

qn = 0. (4.3)

From definition of maximum, for all n ∈ N, there exists tn ∈ J such that

qn −
1

n
<

∫ tn

0

Kae−n(tn−s)α(s)ds =

∫ a

0

ψn(s)ds (4.4)

being ψn : J → R the function defined as follows

ψn(s) = Kae−n(tn−s)χ[0,tn](s)α(s), for all s ∈ J,
where χ[0,tn] is the characteristic function of the interval [0, tn]. Eventually passing to
a subsequence, the sequence (ψn)n is such that

lim
n→∞

ψn(s) = 0, for all s ∈ J

| ψn(s) |≤ Kaα(s) =: α∗(s), ∀s ∈ J, ∀n ∈ N,
where α∗ ∈ L1

+(J). So the Dominated Convergence Theorem implies that

lim
n→∞

∫ a

0

ψn(s)ds = 0.
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Since qn ≥ 0, by (4.4) we obtain limn→∞ qn = 0. Hence (4.3) is proved.
Therefore, there exists N ∈ N such that

qN < 1. (4.5)

Now, let us consider the norm ‖.‖N : C(J ;X)→ R+
0 defined by:

‖u‖N = max
t∈J

e−Nt‖u(t)‖, ∀u ∈ C(J ;X), (4.6)

which is equivalent to the usual norm ‖.‖∞ in C(J ;X) (cfr. [10], (5.2.7)).
Let us fix

R ≥ K(Q+ aQ+ a‖α‖1)

1− qN
(4.7)

whereK is the constant in (p1), a is the size of the interval J ,Q and qN are respectively
from (gh2) and (4.5).
Step 1b: Now, we consider (see (4.7))

HR = {u ∈ C(J ;X) : ‖u‖N ≤ R}, (4.8)

the closed ball in (C(J ;X), ‖.‖N ).
We show that

Γ(HR) ⊂ HR. (4.9)

Fixed u ∈ HR and y ∈ Γ(u), for every t ∈ J , we have

e−Nt‖y(t)‖ ≤ e−Nt‖C(t, 0)g(u)‖+ e−Nt‖S(t, 0)h(u)‖+

+e−Nt
∫ t

0

‖S(t, ξ)f(ξ)‖dξ

Then by using (p1), (p2), (F3), (gh2) and (4.6) we have

e−Nt‖y(t)‖ ≤ ‖C(t, 0)‖L(X)‖g(u)‖+ ‖S(t, 0)‖L(X)‖h(u)‖+

+e−Nt
∫ t

0

‖S(t, ξ)‖L(X)‖f(ξ)‖dξ ≤

≤ K(Q+ aQ+ a‖α‖1) + e−NtKa

∫ t

0

α(ξ)‖u(ξ)‖dξ =

= K(Q+ aQ+ a‖α‖1) + e−NtKa

∫ t

0

eNξα(ξ)e−Nξ‖u(ξ)‖dξ ≤

≤ K(Q+ aQ+ a‖α‖1) + ‖u‖NKa
∫ t

0

e−N(t−ξ)α(ξ)dξ.

So, recalling that u ∈ HR, by (4.8), (4.7) and ((4.2) for n=N) we obtain

e−Nt‖y(t)‖ ≤ K(Q+ aQ+ a‖α‖1) +R

∫ t

0

Ka e−N(t−ξ)α(ξ)dξ ≤

≤ K(Q+ aQ+ a‖α‖1) +RqN ≤ R.
Now, by (4.6), we have

‖y‖N ≤ R,
hence y ∈ HR. Therefore (4.9) is true.
Step 2: In order to prove the existence of a mild solution for (2.6) it is enough to have



110 Tiziana Cardinali and Serena Gentili

the existence of a fixed point for the restriction Γ|HR
(shortly ΓR), i.e. (see (4.9)) for

the map

ΓR : HR → Pc(HR). (4.10)

To this aim, we will show that ΓR satisfies all the hypotheses of Theorem 2.5, where
the Banach space considered is (C(J ;X), ‖.‖∞) (shortly C(J ;X)). Obviously HR,
which is a closed ball in the space (C(J ;X), ‖.‖N ), is a closed and convex subset of
C(J ;X).
Step 2a: The integral multioperator ΓR has closed graph.
Let (un)n be a sequence in HR such that un → ū and let (zn)n be a sequence such
that zn ∈ Γ(un), ∀n ∈ N, and zn → z̄ in C(J ;X).
Moreover, let (fn)n be a sequence such that, for every n ∈ N, fn ∈ S1

F (.,un(.)), and

zn(t) = C(t, 0)g(un) + S(t, 0)h(un) +

∫ t

0

S(t, ξ)fn(ξ)dξ, for all t ∈ J (4.11)

Now, let us note that the set {fn}n is integrably bounded. This follows from the
boundness of the set {un}n in C(J,X) and from (F3).
Furthermore, let us show that the set {fn(t)}n is relatively compact in X for a.e.
t ∈ J . Indeed, by using (F4) and the monotonicity of the Hausdorff MNC, for a.e.
t ∈ J , being {un(t)}n ∈ Pb(X), we can write the extimate

η({fn(t)}n) ≤ η(F (t, {un(t)}n)) ≤ m(t)η({un(t)}n). (4.12)

Next, since the set {un(t)}n is relatively compact in X, from (4.12), we have
η({fn(t)}n) = 0, i.e. the set {fn(t)}n is relatively compact.
Now, we can use [[10], Proposition 4.2.1] to conclude that the set {fn}n is weakly
compact in L1(J ;X), so w.l.o.g. we can assume fn ⇀ f̄ in L1(J ;X).
Then, in virtue of Theorem 3.2 and Remark 3.3 we can say that the fundamental
Cauchy operator satisfies (GS1)′ and (GS2). Therefore, since the set {fn}n is semi-
compact we can apply [[10], Theorem 5.1.1] and deduce

GSfn → GS f̄ in C(J ;X). (4.13)

Moreover, fixed t ∈ J , since C(t, 0), S(t, 0) ∈ L(X) and g, h are continuous in C(J ;X)
(see hypothesis (gh1)), we have:

C(t, 0)g(un)→ C(t, 0)g(ū), per n→∞ (4.14)

S(t, 0)h(un)→ S(t, 0)h(ū), per n→∞ (4.15)

Hence, by passing to the limit in (4.11), from (4.13), (4.14)), (4.15) we have

lim
n→∞

zn(t) = lim
n→∞

[C(t, 0)g(un) + S(t, 0)h(un) +GSfn(t)] =

= C(t, 0)g(ū) + S(t, 0)h(ū) +GS f̄(t)

Now, the uniqueness of the limit algorithm guarantees that (see (3.1)):

z̄(t) = C(t, 0)g(ū) + S(t, 0)h(ū) +

∫ t

0

S(t, ξ)f̄(ξ)dξ, for every t ∈ J.
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By [[10], Lemma 5.1.1], we have that f̄ ∈ S1
F (.,ū(.)), hence we can conclude that

z̄ ∈ ΓR(ū). Therefore, ΓR has closed graph.
Step 2b: For every l ∈ N we can consider the real number

pl := max
t∈J

∫ t

0

2Kae−l(t−s)m(s)ds (4.16)

where K, a, m are respectively from (p1), (2.6) and (F4). By means of similar argu-
ments as the ones used to prove (4.5), we can choose l = L large enough so that

pL < 1. (4.17)

In correspondence to such an L we consider the vectorial MNC νL on C(J ;X) defined
in (2.8).
Next, we prove that the integral multioperator ΓR is νL-condensing.
First, by (4.9) the equivalence of the norms ‖.‖∞ and ‖.‖N implies the boundness of
the set ΓR(HR) in (C(J ;X), ‖.‖∞) Therefore, condition (I) of νL-consensivity holds.
Now we show that condition (II) is satisfied too. So let Ω ⊂ HR be a bounded set
such that

νL(Ω) 4 νL(ΓR(Ω)), (4.18)

we will prove that νL(Ω) = 02.
Recalling that νL(ΓR(Ω)) is a maximum (see (2.8)), we consider the countable set
{yn}n ⊂ ΓR(Ω) which achieves that maximum. Let now {un}n ⊂ Ω be a set such that
yn ∈ ΓR(un), n ∈ N. Moreover, for every n ∈ N, by (4.1), (4.10), (3.1) there exists
fn ∈ S1

F (.,un(.)) such that

yn(t) = C(t, 0)g(un) + S(t, 0)h(un) +GSfn(t), t ∈ J. (4.19)

Of course, since (4.18) holds, we have (see (2.8))

(τ({un}n), λ({un}n)) 4 νL(Ω) 4 νL(ΓR(Ω)) = (τ({yn}n), λ({yn}n)). (4.20)

First of all, from the above relation we have the inequality

τ({un}n) ≤ τ({yn}n). (4.21)

Let us estimate (cf. (2.9))

τ({yn}n) = sup
t∈J

e−Ltη({yn(t)}n). (4.22)

Fixed t ∈ J , by using (4.19), (p1) and (p2) of the fundamental system and the
properties of η, we have

η({yn(t)}n) ≤ η({C(t, 0)g(un)}n) + η({S(t, 0)h(un)}n) + η({GSfn(t)}n) ≤

≤ Kη(g({un}n)) +Kaη(h({un}n)) + η({GSfn(t)}n). (4.23)

Being {un}n a bounded set, from hypothesis (gh1) we can deduce that η(g({un})n) =
0 and η(h({un})n) = 0. Therefore, by (4.23) we have

η({yn(t)}n) ≤ η({GSfn(t)}n). (4.24)
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In order to apply Theorem 4.2.2 of [10], we first note that the boundness of {un}n in
C(J ;X) and (F3) imply that the set {fn}n is integrably bounded. Moreover by (F4),
for a.e. s ∈ J , we have

η({fn(s)}n) ≤ η(F (s, {un(s)}n)) ≤ m(s)η({un(s)}n) ≤

≤ eLsm(s) sup
ξ∈J

e−Lξη({un(ξ)}n) = eLsm(s)τ({un}n) =: v(s) (4.25)

where obviously v ∈ L1
+(J).

On the other hand, by using Theorem 3.2 we know that the fundamental Cauchy
operator GS satisfies (GS1) and (GS2). Now we are in the position to apply Theorem
4.2.2 of [10], so we get (cf. (4.25)):

η({GSfn(t)}n) ≤ 2Ka

∫ t

0

v(s)ds = 2Kaτ({un}n)

∫ t

0

eLsm(s)ds, ∀t ∈ J, (4.26)

hence, by (4.24) and (4.26) we have

η({yn(t)}n) ≤ 2Kaτ({un}n)

∫ t

0

eLsm(s)ds, ∀t ∈ J.

From this last inequality, remembering (2.9) and (4.16) with l = L, we obtain

τ({yn}n) ≤ sup
t∈J

[2Kaτ({un}n)

∫ t

0

e−L(t−s)m(s)ds] ≤ pLτ({un}n) (4.27)

Therefore (4.21) and (4.27) imply

τ({un}n) ≤ τ({yn}n) ≤ pLτ({un}n), (4.28)

and so, since pL < 1 (4.17), we achieve

τ({un}n) = 0. (4.29)

By (4.28) we also deduce

τ({yn}n) = 0. (4.30)

Now we show that (cf. (2.10))

λ({yn}n) = modC({yn}n) = 0 (4.31)

To this aim, we prove that modC({yn}n) = 0. Indeed, from (4.28) and (2.9), we have
that

η({un(t)}n) = 0, ∀t ∈ J.
Moreover, the set {fn}n is semicompact since it is integrably bounded and
η({fn(t)}n) = 0, for a.e. t ∈ J (see (4.25) and (4.29)). Therefore, recalling again
that GS satisfies properties (GS1) and (GS2), we can apply Theorem 5.1.1 of [10]
so that the set {GSfn}n is relatively compact in C(J ;X). Clearly, if a subset of
C(J ;X) is relatively compact, then its elements constitute an equicontinuous fam-
ily on J . Hence, fixed ε > 0, there exists δ1(ε) = δ1( ε3 ) > 0 such that for every
t1, t2 ∈ J, | t1 − t2 |< δ1(ε) we have

‖GSfn(t2)−GSfn(t1)‖ < ε

3
, ∀n ∈ N. (4.32)
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In addition, put δ2(ε) =: ε
3Qmax{K∗,K1} we have (see (p4), (p5), (2.7) and (gh2))

‖C(t2, 0)g(un)− C(t1, 0)g(un)‖ ≤ Q max{K∗,K1}|t2 − t1| <
ε

3
, (4.33)

‖S(t2, 0)h(un)− S(t1, 0)h(un)‖ ≤ Q max{K∗,K1}|t2 − t1| <
ε

3
, (4.34)

for all t1, t2 ∈ J , | t2 − t1 |< δ2(ε), ∀n ∈ N.
Now, fixed δ(ε) = min{δ1(ε), δ2(ε)} > 0, by (4.32), (4.33) and (4.34) we can deduce
that, for every t1, t2 ∈ J such that | t1 − t2 |< δ(ε) we can say

‖yn(t2)− yn(t1)‖ ≤ ‖C(t2, 0)g(un)− C(t1, 0)g(un)‖+

+‖S(t2, 0)h(un)− S(t1, 0)h(un)‖+ ‖GSfn(t2)−GSfn(t1)‖ < ε,

for all n ∈ N, i.e., the set {yn}n is equicontinuous on J . So we conclude (see (2.10)):

λ({yn}n) = modC({yn}n) = 0 (4.35)

From (4.20), by using (4.30) and (4.35) we deduce νL(Ω) = 02.
Hence, condition (II) of νL-condensity is verified too, therefore ΓR is νL-condensing.
Step 3: Finally we are in the position to apply Theorem 2.5. Hence the multioperator
ΓR has a fixed point in HR, i.e. there exists x ∈ HR such that

x(t) = C(t, 0)g(x) + S(t, 0)h(x) +

∫ t

0

S(t, s)f(s)ds, t ∈ J

where f ∈ S1
F (.,x(.)). Of course, x is a mild solution for (2.6).

5. An application

Now we apply the result established in the preceding section to study the con-
trollability of the following non-autonomous wave equation with initial conditions

∂2w(t,ξ)
∂t2 = ∂2w(t,ξ)

∂ξ2 + b(t)∂w(t,ξ)
∂ξ + f(t, w(t, ξ), u(t, ξ)), t ∈ J

w(t, 0) = w(t, 2π), t ∈ J,
∂w(t,0)
∂ξ = ∂w(t, 2π)

∂ξ , t ∈ J,
w(0, ξ) =

∑m
i=1

2πti
ξi
, ξ ∈ R,

∂w(0,ξ)
∂t =

∑m
i=1

2π
ξi
, ξ ∈ R,

u(t, ξ) ∈ U(t, w(t, ξ)), t ∈ J, ξ ∈ R

(5.1)

where 0 < t1 < ... < ti < ... < tm < a and 0 < ξ1 < ... < ξi < ... < ξm < 2π,
f : J × C× C→ R, b : J → R and U : J × R→ P(R).

First, we fix the Banach space X = L2(T,C), where T is the quotient group
T = R/2πZ of all 2π−periodic 2−integrable functions. As in [8], we will use the
identification between the functions defined on T and the 2π−periodic functions from
R to C. Next, put the Sobolev space

H2(T,C) = {Xx : T→ C : Xx([ξ]) = x(ξ), x : R→ C is 2π − periodic :

∃ x′[0,2π], x
′′
[0,2π] ∈ L

2([0, 2π],C)},
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provided by the norm

‖Xx‖H2(T,C) = ‖x‖L2([0,2π],C) + ‖x′‖L2([0,2π],C) + ‖x′′‖L2([0,2π],C), (5.2)

we consider the operator A0 : D(A0) = H2(T,C)→ L2(T,C) so defined

A0Xx =
d2

dξ
x, Xx ∈ H2(T,C)

which is the infinitesimal generator of a strongly continuous cosine family {C0(t)}t∈R,
where C0(t) : L2(T,C) → L2(T,C), for every t ∈ R (see [8]). Moreover, we fix the
function P : J → L(H1(T,C), L2(T,C)) defined in this way

P (t)Xx = b(t)
dXx

dξ
, t ∈ J, Xx ∈ H1(T,C).

where we assume that the function b : J → R of (5.1) is C1 on J . Now we are in the
position to define the family {A(t) : t ∈ J}, where, for every t ∈ J , A(t) : H2(T,C)→
L2(T,C), is an operator so defined

A(t) = A0 + P (t), t ∈ J. (5.3)

In [7] Henriquez has proved that this family generates a fundamental system
{S(t, s)}t,s∈J , which is compact (see [8], Lemma 4.1).

On the function f we assume that f̃ : J×H2(T,C)×L2(T,C)→ H2(T,C) so defined

f̃(t, x, u)([ξ]) = f(t, x(ξ), u(ξ)), t ∈ J, x ∈ H2(T,C), u ∈ L2(T,C) , [ξ] ∈ T,
(5.4)

satisfies the following properties:
(f1) for every x ∈ H2(T,C), u ∈ L2(T,C), f̃(., x, u) is B-measurable;

(f2) for a.e. t ∈ J , f̃(t, ., .) is continuous;
(f3) there exists k ∈ L1

+(J):

‖f̃(t, x1, u)− f̃(t, x2, u)‖H2([0,2π],C) ≤ k(t)‖x1 − x2‖H2([0,2π],C),

for a.e. t ∈ J, x1, x2 ∈ H2(T,C), u ∈ L2(T,C) ;

Moreover we require that the multimap Ũ : J ×H2(T,C)→ P(L2(T,C)) so defined

Ũ(t, x)([ξ]) = U(t, x(ξ)), t ∈ J, x ∈ H2(T,C), [ξ] ∈ T, (5.5)

satisfies the conditions
(U0) for every t ∈ J , x ∈ H2(T,C), Ũ(t, x) is compact;

(U1) for every x ∈ H2(T,C), Ũ(., x) is measurable;

(U2) for a.e. t ∈ J , Ũ(t, .) is upper semicontinuous;

(U3) Ũ is superpositionally measurable, i.e. for every measurable multimap V :

H2(T,C)→ Pk(L2(T,C)) the multimap Ũ(., V (.)) is measurable;

(U4) f̃(t, x, Ũ(t, x)) is convex, t ∈ J, x ∈ H2(T,C);
(U5) there exists α ∈ L1

+(J) such that

‖f̃(t, x, Ũ(t, x))‖L2([0,2π],C) ≤ α(t)(1 + ‖x‖H2([0,2π],C)),

for a.e. t ∈ J , for all x ∈ H2(T,C);



A non-autonomous second order nonlocal multivalued problem 115

(U6) for every t ∈ J , x ∈ H2(T,C) and for any bounded Ω ⊂ H2(T,C), the set

f̃(t, x, Ũ(t,Ω)) is compact in H2(T,C);
Now we introduce the map F : J ×H2(T,C)→ P(H2(T,C)) so defined

F (t, x) = f̃(t, x, Ũ(t, x)), t ∈ J, x ∈ H2(T,C), (5.6)

and the maps g : C(J ;H2(T,C)) → H2(T,C) and h : C(J ;H2(T,C)) → H2(T,C)
respectively defined in the following way

g(x)([ξ]) =

m∑
i=0

2πti
ξi

, [ξ] ∈ T, x ∈ C(J ;H2(T,C)); (5.7)

h(x)([ξ]) =

m∑
i=0

2π

ξi
, [ξ] ∈ T, x ∈ C(J ;H2(T,C)). (5.8)

The previous arguments lead to revise a function w : J × R→ C such that

w(t, .) 2π − periodic, t ∈ J
w(t, .) |[0,2π]∈ L2([0, 2π],C), t ∈ J

as x : J → L2(T,C) so defined

x(t)([ξ]) = w(t, ξ), t ∈ J, [ξ] ∈ T. (5.9)

Hence we can rewrite problem (5.1) in the form
x′′(t) ∈ [x(t)]′′ + b(t)[x(t)]′ + F (t, x(t)), t ∈ J
x(t)([0]) = x(t)([2π]), [x(t)]′([0]) = [x(t)]′([2π]), t ∈ J
x(0) = g(x)

x′(0) = h(x)

(5.10)

First, we note that the conditions (U4) and (U6) imply respectively that the
multimap F (see (5.6)) takes convex and compact values. Moreover, by (U1) we can
say that, for every x ∈ H2(T,C), the multimap Qx : J → P(H2(T,C) × L2(T,C))

defined as Qx(t) = {x} × Ũ(t, x), t ∈ J is measurable. Hence from conditions (f1),

(f2) we have that F (., x) = f̃(., Qx(.)) is measurable. Now by using the classical
Kuratowski Ryll-Nardzewski measurable selection theorem we can conclude that the
hypothesis (F1) is fulfilled. On the other hand, from (U2) we have that, for a.e. t ∈ J ,

the multimap Vt : H2(T,C) → P(H2(T,C) × L2(T,C)), Vt(x) = {x} × Ũ(t, x), x ∈
H2(T,C), is upper semicontinuous and so, taking into account of (f2), Theorem 1.2.8
of [10] implies that (F2) holds. Moreover, by using (U5) we deduce that F has the
property (F3).
Next we prove that the multimap F satisfies the condition (F4). Fixed t ∈ J such
that the property expressed in (f3) holds, we consider the multimap Bt : H2(T,C)×
H2(T,C) → P(H2(T,C)) defined as Bt(x, y) = f̃(t, y, Ũ(t, x)), x, y ∈ H2(T,C).

Then, we fix x, y1, y2 ∈ H2(T,C) and let b1 = f̃(t, y1, u) and b2 = f̃(t, y2, u) ∈
Bt(x, y2), where u ∈ Ũ(t, x). From (f3) there exists k ∈ L1

+(J):

‖b2 − b1‖H2([0,2π],C) = ‖f̃(t, y2, u)− f̃(t, y1, u)‖H2([0,2π],C)

≤ k(t)‖y2 − y1‖H2([0,2π],C),
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by which we can deduce that the multimap Bt(x, .) is k(t)-Lipsichitz with respect to
the Haudorff metric. Moreover we also can note that (U6) allows to say that, for every

bounded subset Ω of H2(T,C), the set Bt(Ω × {y}) = f̃(t, y, Ũ(t, Ω)) is compact
in H2(T,C). Therefore all hypotheses of Proposition 2.2.2 of [10] are satisfied, hence
we have

η(F (t, Ω)) = η(f̃(t, Ω× Ũ(t,Ω)) = η(Bt(Ω× Ω)) ≤ k(t)η(Ω)

where η is the Hausdorff MNC in H2(T,C).
Then we can conclude that (F4) holds.
Finally, obviously the maps g and h have the properties (gh1) and (gh2) required
in our existence theorem. Then from Theorem 4.1 we can deduce that there exists a
continuous function x̂ : J → H2(T,C) that is a mild solution for (5.10), i.e.

x̂(t) = − ∂

∂s
S(t, s) |s=0 g(u) + S(t, 0)h(u) +

∫ t

0

S(t, ξ)q(ξ)dξ, t ∈ J, (5.11)

where q ∈ S1
F (.,x̂(.)) = {p ∈ L1(J ;X) : p(t) ∈ F (t, x̂(t)) a.e. t ∈ J}.

Now, since Ũ is superpositionally B-measurable (see (U3)), the multimap Q : J →
P(H2(T,C) × L2(T,C)) so defined Q(t) = {(x̂(t), Ũ(t, x̂(t))}, t ∈ J, having com-
pact values (see (U0)), is strongly measurable. Moreover, we recall that the mul-
timap F takes compact values in H2(T,C) and that it has the properties (F1)
and (F2). Hence, we are in the position to apply the Filippov implicit function
lemma in the version furnished in ([15], Corollary 1.15). Then we can say that
there exists a Bochner-measurable selection û : J → L2(T,C) of the multimap

F (., Q(.)) = f̃(., x̂(.), U(t, x̂(.))). At this point, by considering the following func-
tions w : J × R→ C and u : J × R→ C so defined

w(t, ξ) = x̂(t)([ξ]), t ∈ J, ξ ∈ R
u(t, ξ) = û(t)([ξ]), t ∈ J, ξ ∈ R,

we can conclude that {w, u} is an admissible mild-pair for the problem (5.1).
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