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1. Corrected assertion for the case of non-singleton solution

The standard form of a linear programming problem (LP ) is minx∈S c
Tx, where

S = {x ∈ Rn |A · x = b, x ≥Rn 0Rn}, with data c ∈ Rn, A ∈ Mm,n(R), and b ∈ Rm
given ([2]). Denote by S the set of its solutions. This paper corrects an assertion of
the author from [1]. The motivation of the mentioned paper started from the clear
difference between the two expressions finding a solution to the problem and solving
the problem, especially when the feasible set S is not bounded. The author was not
aware by the paper [5], having the same topic.

In order to correct the assertion from Proposition 3.2 in [1] into Proposition 1.3,
Proposition 1.4, and Proposition 1.5, we provide the following two examples.

Example 1.1. Let a > 0, b1, b2 > 0 and the linear programming problem

−x1 − x2 − ax3 −→ min

x1 + x2 ≤ b1
x2 + x3 ≤ b1 + b2

x3 ≤ b2
x1, x2, x3 ≥ 0.

Received 6 February 2020; Accepted 31 March 2020.



668 Marcel Bogdan

The four iterations are given in Figure 2 and by the classic primal simplex algorithm
one may find as solutions x1 = (0, b1, b2) or x2 = (b1, 0, b2). By the extended algorithm

S =


{x1}, if a > 1

{x2}, if a < 1

co{x1, x2}, if a = 1.

Figure 1. Optimal 0−max dual basis; bounded S

Note that in the third tableau, for a = 1 we have maxi∈B αi0 = 0 = α10 and
minj∈B α0j = 0 = α05. More, it exists j = 2 ∈ B such that α12 = 1 > 0.

Example 1.2. Let a ∈ R and the linear programming problem
x2 −→ min

−x1 + x3 = 0

ax1 + x2 + x4 = 1

x1, x2, x3, x4 ≥ 0.

From tables in Figure 3 we have

S =


{(0, 0, 0, 1)}, if a < 0

{(α/a, 0, α/a, 1− α) |α ∈ [0, 1]}, if a > 0

{(α, 0, α, 1) |α ≥ 0}, if a = 0.
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Figure 2. Optimal 0−max dual basis; unbounded S

Note that in the first tableau, we have α10 = 0 and α03 = 0. For a < 0, one has
α1j < 0, j ∈ B = {3, 4}. For a > 0, it exists j = 4 ∈ B such that α14 = 1 > 0.

An important step in the implementation of an algorithm should be a criteria
that establishes the boundedness of the feasible set, weather or not it is a polytope
(bounded, thus compact) or not. In its absence, the property of the solutions set
regarding the boundedness is to be stated and the set itself to be obtained while
the algorithm works. Related to the set of solutions for (LP ), we give the following
results.

Proposition 1.3. Suppose that x0 = xB is an optimal solution for (LP ) and let B be
the optimal basis. If max

i∈B
αi0 < 0, then there is no other solution generated by B.

Proof. Suppose xB
′

is another solution generated by B, thus cTxB
′

= cTx0. Let h ∈ B
and suppose that the vector Ak is replaced by Ah in B. Let θ = α0k

αhk
≥ 0 be the rate

transfer. Therefore, we have

cTx0 = cTxB
′

= cTx0 + θ · (−αh0).

If θ > 0 we get the contradiction since αh0 < 0. If θ = 0 = α0k, then the pivoting
element αhk must be strictly negative. For j ∈ B′ = (B \ {k}) ∪ {h}, the coordinates

of xB
′

are α′0j = α0j and α0h = α0k

αhk
= 0, that is xB

′
= x0, a contradiction. �

Proposition 1.4. Let x0 = xB be a solution for (LP ) obtained in Step 1 of the algorithm
and B be the optimal basis. Suppose that

max
i∈B

αi0 = 0 = min
j∈B

α0j .

Denote by B0 = {i ∈ B |αi0 = 0} and B0 = {i ∈ B |α0j = 0}. The following
implications apply:

1. if αīj ≤ 0, ∀ī ∈ B0, ∀j ∈ B, then S is unbounded.

2. if αīj0 > 0, ∀ī ∈ B0, ∀j0 ∈ B0, then there is no other solution generated by B.

3. if exist ī ∈ B0, k ∈ B \ B0 such that αīk > 0, then the solution is not unique.

Proof. 1. Let ī ∈ B0. Since αīj ≤ 0, ∀j ∈ B, there is no pivoting element, con-
sequently another solution cannot be obtained by a classic pivoting operation.
There exists c̄ > 0Rn such that

{x0 + α · c |α ≥ 0} ⊆ S.
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The unboundedness direction c̄ = (c̄1, ..., c̄n) is given by

c̄j =


−αīj , j ∈ B \ Bī0
1, j = ī

0, otherwise,

where Bī0 = {k ∈ B |αīk = 0}.
2. Let ī ∈ B0 and j0 ∈ B0. Since α0j0 = 0, by replacing vector Aj0 with Aī in B,

the value of the objective function does not change

cTx0 − αī0 ·
α0j0

αīj0
= cTx0.

Let xB
′

be the new optimal solution. Its coordinates xB
′

j are xB
′

j = xBj , for

j ∈ B \ {j0}, α′0ī = α0j0 = 0, and 0 in rest, (i.e. j 6∈ B′ = (B \ {j0}) ∪ {̄i}),
therefore xB

′
= xB .

3. Let ī ∈ B0. Consider αīk as pivoting element. By replacing vector Ak with Aī,
the value of the objective function does not change

cTx0 − αī0 ·
α0k

αīk
= cTx0.

The coordinates of the new solution xB
′

are xB
′

j = xBj −αīj · α0k

αīk
, for j ∈ B\{k},

α′
0ī

= α0k

αīk
6= 0, and 0 in rest, including α′0k = 0, thus xB

′ 6= xB .

�

Corresponding to item 3 above, by Example 1.1, we have ī = 1 ∈ B0, k = 2 ∈ B \ B0

with α12 > 0. Similarly, by Example 1.2, case a > 0, we have B0 = {1} and it exists
k = 2 ∈ B \ B0 such that α14 > 0.

Proposition 1.5. ([1]) Suppose that x0 = xB is a solution for (LP ) obtained in Step 1
of the algorithm and that B is the optimal basis. If max

i∈B
αi0 = 0 and min

j∈B
α0j > 0,

then

{x0} ( argminx∈Sc
Tx;

if more

α) for some ī ∈ B0, it exists k ∈ B such that αīk > 0, then

co{x0, x1, ..., xu} ⊆ S,

with u ≤ cardB0+, where

B0+ = {i ∈ B0 | ∃k ∈ B such that αik > 0};

β) for some ī ∈ B0, αīk ≤ 0, ∀k ∈ B, then the set of solutions is (convex) unbounded.

Proof. α) The proof is the same to 3. from Proposition 1.4 since B0 = ∅.
β) see [1], Proposition 3.2, 3., a3β). �
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Most of the works contain background, terminology, usual notations, and basic
results. Let us remind some of them. A vector x ∈ Rn is seen as a column vector
and its transpose, denoted by xT = (x1, ..., xn) ∈ Rn, as a row vector. In particular,
denote by 0TRn = (0, ..., 0) ∈ Rn and by eTj = (0, ..., 0, 1, 0, ..., 0) with 1 for the jth

position. The scalar product of c ∈ Rn and x is given by

cTx =

n∑
i=1

ci · xi.

The relation x ≥Rn 0Rn means xi ≥ 0, for all i ∈ {1, ..., n}; one has x >Rn 0Rn

iff xi ≥ 0, ∀i and ∃i0 with xi0 > 0. Also, x ≤Rn y iff y − x ≥ 0Rn , and x >Rn y
iff x − y >Rn 0Rn . The j−th column of a matrix A ∈ Mm,n(R) is denoted by Aj ;
a matrix B consisting of m independent columns of A, m < n, is called basic. The
remaining columns of A that are not in B are said to be outside the basis or nonbasic.
For A = (Aj)1≤j≤n,

B = {j ∈ {1, 2, ..., n} | ∃k,Aj = Bk},

B = {1, 2, ..., n} \ B = {i ∈ {1, 2, ..., n} |@k,Ai = Bk},
so {Aj}1≤j≤n = {{Aj}j∈B, {Ai}i∈B}. The linear combination for Ai, i ∈ B, is given
by

Ai =
∑
j∈B

αijA
j .

The coordinates of b are α0j , i.e.

b =
∑
j∈B

α0jA
j .

A basic matrix B is said to be primal feasible if α0j ≥ 0, ∀j ∈ B and dual feasible if

αi0 ≤ 0, ∀i ∈ B, respectively. If B is primal feasible and dual feasible then B is called
optimal or optimal basis. Simplex algorithm 2.0, is based on the extended properties
of the optimal basis. About an optimal basis B, we say that it is 0−max dual feasible
if max

i∈B
αi0 = 0 and 0−min primal feasible if min

j∈B
α0j = 0, respectively.

As regards the three situations of the algorithm, when there is a unique solution, a
bounded set of solutions (but not a singleton) or the unbounded set of solutions, we
reformulate the following result in concordance to Proposition 1.3, Proposition 1.4,
and Proposition 1.5.

Theorem 1.6. Suppose that x0 = xB is a solution for (LP ) obtained in Step 1 of the
algorithm and that B is the optimal basis. The following implications apply:

1. If B is NOT 0−max dual feasible then the solution generated by B is unique.
2. If B is 0−max dual feasible, 0−min primal feasible, and αīj ≤ 0, ∀ī ∈ B0,
∀j ∈ B, then the set of solutions is unbounded.

3. If B is 0−max dual feasible, 0−min primal feasible, and αīj > 0, ∀ī ∈ B0,
∀j ∈ B0, then the solution generated by B is unique.

4. If B is 0−max dual feasible, 0−min primal feasible, and exist ī ∈ B0, k ∈ B \B0

such that αīk > 0, then the solution generated by B is not unique.
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5. If B is 0−max dual feasible and it is NOT 0−min primal feasible, then the
solution generated is not unique.

In general, the computer algebra systems such as Octave [3], WolframAlpha [4],
use the interior point algorithm implemented (the function glpk in Octave has the
the parameter param that allows to use two-phase primal/dual simplex). None of
these return more than one solution at one input. When the instruction/command
has the parameter for the initial starting point (ex. Matlab), by changing it may be
successful for returning another solution if it exists.
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