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Abstract. We study the distortion features of homeomorphisms of Sobolev class
W 1,1

loc admitting integrability for p-outer dilatation. We show that such map-

pings belong to W 1,n−1
loc , are differentiable almost everywhere and possess abso-

lute continuity in measure. In addition, such mappings are both ring and lower
Q-homeomorphisms with appropriate measurable functions Q. This allows us to
derive various distortion results like Lipschitz, Hölder, logarithmic Hölder conti-
nuity, etc. We also establish a weak bounded variation property for such class of
homeomorphisms.
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1. Introduction

Geometric Function Theory which lies at the core of two distinguished fields of
Mathematics, namely, Geometry and Analysis, has various fundamental applications.
One of appeals relates to the distortion theory of mappings.

The main claim of the present paper is developing the theory of mappings and
solving some important problems in this field of geometric function theory of several
real variables.

Various relations between absolute continuity, bounded variation, Sobolev
spaces, etc. in higher dimensions attract an attention of many mathematicians during
last decades. It is the well-known fact that homeomorphisms of Sobolev classes W 1,p

are differentiable almost everywhere (a.e.) under p > n−1. The border case p = n−1,
in general case, fails to guarantee this crucial property, but assuming an appropriate
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additional restriction on mappings many far advanced regularity properties can be
reached. We refer here to recent papers [2], [6], [7], [19], [24] and monograph [11].

The idea to study various properties of mappings involving only a geomet-
ric description is a key approach in Geometric Function Theory and goes back
to the classical works of Grötzsch, Köbe and Ahlfors-Beurling. This method re-
lies on the invariance/quasi-invariance of the conformal modulus under confor-
mal/quasiconformal mappings. The classes of ring and lower Q-homeomorphisms pro-
vide a modern tool for studying various properties of mappings including regularity,
removability, boundary correspondence and others; see, e.g. [1], [2], [4], [5], [9], [10],
[13], [22], [23] and monograph [18].

We study the distortion features of homeomorphisms of Sobolev class W 1,1
loc in Rn

admitting appropriate integrability for p-outer dilatation. It is shown that such map-
pings belong to W 1,n−1

loc , are differentiable a.e., possess absolute continuities in mea-
sure with respect to the n-dimensional Lebesque measure m and (n− 1)-dimensional
Hausdorff measure Hn−1 in Rn, and have a bounded variation. In addition, such
mappings are both ring and lower Q-homeomorphisms with the corresponding mea-
surable functions Q. This allows us to derive various distortion results like Lipschitz,
Hölder, logarithmic Hölder continuity, etc. The range of real parameter p is the in-
terval [n, n + 1/(n − 2)) for n ≥ 2. It means that for the planer case we deal with
[2,∞).

2. Sobolev classes and absolute continuity

2.1. Obviously the notion of absolute continuity is strongly connected with Sobolev
classes in Rn. We recall the definition of Sobolev spaces W 1,p, p ≥ 1, following [11].

Let Ω ⊂ Rn be open and u ∈ L1
loc(Ω). A function v ∈ L1

loc(Ω) is called a weak
derivative of u if ∫

Ω

ϕ(x)v(x) dm(x) = −
∫
Ω

u(x)∇ϕ(x) dm(x)

for every ϕ ∈ C∞C (Ω). The function v is referred to Du. For 1 ≤ p ≤ ∞, the Sobolev
space is defined by

W 1,p(Ω) = {u ∈ Lp(Ω) : Du ∈ Lp(Ω)}
with the norm

‖u‖W 1,p(Ω) =

∫
Ω

|u|p +

∫
Ω

|Du|p
1/p

.

Here CC denotes the collection of continuous functions with compact support. A
mapping f : Ω → Rn belongs to W 1,p(Ω) if its each component fj , j = 1, . . . , n is a
W 1,p-function.

A mapping f ∈ L1(Ω) is of bounded variation, f ∈ BV(Ω), if the coordinate
functions of f belong to the space BV(Ω). This means that the distributional deriva-
tives of each coordinate function fj are measures with finite total variations in Ω; see,
e.g. [6].
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2.2. It is well known that if f ∈ W 1,1
loc (D) of a domain D ⊂ Rn, n ≥ 2, then f

has partial derivatives a.e. For n = 2, in addition, f is differentiable a.e. Thus, for
any f ∈ W 1,1

loc (D) we denote by f ′(x) its Jacobi matrix. The quantities ‖f ′(x)‖ =
sup|h|=1 |f ′(x)h| and l(f ′(x)) = inf |h|=1 |f ′(x)h| can be regarded as a maximal
stretching and a minimal stretching of f at x, respectively. At a point of nonde-
generate differentiability, i.e. Jf (x) = det f ′(x) 6= 0, the outer and inner dilatations
are defined by

KO(x, f) =
‖f ′(x)‖n

Jf (x)
, KI(x, f) =

Jf (x)

ln(f ′(x))
,

respectively, extended to points where Jf (x) = 0 by KO(x, f) = KI(x, f) = 1.

Pick real p, p ≥ 1, we consider p-counterparts of the above quantities determined
as

KO,p(x, f) =
‖f ′(x)‖p

Jf (x)
, KI,p(x, f) =

Jf (x)

lp(f ′(x))
,

whereas Jf (x) 6= 0.DefineKO,p(x, f) = KI,p(x, f) = 1, if f ′(x) = 0, andKO,p(x, f) =
KI,p(x, f) =∞ otherwise. We call these quantities the p-outer and p-inner dilatations
of f at x, respectively.

2.3. Let D be a domain in Rn for some n ≥ 2. A mapping f : D → Rn is called
quasiregular (or a mapping of bounded distortion by Reshetnyak) if f ∈W 1,n(D) and
there exists a constant K ≥ 1 such that KO(x, f) ≤ K a.e. in D.

A crucial extension of quasiregularity relates to the class of mappings of finite
distortion where the uniform boundedness of KO(x, f) is relaxed by its finiteness. We
say that a mapping f : D → Rn has finite distortion if f ∈W 1,1(D), Jf (x) ∈ L1

loc(D)
and there is a function K : D → [1,∞] with K(x) < ∞ a.e. such that KO(x, f) ≤
K(x) a.e. in D.

Note that for homeomorphisms of finite distortion the condition Jf (x) ∈ L1
loc(D)

can be removed. Many analytic and topological properties for quasiregular mappings
and mappings of finite distortion can be derived from their definitions. For the latter
such properties obviously depend on appropriate restrictions on K(x); see, e.g. [11],
[14] and references therein.

Here we recall some analytic features for mappings of Sobolev spaces W 1,p. Each
mapping f of W 1,p has a representative g (i.e. g = f a.e.) which is differentiable a.e.
for the case when p > n and n ≥ 2. On the other hand, there are mappings of
W 1,p, p ≤ n, which are not continuous at any point and, therefore, are differentiable
nowhere. Homeomorphisms of Sobolev classes W 1,p, p > n− 1 for n > 2 or p ≥ 1 for
n = 2 provide differentiability a.e. So, the case when p = n − 1 is crucial for higher
dimensions.

The following recent results given in [24] are of special interest since they relate
to the border case p = n− 1.

Proposition 2.1. Suppose that D is a domain in Rn, n ≥ 2. Let f ∈ W 1,n−1
loc (D) be

a continuous, discrete and open mapping satisfying KO(·, f) ∈ L1
loc(D). Then f is

differentiable a.e. in D.
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The second result in [24] ensuring differentiability a.e. relies on integrability of
p-outer dilatation.

Proposition 2.2. Suppose that D is a domain in Rn, n ≥ 2. Let f ∈ W 1,n−1
loc (D) be

a continuous, discrete and open mapping satisfying KO,q(·, f) ∈ L1
loc(D) for some

n− 1 < q ≤ n. Then f is differentiable a.e. in D.

One more result on mappings of Sobolev class W 1,n−1
loc provided rich regularity

properties for their inverses can be found in [12]; cf. [15].

Proposition 2.3. Let f : D → D ′ be a W 1,n−1
loc -homeomorphism of finite inner distor-

tion. If KI(·, f) ∈ L1
loc(D) then f−1 ∈W 1,n

loc (D ′).

2.4. Absolute continuity, more precisely, absolute continuity in measure is called the
Lusin (N)-property, or preservation of sets of zero measure.

Let Ω ⊂ Rn be an open set and f : Ω → Rn be a mapping. We say that f
possesses the Lusin (N)-property on a set Ω′ ⊂ Ω if the implication

mE = 0 =⇒ mf(E) = 0

holds for each subset E of Ω′.
The above definition can be extended to the k-dimensional Hausdorff measure

Hk, k = 1, . . . , n − 1, by replacing the n-dimensional Lebesgue measure m to Hk.
In this case, we deal with the Lusin (N)-property with respect to the k-dimensional
Hausdorff measure.

Let Ω ⊂ Rn be an open set. We say that f : Ω→ Rn satisfies the Lusin (N−1)-
property if for each E ⊂ f(Ω) such that mE = 0 we have mf−1(E) = 0.

The Lusin (N)-property is satisfied for general Sobolev mappings for the case
p > n. The limiting case p = n for homeomorphisms also guarantees the Lusin (N)-
property.

The following statement provides a sufficient condition for mappings of finite
distortion to satisfy the Lusin (N−1)-property; see [11].

Proposition 2.4. Let a continuous mapping f ∈ W 1,1(Ω) be a mapping of finite

distortion with K
1/(n−1)
f ∈ L1(Ω). If the multiplicity of f is essentially bounded by a

constant N and f is not constant, then Jf (x) > 0 a.e. in Ω, and hence f satisfies the
Lusin (N−1)-property.

The exponent 1/(n − 1) is crucial and cannot be reduced even for homeomor-
phisms.

Remark 2.5. Let a < 1/(n− 1). There exists a Lipschitz homeomorphism f of finite
distortion f ∈ W 1,1((−1, 1)n) and Ka

f ∈ L1((−1, 1)n), for which the Lusin (N−1)-

property fails; see again [11].

For KO,q(x)-distortion function, q ≤ n, the Lusin (N−1)-property can be derived

assuming KO,q ∈ L1/(q−1); see [11, Thm 5.14].

Remark 2.6. Note that the Lusin (N−1)-property is equivalent that the Jacobian does
not vanish a.e.; cf. [20].
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The following important statements proved in [6] provide the Lusin (N)-property
w.r.t. the (n − 1)-dimensional Hausdorff measure for homeomorphisms of Sobolev
classes with the border exponent.

Proposition 2.7. Let f ∈ W 1,n−1
loc ((−1, 1)n) be a homeomorphism. Then for almost

every y ∈ (−1, 1) the restriction of f on (−1, 1)n−1 × {y} satisfies the (n − 1)-
dimensional Lusin (N)-property, i.e. for every E ⊂ (−1, 1)n−1 × {y}, Hn−1E = 0
implies Hn−1f(E) = 0.

Replacing the cube (−1, 1)n to a ball B(x0, r) and the hyperplanes (−1, 1)n−1×
{y} to spheres S(x, r), one gets

Proposition 2.8. Let f ∈ W 1,n−1(B(x0, r)) be a homeomorphism. Then for almost
every r ∈ (0, r0) the mapping f : S(x, r)→ Rn satisfies the (n− 1)-dimensional Lusin
(N)-property, i.e. for every E ⊂ S(x, r), Hn−1E = 0 implies Hn−1f(E) = 0.

3. Moduli of curve and surface families

3.1. For a Borel function ρ : Rn → [0,∞], its integral over a k-dimensional surface
S (a continuous mapping S : DS → Rn, DS is a domain in Rk, k = 1, . . . , n − 1) is
determined by ∫

S

ρ dA :=

∫
Rn

ρ(y)N(S, y) dHky ,

where N(S, y) stands for the multiplicity function of S, namely, the multiplicity of
covering the point y by the surface S, N(S, y) = cardS−1(y), which is measurable
with respect to the Hausdorff measure Hk; see, e.g. [21, Theorem II (7.6)].

A Borel function ρ : Rn → [0,∞] is called admissible for the family of k-
dimensional surfaces Γ in Rn, k = 1, 2, ..., n− 1, abbr. ρ ∈ adm Γ, if∫

S

ρk dA ≥ 1 ∀S ∈ Γ . (3.1)

By the k-dimensional Hausdorff area of a Borel set B in Rn (or simply area of B in
the case k = n− 1) associated with the surface S : ω → Rn, we mean

AS(B) = AkS(B) :=

∫
B

N(S, y) dHky ,

(cf. [8, Ch. 3.2.1]). The surface S is called rectifiable (quadrable), if AS(Rn) <∞ (see,
e.g [18, Ch. 9.2]).

The modulus of family Γ (conformal modulus) is defined by

M(Γ) := inf
ρ∈ adm Γ

∫
D

ρn(x) dm(x) . (3.2)

Replacing the exponent n in (3.2) by real p, p ≥ 1, we arrive at the quantity
which is called p-modulus Mp(Γ) of the family Γ.
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We say that a property P holds for a.a. S ∈ Γ, if the corresponding modulus
of a subfamily Γ∗ of S ∈ Γ, for which P is not true, vanishes. Following [18], a
Borel function ρ : Rn → [0,∞] is called extensively admissible for the family Γ of
k-dimensional surfaces S in Rn, abbr. ρ ∈ extpadm Γ, if the admissibility condition
(3.1) is fulfilled only for a.a. S ∈ Γ.

3.2. A significance of moduli of curve/surface families follows mainly from the fact
that the conformal modulus remains invariant under conformal mappings, whereas
p-modulus is invariant under isometries. Various inequalities for moduli form the
basis for the geometric part of quasiconformality/quasiregularity. We recall that the
quasiinvariance of the conformal modulus completely characterizes quasiconformality.
The same property for the p-modulus provides quasiisometry.

The following notions successfully extend the above classes of mappings including
quasiconformality/quasiisometry.

Denote by ∆(E,F ;G) a family of all curves γ : [0, 1]→ Rn, which join arbitrary
sets E and F located in G ⊂ Rn, i.e. γ(0) ∈ E, γ(1) ∈ F and γ(t) ∈ G for all t ∈ (0, 1).

Let D be a domain in Rn , n ≥ 2, and Q : D → [0 ,∞] be a measurable function.
We say that a homeomorphism f : D → D′ is a ring Q-homeomorphism with respect
to p-modulus at x0 ∈ D, p > 1, if the following inequality

Mp (∆ (f(S1), f(S2); f(D))) ≤
∫
A

Q(x) · ηp(|x− x0|) dm(x) (3.3)

holds for any ring A = A(x0, r1, r2), 0 < r1 < r2 < d0 = dist (x0 , ∂D) and any
measurable function η : (r1, r2)→ [0,∞] such that

r2∫
r1

η(r) dr = 1 . (3.4)

We also say that a homeomorphism f : D → Rn is a ring Q-homeomorphism
with respect to p-modulus in D, if inequality (3.3) is valid for any x0 ∈ D.

Now instead of an upper bound for the modulus, we consider a lower integral
estimate. Let D be a bounded domain in Rn, n ≥ 2 and x0 ∈ D. Given a Lebesgue
measurable function Q : D → [0,∞], a homeomorphism f : D → Rn is called a lower
Q-homeomorphism with respect to p-modulus at x0 if

Mp(f(Σε)) ≥ inf
ρ∈exppadm Σε

∫
Dε(x0)

ρp(x)

Q(x)
dm(x) ,

where

Dε(x0) = D ∩ {x ∈ Rn : ε < |x− x0| < ε0}, 0 < ε < ε0, 0 < ε0 < sup
x∈D
|x− x0|,

and Σε denotes the family of all pieces of spheres centered at x0 of radii r, ε < r < ε0,
located in D.

Similarly to above, a homeomorphism f : D → Rn is called a lower Q-homeo-
morphism with respect to p-modulus in D if it is a lower Q-homeomorphism at each
point x0 ∈ D.
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The following relationship between the ring and lower Q-homeomorphisms with
respect to p-modulus has been established in [9].

Proposition 3.1. Every lower Q-homeomorphism f : D → Rn at x0 ∈ D with respect

to p-modulus, p > n − 1 and Q ∈ L
n−1
p−n+1

loc , is a ring Q̃-homeomorphism with respect

to α-modulus at x0 with Q̃ = Q
n−1
p−n+1 and α = p/(p− n+ 1).

4. Auxiliary results

4.1. As was mentioned above, homeomorphisms of Sobolev space W 1,n−1 are of spe-
cial interest, since, in general case, they need not be differentiable a.e., although for
any W 1,p, p > n−1, this crucial regularity property holds. We show that the integra-
bility of p-outer dilatation with an appropriate degree for Sobolev homeomorphisms
guaranties differentiability a.e.

Theorem 4.1. Let f : D → Rn satisfying f ∈ W 1,1
loc (D) and KO,p ∈ L

n−1
p−n+1

loc (D),

p ∈ [n, n+1/(n−2)). Then f ∈W 1,n−1
loc (D) and f is differentiable in D a.e. Moreover,

f−1 ∈W 1,n
loc (f(D)), and, therefore, f possesses the Lusin (N−1)-property with respect

to the n-dimensional Lebesgue measure.

Proof. Denote by E any compact set in D. Then the Hölder inequality with exponents
α = p

p−n+1 and β = p
n−1 provides∫

E

‖f ′(x)‖n−1 dm(x) =

∫
E

K
n−1
p

O,p (x, f) · J
n−1
p

f (x) dm(x)

≤

∫
E

K
n−1
p−n+1

O,p (x, f)dm(x)


p−n+1
p

∫
E

Jf (x) dm(x)


n−1
p

<∞,

and, therefore, f ∈W 1,n−1
loc (D).

Now pick α = p/(p−n+1) for arbitrary p ∈ [n, n+1/(n−2)). Then n−1 < α ≤ n
and at a point of nondegenerate differentiability, we have

KI,α(x, f) =
Jf (x)

lα(f ′(x))
=

J
p

p−n+1

f (x)

J
n−1
p−n+1

f (x)l
p

p−n+1 (f ′(x))
≤ ‖f

′(x)‖
n−1
p−n+1

J
n−1
p−n+1

f (x)
= K

n−1
p−n+1

O,p (x, f).

Thus, KI,α(x, f) is locally integrable in D. Applying Proposition 2.2 (Tengvall’s the-
orem from [24]), we reach that f is differentiable a.e. in D.

To reach the last assertions of Theorem 4.1, note first that for p = n we obtain
KO ∈ Ln−1

loc . Further by the well-known relations between KI and KO-distortion

functions, namelyKI ≤ Kn−1
O , one can apply Proposition 2.3. This yields f−1 ∈W 1,n

loc ,
and, hence f−1 possesses the Lusin (N)-property. �

4.2. Absolute continuity in measure for homeomorphisms of W 1,1
loc with integrable

p-outer dilatation is established in the following statements.
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Theorem 4.2. Let D be a domain in Rn and f : D → Rn be a homeomorphism of

Sobolev class W 1,1
loc and KO,p ∈ L

n−1
p−n+1

loc (D), p ∈ [n, n + 1/(n − 2)). Then f satisfies
the Lusin (N)-property w.r.t. the (n − 1)-dimensional Hausdorff measure on pieces
Sr ∩D of almost all spheres Sr centered at an arbitrary point x0 ∈ D. In addition,
on all such pieces Hn−1 f(E) = 0 holds whereas f ′ = 0 on a measurable set E.

Proof. By Theorem 4.2, the homeomorphism f is differentiable a.e. in D and belongs
to W 1,n−1

loc (D). This allows us to apply Proposition 2.7 and obtain the Lusin (N)-
property with respect to the Hn−1-measure; cf. [2].

The last assertion of Theorem 4.2 follows from the equality

Hn−1 f(E) =

∫
E

Jn−1,f (x) dA ,

where Jn−1,f (x) stands for the (n − 1)-dimensional Jacobian of the mapping f on
Sr ∩D, and E ⊂ Sr ∩D is a measurable set. Then from the evident estimate we have

Hn−1 f(E) ≤
∫
E

‖f ′(x)‖n−1 dA ,

which completes the proof. �

The above theorem with Proposition 2.8 yields

Corollary 4.3. Let D be a domain in Rn and f : D → Rn be a homeomorphism of

Sobolev class W 1,1
loc and KO,p ∈ L

n−1
p−n+1

loc (D), p ∈ [n, n + 1/(n − 2)). Then f satisfies
the Lusin (N)-property w.r.t. the (n−1)-dimensional Hausdorff measure on P ∩D of
almost all hyperplanes P which are parallel to the coordinate hyperplanes. In addition,
on all such intersections Hn−1 f(E) = 0 holds whereas f ′ = 0 on a measurable set E.

4.3. Here we obtain relationships between Sobolev homeomorphisms with integrable
p-outer dilatation and classes of mappings admitting modular presentations (ring and
lower Q-homeomorphisms).

Theorem 4.4. Let f : D → Rn be a homeomorphism of Sobolev class W 1,1
loc and KO,p ∈

L
n−1
p−n+1

loc (D), p ∈ [n, n+1/(n−2)). Then f is a lower Q-homeomorphism with respect to

p-modulus at arbitrary x0 ∈ D with Q(x) = KO,p(x, f) in D. Moreover, f is a ring Q̃-

homeomorphism with respect to α-modulus in D with Q̃(x) = K
(n−1)/(p−n+1)
O,p (x, f),

where α = p/(p− n+ 1).

Proof. Due to Theorem 4.1, f is differentiable a.e. in D. Moreover, the Lusin (N−1)-
property yields that Jf (x) does not vanish a.e. in D. Denote by E a Borel set of all
points x in D, where f has a total differential f ′(x) and Jacobian Jf (x) 6= 0, and by

Ẽ a set of all points at which f has a total differential f ′(x) but Jf (x) = 0. Then

both sets E0 := D \ (E ∪ Ẽ) and Ẽ have zero n-dimensional Lebesgue measure.
Now applying a Kirszbraun type theorem one concludes that the set E can be

presented as a countable union of piecewise distinct Borel sets El, l = 1, 2, . . . , such
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that fl = f |El are bi-Lipschitz homeomorphisms; see, e.g. Lemma 3.2.2 and Theo-
rems 3.1.4 and 3.1.8 in [8]. Since the set E0 has zero Lebesgue n-measure, applying

[18, Theorem 9.1] yields that Hn−1(f(E0)∩S′r) = 0 and Hn−1(f(Ẽ)∩S′r) = 0 for al-

most all images S
′

r = f(Sr) of spheres Sr in the sense of p-modulus of surface families.
Fix arbitrarily x0 ∈ D and note that

Hn−1(f(E0) ∩ S
′

r) = 0 and Hn−1(f(Ẽ) ∩ S
′

r) = 0 (4.1)

for almost all r ∈ (ε, ε0) by [13, Theorem 4.1].
For an arbitrary admissible function %′ ∈ adm f(Σε) extended by %′ ≡ 0 outside

of f(D), we define

%(x) := %′(f(x))‖f ′(x)‖
for x ∈ E and set % ≡ 0 otherwise.

Note that

f(Σε) = f(D) ∩ S
′

r =

∞⋃
l=0

(f(El) ∩ S
′

r) ∪ (f(Ẽ) ∩ S
′

r).

Since %′ ∈ adm f(Σε) and due to (4.1),

1 ≤
∫

f(Σε)

(%′(y))n−1 dA ′ =

∞∑
l=0

∫
f(El)∩S′r

(%′(y))n−1N(y, f, El ∩ Sr) dHn−1y

+

∫
f(Ẽ)∩S′r

(%′(y))n−1N(y, f, Ẽ ∩ Sr) dHn−1y

=

∞∑
l=1

∫
f(El)∩S′r

(%′(y))n−1N(y, f, El ∩ Sr) dHn−1y

(4.2)

for almost all r ∈ (ε, ε0). Here N(y, f,A) denotes the multiplicity function, i.e.
N(y, f,A) = card {x ∈ A|f(x) = y}. Recall that for homeomorphisms N(y, f,A) = 1.

Arguing piecewise on El, l = 1, 2, . . . , and using [8, Theorem 3.2.5] with the
Lusin’s (N)-property w.r.t. the (n−1)-dimensional Hausdorff measure (Theorem 4.2),
we get ∫

El∩Sr

%n−1(x) dA ≥
∫

El∩Sr

(%′(f(x)))n−1Jn−1,f (x) dA

=

∫
f(El)∩S′r

(%′(y))n−1N(y, f, El ∩ Sr) dHn−1y

for a.a. r ∈ (ε, ε0), which together with (4.2) implies % ∈ extpadm Σε.
Now applying on each El the change of variables formula with the countable

additivity of integrals, we have∑
l

∫
El∩Sr

%p(x)

KO,p(x, f)
dm(x) =

∫
D∩Sr

%p(x)

KO,p(x, f)
dm(x) ≤

∫
f(Σε)

(%
′
(y))p dm(y) .
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Thus, f is a lower Q-homeomorphism with Q(x) = KO,p(x, f).

By Proposition 3.1, f is also a ring Q̃-homeomorphism with respect to α-modulus

in D with Q̃(x) = K
(n−1)/(p−n+1)
O,p (x, f), where α = p/(p − n + 1), which completes

the proof. �

4.4. Several properties related to absolute continuity and bounded variation can be
derives as consequences from the above results.

Combining [6, Theorem 1.1] and Theorem 4.1, one derives

Corollary 4.5. Let Ω ∈ Rn be an open set and f : Ω → Rn be a homeomorphism of

W 1,1
loc (Ω) with KO,p ∈ L

n−1
p−n+1

loc (Ω). Then f−1 ∈ BVloc(f(Ω)).

Applying [6, Theorem 1.2] with Theorem 4.1 provides the following sufficient
condition for a homeomorphism to be a bi-Sobolev mapping.

Corollary 4.6. Let Ω ∈ Rn be an open set and f : Ω → Rn be a homeomorphism of

finite distortion with KO,p ∈ L
n−1
p−n+1

loc (Ω). Then f−1 ∈W 1,1
loc (f(Ω)) and f−1 is of finite

distortion.

The following corollaries can be derived from [19] and [7], respectively, replacing
the condition f ∈ W 1,n−1 by f ∈ W 1,1 with the appropriate integrability of p-outer
dilatation.

Corollary 4.7. Let f : D → D′ be a homeomorphism of W 1,1
loc (D) with finite inner

distortion such that KO,p ∈ L
n−1
p−n+1 (D), p ∈ [n, n + 1/(n − 2)). Then ‖(f−1(y)) ′‖ ∈

Ln(D′) and
∫
D′
‖(f−1(y)) ′‖n dm(y) =

∫
D
KI(x, f) dm(x).

Corollary 4.8. Let f : D → D′ be a homeomorphism of finite inner distortion and f ∈
W 1,1(D) with KO,p ∈ L

n−1
p−n+1

loc (D), p ∈ [n, n+ 1/(n− 2)). Assume that u ∈W 1,∞
loc (D).

Then u ◦ f−1 ∈W 1,1
loc (D′).

5. Distortion theorems

In this section, we provide distortion type theorems whose proofs mainly rely on
Theorem 4.4.

5.1. We start with Hölder’s continuity. Theorem 4.4 yields that every homeomorphism
of Sobolev class W 1,1

loc in Rn, n ≥ 2, with KO,p integrable in degree (n−1)/(p−n+ 1)
is a lower Q-homeomorphism with respect to p-modulus. Then by Theorem 4.2 in
[22], one gets

Theorem 5.1. Let D and D′ be two domains in Rn, n ≥ 2, and f : D → D′ be a home-

omorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D), p ∈ (n, n+ 1/(n− 2)) .
Assume that for some real λ > 1, σ > 0, and Cx0 > 0 the following condition holds

εσ
λε∫
ε

dr

‖KO,p‖ n−1
p−n+1

(x0, r)
≥ Cx0

∀ ε ∈
(

0,
dist (x0, ∂D)

λ2

)
,
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where

‖KO,p‖ n−1
p−n+1

(x0, r) =

 ∫
S(x0,r)

[KO,p(x, f)]
n−1
p−n+1 dA


p−n+1
n−1

. (5.1)

Then the estimate

|f(x)− f(x0)| ≤ ν0 C
− 1
p−n

x0 |x− x0|
σ
p−n

is valid for all x ∈ B(x0, δ0), where ν0 is a positive constant depending only on n, p,
λ and σ.

Corollary 5.2. In particular, if for some λ > 1 and Cx0
> 0 the condition

εp−n
λε∫
ε

dr

‖KO,p(x, f)‖ n−1
p−n+1

(x0, r)
≥ Cx0

holds for some ε ∈
(
0,dist (x0, ∂D)/λ2

)
, then f is Lipschitz continuous, i.e.

|f(x)− f(x0)| ≤ ν0 C
− 1
p−n

x0 |x− x0|
for all x ∈ B(x0, δ0); here ν0 = ν0(n, p, λ) > 0.

Now Theorem 4.4 together with Theorem 4.4 in [22] yields

Theorem 5.3. Let D and D′ be two domains in Rn, n ≥ 2. Suppose that f :

D → D′ is a homeomorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D), p ∈
(n, n+ 1/(n− 2)) . If KO,p(x, f) ∈ Lα(B(x0, δ0)), δ0 ≤ dist (x0, ∂D)/4, α > n/(p−n),
then

|f(x)− f(x0)| ≤ ν0‖KO,p(f)‖
1

p−n
α |x− x0|1−

n
α(p−n)

for all x ∈ B(x0, δ0), where ‖KO,p(f)‖α =
(∫

B(x0,δ0)
Kα
O,p(x, f) dm(x)

)1/α

denotes

an Lα-norm over (B(x0, δ0)), and ν0 stands for a positive constant depending only on
n, p and α.

5.2. A logarithmic Hölder continuity is much weaker than the Hölder one; see, e.g.
[10]. Here we first apply Theorem 4.4 and then Theorem 5.2 from [22], in order to
reach a logarithmic type of distance distortions for homeomorphic Sobolev mappings
of W 1,1

loc in Rn, n ≥ 2.

Theorem 5.4. Let D and D′ be two domains in Rn, n ≥ 2, and f : D → D′ be a home-

omorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D). If p ∈ (n, n+ 1/(n− 2)) ,
‖KO,p‖ n−1

p−n+1
(x0, r) 6= ∞ for a.a. r ∈ (0, d0), d0 = dist(x0, ∂D), and for some real

κ ∈ [0, p/(p− n+ 1)), Cx0
> 0, the upper bound∫

A(x0,ε1,ε2)

[KO,p(x, f)]
n−1
p−n+1 dm(x)

|x− x0|
p

p−n+1

≤ Cx0 lnκ
(
ε2

ε1

)
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holds for any 0 < ε1 < ε2 < d0, then

|f(x)− f(x0)| ≤ ν0 C
γ
x0

ln−θ
1

|x− x0|

for all x ∈ B(x0, δ0), where δ0 ≤ min{1,dist4 (x0, ∂D)},

γ =
p− n+ 1

(n− 1)(p− n)
, θ =

p− κ(p− n+ 1)

(n− 1)(p− n)

and ν0 is a positive constant depending only on n, p and κ.

Theorem 5.4 with Corollary 5.1 and Theorem 5.3 in [22] imply two following
statements.

Corollary 5.5. Let D and D′ be two domains in Rn, n ≥ 2. Suppose that f : D → D′

is a homeomorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D). If KO,p(x, f) ∈
Ln/(p−n)(B(x0, δ0)), δ0 ≤ min{1,dist4(x0, ∂D)} and p ∈ (n, n+ 1/(n− 2))) , then

|f(x)− f(x0)| ≤ ν0 ‖KO,p(f)‖
1

p−n
n
p−n

ln−
p

n(p−n)
1

|x− x0|

for all x ∈ B(x0, δ0), where

‖KO,p(f)‖ n
p−n

=

 ∫
B(x0,δ0)

K
n
p−n
O,p (x, f) dm(x)


p−n
n

stands for a norm in Ln/(p−n)(B(x0, δ0)) and ν0 is a positive constant depending only
on n and p.

Corollary 5.6. Let D and D′ be two domains in Rn, n ≥ 2. Suppose that f :

D → D′ is a homeomorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D). If
p ∈ (n, n+ 1/(n− 2)) and for some kx0

> 0, the growth estimate

‖KO,p‖ n−1
p−n+1

(x0, r) ≤ kx0r

holds for a.a. r ∈ (0, δ0), δ0 ≤ min{1,dist4 (x0, ∂D)} , then

|f(x)− f(x0)| ≤ ν0 κ
1

p−n
x0 ln−

1
p−n

1

|x− x0|
,

for all x ∈ B(x0, δ0), where ν0 > 0 depends only on n and p.

5.3. The finitely Lipschitz homeomorphisms have some very important and interesting
properties. They can fail to belong to W 1,1

loc , however, they possess the Lusin (N)-

property with respect to the Hausdorff measure Hk, k = 1, . . . , n; see [18] (and [1] in
more general settings).
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Recall that a mapping is called Lipschitz in a domain D ⊂ Rn, if there exists a
constant L such that |f(x)− f(y)| ≤ L|x− y| for ant x, y ∈ D. Consider a quantity

L(x0, f) = lim sup
x→x0

|f(x)− f(x0)|
|x− x0|

,

and say that a mapping f is finitely Lipschitz in D if L(x0, f) <∞ at any x0 ∈ D; see,
e.g. [18]. The quantity L(x0, f) can be treated as a maximal stretching of f at x0, and
the condition L(x0, f) < ∞ at any x0 ∈ D provides (by the well-known Stepanoff’s
theorem) differentiability a.e.

Theorem 5.7. Let D and D′ be two domains in Rn, n ≥ 2. Assume that f :

D → D′ is a homeomorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D). If
p ∈ (n, n+ 1/(n− 2)) and

kp(x0) = lim sup
ε→0

(
−
∫
B(x0,ε)

[KO,p(x, f)]
n−1
p−n+1 dm(x)

) p−n+1
n−1

< ∞ ,

then

L(x0, f) ≤ ν0 k
1

p−n
p (x0) <∞ , (5.2)

where ν0 is a positive constant depending on n and p.

The proof of this theorem follows from Theorem 4.4 and Theorem 6.1 with
Lemma 5.3 in [23]. For the reader convenience, we provide here the main ideas of
proof.

Sketch of the proof. By Theorem 4.4, f is a lower Q-homeomorphism with respect to

p-modulus with Q(x) = KO,p(x, f), and f is a ring Q̃-homeomorphism with respect

to α-modulus in D with Q̃(x) = K
(n−1)/(p−n+1)
O,p (x, f), where α = p/(p− n+ 1).

Pick arbitrary x0 ∈ D. Then for arbitrary spherical ring A = A(x0, r1, r2),
0 < r1 < r2 < d0 = dist (x0 , ∂D) one obtains

Mα (∆ (f(S1), f(S2); f(D))) ≤

 r2∫
r1

dr

‖KO,p(x, f)‖(n−1)/(p−n+1)(r)


1−n
p−n+1

, (5.3)

applying the relation between p-modulus of the family of (n − 1)-dimensional sepa-
rating surfaces and α-modulus of the family of joining curves in f(A) together with
[9, Thm 6.1]. Here ‖KO,p(x, f)‖(n−1)/(p−n+1)(r) is defined by (5.1).

By Hölder’s inequality, the right-hand side in (5.3) can be estimated from above

by (r2−r1)p/(n−1−p) ∫
AK

(n−1)/(p−n+1)
O,p dm(x). Choosing first r1 = 2ε and r2 = 4ε and

applying the well-known connection between α-capacity of condenser and α-modulus
together with the lower bound in terms of the n-dimensional Lebesgue measure, one
gets

mf(B(x0, 2ε))

mB(x0, 2ε)
≤ c1

(
−
∫
B(x0,4ε)

[KO,p(x, f)]
n−1
p−n+1 dm(x)

) n(p−n+1)
n(p−n+1)−p

.
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Now we pick r1 = ε and r2 = 2ε and apply again the connection between α-capacity
of condenser and α-modulus together with the lower bound in terms of the diameter
of f(B(x0, r)), then

diam f(B(x0, ε)

ε
≤ c2

(
mf(B(x0, 2ε))

mB(x0, 2ε)

)j1 (
−
∫
B(x0,4ε)

[KO,p(x, f)]
n−1
p−n+1 dm(x)

)j2
,

where j1 = ((1 − n)(p − n + 1) + p)/p, j2 = (n − 1)(p − n + 1)/p, and c1 and c2 are
constants.

Finally, combining two last estimates and passing to the limsup as ε → 0, we
obtain the desirable conclusion (5.2). �

Corollary 5.8. Let D and D′ be two domains in Rn, n ≥ 2. Assume that f :

D → D′ is a homeomorphism of Sobolev class W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc (D). If
p ∈ (n, n+ 1/(n− 2)) and

lim sup
ε→0

−
∫
B(x0,ε)

[KO,p(x, f)]
n−1
p−n+1 dm(x) <∞

for all x0 ∈ D, then f is finitely Lipschitz in D.

The finiteness of kp(x0) is a necessary condition (in somewhat sense). One can
illustrate it by the following example.

Example. Assume that n ≥ 3 and p ∈ (n, n+ 1/(n− 2)) , and consider an automor-
phism f : Bn → Bn of the unit ball Bn in Rn of such a form

f(x) =
x

|x|

 1∫
|x|

dt

tp−n+1 ln
p−n+1
n−1 (e/t)


− 1
p−n

, x 6= 0 , (5.4)

extended by f(0) = 0.
Passing to the spherical coordinates in the image (ρ, ψi) and in the inverse image

(r, ϕi), i = 1, . . . , n− 1, one can rewrite (5.4) by

f(x) =

ρ =

 1∫
r

dt

tp−n+1 ln
p−n+1
n−1 (e/t)

−
1

p−n

, 0 < r < 1, ρ(0) = 0

 .

Since ρ depends only on r, ψi = ϕi, whereas 0 ≤ ϕi ≤ π, i = 1, . . . , n − 2, and
0 ≤ ϕn−1 ≤ 2π. In this case, the stretchings are equal

dρ

dr
,
ρ

r

dψ1

dϕ1
, . . . ,

ρ

r

sinψi
sinϕi

dψ1

dϕ1
, i = 2, . . . , n− 1 ;

see, e.g. [16]. By a direct calculation,

ρ

r
=

1

r

 1∫
r

dt

tp−n+1 ln
p−n+1
n−1 (e/t)

−
1

p−n

,
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dρ

dr
=

1

(p− n)rp−n+1 ln
p−n+1
n−1 (e/r)

 1∫
r

dt

tp−n+1 ln
p−n+1
n−1 (e/t)

−
p−n+1
p−n

.

Since ρ/r ≥ dρ/dr and(ρ
r

)p−n+1

=
dρ

dr
(p− n) ln

p−n+1
n−1 (e/r) ,

one gets,

KO,p(x, f) =
(ρ/r)p

(ρ/r)n−1dρ/dr
= (p− n) ln

p−n+1
n−1 (e/|x|) .

Clearly,

lim sup
ε→0

−
∫
Bε

[KO,p(x, f)]
n−1
p−n+1 dm(x) =∞ ,

where Bε = {x ∈ Rn : |x| < ε}.
On the other hand, by L’Hôpital’s rule,

lim
x→0

|f(x)|
|x|

=∞ ,

thus, f fails to be finitely Lipschitz at the origin.

6. Bounded variation and differentiability a.e.

In this section, we show the connection between Sobolev topological mappings
with integrable p-outer dilations and homeomorphisms of a weaker bounded variation.

6.1. In 1999, Jan Malý [17] introduced a multidimensional bounded variation by the
following way. Given a mapping f : Ω→ Rm and an open set G ⊂ Ω, the n-variation
of f on G is defined by

V n(f,G) = sup
{∑

j

(
oscB(xj ,rj)f

)n
: {B(xj , rj)} is a disjoint family of balls in G

}
,

where oscBf = sup{|f(x) − f(y)| : x, y ∈ B} for a ball B. We say that f has a
bounded n-variation in Ω if V n(f,Ω) < ∞. By BVn(Ω) we denote the class of all
mappings with bounded n-variation with the seminorm ||f ||BVn(Ω) = (Vn(f,Ω))1/n.

This class provides a proper subset of Sobolev class W 1,n, and, moreover, has
rich regularity properties as differentiability a.e., the Lusin (N)-condition, etc.

Later the Malý’s definition has been extended to a p-counterpart of n-variation
in [3], 1 ≤ p < n.

We say that f has bounded p-variation (abbr., f ∈ BVp(Ω)) if there exist M > 0
and η such that ∑

j

(oscB(xj ,rj)f)prn−pj < M

for each disjoint system of balls {B(xj , rj)} in Ω such that rj < η.
Several important properties and relationships between BVp and Sobolev classes

are also established in [3]. One of them is differentiability a.e. Note that although p ≥ 1
has been assumed, in fact, it is enough to require for p to be only positive.
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6.2. Here we show that homeomorphisms of W 1,1
loc with KO,p ∈ L

n−1
p−n+1

loc belong to

BVn−α, α = p/(p− n+ 1).

Theorem 6.1. Let f : D → Rn be a homeomorphism of Sobolev class W 1,1
loc and

KO,p ∈ L
n−1
p−n+1 (D), p ∈ [n, n+ 1/(n− 2)). Then f ∈ BVn−α(D), α = p/(p− n+ 1).

Proof. Due to Theorem 4.4, f is a ring Q̃-homeomorphism in D with Q̃(x) =
Kα−1
O,p (x, f), where α = p/(p − n + 1). Since for η(r) = 1/(r2 − r1), condition (3.4)

holds, we have for r1 = 2r and r2 = 4r,

Mα (∆ (f(S1), f(S2); f(D))) ≤ (2r)
−α
∫
A

Kα−1
O,p (x, f) dm(x) . (6.1)

On the other hand, by estimate (15) in [10], one gets the following lower bound for
the above modulus (or, equivalently, for the α-capacity of condenser)

Mα (∆ (f(S1), f(S2); f(D))) ≥ C1 [mf(B2r)]
n−α
n , (6.2)

where C1 is a positive constant depending only on n and α. Here and throughout
the proof, we denote (by simplicity) by Bε a ball in Rn of radius ε. Combining both
(6.1)–(6.2), we reach the estimate for the image of B2r,

mf(B2r) ≤ C2r
αn
α−n

 ∫
B4r

Kα−1
O,p (x, f) dm(x)

 n
n−α

; (6.3)

here C2 = C2(n, α) > 0.

Now we apply the following double inequality letting r1 = r and r2 = 2r,

C3

[
(diam f(Br))

α

(mf(B2r))
1−n+α

]1/(n−1)

≤Mα (∆ (f(S1), f(S2); f(D)))

≤ r−α
∫
A

Kα−1
O,p (x, f) dm(x)

with a positive constant C3 depending only on n and α; cf. (18) in [10]. This derives
the following upper bound

diam f(Br) ≤ C4 [mf(B2r)]
α−n+1
α r1−n

∫
B2r

Kα−1
O,p (x, f) dm(x)


n−1
α

,

which together with (6.3) gives

diam f(Br) ≤ C5r
α

α−n

∫
B4r

Kα−1
O,p (x, f) dm(x)

 1
n−α

;
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C5 = C5(n, α) > 0. Rewriting the last inequality as

[diam f(Br)]
n−α

rα ≤ C6

∫
B4r

Kα−1
O,p (x, f) dm(x) ,

and summarizing over each disjoint system of balls {B(xj , 4rj)}, we complete the
proof. �

Taking into account our remark on differentiability a.e. of homeomorphisms of
BVp, 0 < p ≤ n, we obtain an alternative proof of the corresponding part of Theo-
rem 4.1.

Corollary 6.2. Let f : D → Rn be a homeomorphism of Sobolev class W 1,1
loc and

KO,p ∈ L
n−1
p−n+1 (D), p ∈ [n, n+ 1/(n− 2)). Then f is differentiable a.e. in D.
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