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1. Introduction

Let D = {# € C: |z| < 1} be the complex open unit disc. A holomorphic function
f: D — C satistying
[fls == sup(1 — [2])] f'(2)] < o0
zeD
is known as a Bloch function, where | - |g is called the Bloch semi-norm. Obviously,
bounded holomorphic functions on D, complex polynomials in particular, are Bloch
functions, but also, unbounded Bloch functions abound. With the usual addition and

scalar multiplication, the Bloch functions on D form a Banach space B, called the
Bloch space, in the Bloch norm || - ||g defined by

Iflls=1fO)+fls  (f€B).
The following subspace

By:={feB: éiml(l = |2)If' (=) = 0}

|—

of B is often called the little Bloch space.
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It is well-known that By is linearly isomorphic to the Banach space ¢q of complex
null sequences, and a common recourse of its proof is a result in [7, Theorem 7]
asserting that cq is linearly isomorphic to the Banach space
ho={h : h is complex harmonic on D, sup (1—|z|*)|h(z)| <oo, lim (1—|z|*)|h(z)|=0}
z|—1

lz|]<1 |z]—
which is equipped with the norm

[l = sup (1 = |2*)[a(z)] (€ ho).
|z|<1
This result implies that By is linearly isomorphic to ¢y since By is linearly isomorphic
to a complemented subspace of hy and by [6], every infinite dimensional complemented
subspace of ¢q is linearly isomorphic to cg.

However, besides invoking [6] in this proof, the isomorphism between hy and ¢
in [7] is obtained from a composition of mappings on various Banach spaces, involv-
ing a series of non-trivial lemmas. In this note, we show directly that By is linearly
isomorphic to ¢y by exhibiting an explicit linear isomorphism between them.

2. Isomorphism of Bloch space

We first explain why By is linearly isomorphic to a complemented subspace of
hg. A function h : D — C is called complexr harmonic if its real and imaginary
parts are both real harmonic functions. Such a function can be written as h = f + 7,
where f and g are holomorphic functions, and the symbol ‘= denotes the complex
conjugation. Plainly, holomorphic functions are complex harmonic. Let

Ao = {h : h is holomorphic on D, sup (1 — |z|?)|h(z)| < oo, ‘l}ml(l —|z3)|n(2)| = 0}
|z]<1 Zl=

which forms a complex Banach space with the norm

1P]lag = ﬂlpl(l —zP)h(z)] (b€ Ao)
z|<

and the preceding remark implies that 4g is a complemented subspace of hg. On the
other hand, the map

feBy— fleA (2.1)
is a linearly isometry and therefore By is isomorphic to a complemented subspace of
bo.

In view of (2.1), to construct a linear isomorphism between By and ¢y, it suffices
to build one between Ag and cg.
We will denote the elements in ¢y by bold letters such as

a = (ag,a1,as,...) € cy

and make use of the fact that By is the || - ||g-closure of polynomials in B. Further,
if f(z) =>pp brz* belongs to By, then limy_ .o, by, = 0, by a remark following [1,
Lemma 3.1].
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Given a sequence (f,) in By converging to f € B (in the Bloch norm), we have
(i) (fn) converges to f locally uniformly on D, (2.2)
(ii) lim, 1 (1 = |2]?)] £, (2)| = 0, uniformly in n (2.3)

(cf. [1, p.14]).

The norm of each a = (ax) € ¢ is given by |a|l., = supy |ak|- Let coo be the
subspace of ¢, consisting of elements a = (ay) with ax = 0 except a finite number of
indices k.

Lemma 2.1. The linear map ¢ : coo — Ao defined by

= Zakzk (z€D,a = (ar) € coo)
k

:|z|<1}

)= ||a||cO
1]

18 continuous.

Proof. We have

o(@)la =sup{ (= o[

where

sup lak]) (1 + |z + 2> +

R

and hence
le(a)lla, < sup{(1+ |z])]lalle, : [2] < 1} < 2[|allc,- O
Since cqg is dense in ¢y, the map ¢ in Lemma 2.1 extends to a continuous linear
map, still denoted by ¢, from ¢y to Ag. We show that this map is actually a linear
isomorphism.

Theorem 2.2. The extension ¢ : cg — A of the map in Lemma 2.1 is a linear
homeomorphism.

Proof. We begin by showing that ¢ is injective. Let a € ¢y and p(a) = 0. We show
a = 0. By definition of the map ¢, there is a sequence (a,) in cgp norm converging
to a such that lim, ¢(a,) = 0 in Ap, where

a, = (ank:) = (an07an17 <oy ks - - )

By virtue of (2.1) and (2.2), the sequence ¢(a,) of functions converges to 0
locally uniformly on D, where

2) = Zankzk (z e D).
k

For £ = 0,1,2,..., the k-th derivative ap(an)(k) converges to 0 locally uniformly, as
n — oo. It follows that

Kllank| = [(an)® (0)] < sup{lp(an)(2)] : 2] <1/2} = 0

as n — oo. Given € > 0, there exists ng € N such that n > ngy implies

sup{lo(an) P (2)] : 2] < 1/2} < kle
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and hence |ank| < € for n > ng. Therefore we have

(i) lim, anx = 0 for each k,
(ii) lim lilgn anr = 0 since a,, € cqp.
n

By [5, IV.13.10], the sequence (a,,) converges weakly to 0 in ¢y and hence a = 0.

Finally, we show that ¢ is surjective. Let f € Ay. By (2.1), there is a sequence
(pn) of polynomials such that ||p, — f|l4, — 0 as n — oo. Write

pn(z) = Z anpz”.
k

Then p, = ¢(a,) where a,, = (ank) € coo-
As before, (p, — f) converges locally uniformly to 0 on D, and we have

sup{|(pm — pn)'(2)| : [2] < 1/2} < 2sup{|(pm — pn)(2)| : 2] < 1/2}

from the Cauchy formula. Iterating this inequality yields

Klame = anl = 1(2m = pa)®(0)] < sup{l(pm = pa) W (2)] : |2 < 1/2}
28 sup{|(pm — pn)(2)| 1 |2/ <1/2} =0 (k=0,1,2,...)

IN

as m,n — oo. It follows that the sequence (ank)5e, converges to some aj € C for
each k, and for some mg € N and for all k, we have

k

2
|@mok — ni| < o whenever n > mjg.

Since (amqk) € coo, there is some kg such that a,,,r = 0 for k > ko, which gives
lank| < 2F/k!

for n > mg and k > ko, Hence |ay| < 2% /k! for k > ko and limy az = 0.
By [5, IV.13.10] again, the following properties

(i) limy, ang = ay for each k,
(ii) lim lillern apk =0= liin ak

imply that (a,) converges weakly to @ = (ax) in ¢g. Since ¢ is weakly continuous,
the sequence ¢(a,,) converges weakly to ¢(a) in Ag. On the other hand, ¢(a,) norm
converges f in Ay and hence ¢(a) = f. This proves surjectivity of .

By the open mapping theorem, the map ¢ : cg — Ap is a linear homeomorphism
which completes the proof. O

It has been shown in [1] that the second dual space B§* is linearly isomorphic
to B. It follows that B is linearly isomorphic to the Banach space £, of bounded
complex sequences.
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3. Bloch functions of several complex variables

The concept of a Bloch function has been extended to higher and infinite dimen-
sions by several authors. We refer to [2] for references of these extensions. The various
definitions of Bloch functions on bounded symmetric domains in these references are
all equivalent to the one given in [3] and below.

We recall that a bounded symmetric domain is a bounded domain D in a complex
Banach space V' such that each point p € D admits a (unique) symmetry s, : D — D
which, by definition, is a biholomorphic map such that p is an isolated fixed-point of s,
and s, o s, is the identity map on D. Further details of infinite dimensional bounded
symmetric domains including their realisation as the open unit ball of a complex
Banach space with a Jordan structure, alias JB*-triple, can be found in [2].

Definition 3.1. Let D be a bounded symmetric domain realised as the open unit
ball of a JB*-triple V and let Aut D be the automorphism group of D, consisting of
biholomorphisms of D. The Bloch semi-norm of a holomorphic map f : D — C? is
defined by

|fls = sup{||(f 0 9)"(0)]| : g € Aut D}
where d € N and C? is equipped with the Euclidean norm. We call f a Bloch map if
|/l < 0o. A Bloch map f: D — C is often called a Bloch function.

We note that on the unit disc D, the two definitions of the Bloch semi-norm |- |z
given previously coincide, that is,

ilelg(l = [z f'(2)] = sup{|(f 0 9)'(0)] : g € AutD}.

On higher dimensional domains D, however, they are not equal, even on the bidisc,
although we always have

Sgg(l — 111 () < sup{[|(f © 9)'(0)]| : g € Aut D}.
The following example has been given in [4].

Example 3.2. Let f: D x D — C be defined by

1
f(Zl,Zg):(l—Z2)10g1_21, (21,2’2) cD x D.

Then we have

sup (1= ||(z1, 22) [P f'(21, 22) || < 00
(21,22)€EDXD

where ||(z1, 22)|| = max{|z1|, |22|}, but in contrast

sup{[|(f 0 9)"(0)]| : g € Aut (D x D)} = oo.

As in the one dimensional case, the Bloch functions on D form a Banach space B(D)
in the following Bloch norm:

1flls = [1F O +1fls  (f € B(D)).
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One can also define the little Bloch space By(D) as the closure of the polynomials in
B(D) and likewise, we have
Bo(D) = {f € BD): lim (1= [s)]1'(2)] = 0}

if D is the open unit ball of a Hilbert space V (cf.[2, Theorem 4.3.11]). While it is
known that the little Bloch space By(By) of a d-dimensional Euclidean ball By ¢ C¢
is linearly isomorphic to ¢y, as in the case of D by similar arguments, the little Bloch
space By(B) of the open unit ball B of a non-separable Hilbert space is not linearly
isomorphic to ¢y since By(B) is not separable.
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