
Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 2, 295–308
DOI: 10.24193/subbmath.2022.2.06

Linear invariance and extension operators of
Pfaltzgraff–Suffridge type

Jerry R. Muir, Jr.

Dedicated to the memory of Professor Gabriela Kohr

Abstract. We consider the image of a linear-invariant family F of normalized
locally biholomorphic mappings defined in the Euclidean unit ball Bn of Cn under
the extension operator

Φn,m,β [f ](z, w) =
(
f(z), [Jf(z)]βw

)
, (z, w) ∈ Bn+m ⊆ Cn × Cm,

where β ∈ C, Jf denotes the Jacobian determinant of f , and the branch of the
power function taking 0 to 1 is used. When β = 1/(n+ 1) and m = 1, this is the
Pfaltzgraff–Suffridge extension operator. In particular, we determine the order of
the linear-invariant family on Bn+m generated by the image in terms of the order
of F, taking note that the resulting family has minimum order if and only if either
β ∈ (−1/m, 1/(n+1)] and the family F has minimum order or β = −1/m. We will
also see that order is preserved when generating a linear-invariant family from
the family obtained by composing F with a certain type of automorphism of Cn,
leading to consequences for various extension operators including the modified
Roper–Suffridge extension operator introduced by the author.
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1. Introduction

In this note, we generate linear-invariant families on the Euclidean unit ball Bn
of Cn from other linear-invariant families defined on Bn or on a lower-dimensional
ball (or disk) in a manner that allows us to determine the order of a new family from
the order of the family from which it is generated. In many cases, the new linear-
invariant families will have minimum order if the families that generate them do.
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The primary mechanism used will involve a perturbation of an extension operator
originally presented by Pfaltzgraff and Suffridge [17].

In order to more thoroughly preview our work, we present some basic notation.
We reserve n,m ∈ N for the dimensions of complex Euclidean spaces. If a ∈ Cn and
r > 0, then Bn(a; r) denotes the ball centered at a of radius r. Thus Bn = Bn(0; 1),
and we write Sn = ∂Bn for the unit sphere. When n = 1, D = B1 is the unit disk in
C. For z ∈ Cn with n ≥ 2, we write z = (z1, ẑ), where z1 ∈ C and ẑ = (z2, . . . , zn) ∈
Cn−1. When used in matrix-algebra calculations, we treat elements of Cn as column
vectors, although we express them as n-tuples. To avoid confusion, n-tuples are always
written within parentheses (·) and matrices are always written within brackets [·]. The
canonical basis vectors in Cn are e1, . . . , en.

Let L(Cn,Cm) denote the space of linear operators from Cn into Cm. We write
L(Cn) for the algebra L(Cn,Cn) and In for its identity. The adjoint (conjugate-
transpose) of A ∈ L(Cn,Cm) is A∗ ∈ L(Cm,Cn). If Ω ⊆ Cn is open, then H(Ω,Cm) is
the space of all holomorphic mappings from Ω into Cm. If m = 1, we use the shorthand
H(Ω). For f ∈ H(Ω,Cm), the Fréchet derivative of f is Df : Ω→ L(Cn,Cm). When
m = n, the Jacobian of f is denoted Jf = detDf . The second Fréchet derivative of
f at z ∈ Ω is the symmetric bilinear operator D2f(z) : Cn×Cn → Cm. It is useful to
note that if a ∈ Cn is fixed and g ∈ H(Ω,Cm) is given by g(z) = Df(z)a for z ∈ Ω,
then

Dg(z) = D2f(z)(a, ·), z ∈ Ω.

In particular, D2f(z)(a, ·) is an element of L(Cn,Cm), and when m = n we may
consider its trace. We are broadly interested in the family of normalized locally bi-
holomorphic mappings

LS(Bn) = {f ∈ H(Bn,Cn) : f(0) = 0, Df(0) = In, and Jf(z) 6= 0 for z ∈ Bn}.
The subfamily of biholomorphic mappings is

S(Bn) = {f ∈ LS(Bn) : f is biholomorphic}.
The group of unitary operators on Cn is U(n) ⊆ L(Cn). The group of biholo-

morphic automorphisms of a domain Ω ⊆ Cn (i.e., biholomorphic mappings of Ω onto
Ω) is Aut Ω. Any ϕ ∈ AutBn has the unique decomposition ϕ = U ◦ϕa for U ∈ U(n)
and a ∈ Bn, where ϕa ∈ AutBn is given by

ϕa(z) = Ta

(
a− z

1− 〈z, a〉

)
=
a− Paz − saQaz

1− 〈z, a〉
, z ∈ Bn. (1.1)

Here, Pa is the orthogonal projection of Cn onto the subspace spanned by a, Qa =
In − Pa is the orthogonal projection of Cn onto the orthogonal complement of a,
sa =

√
1− ‖a‖2, and Ta = Pa + saQa. (See [8, 23].) Observe that ϕa is an involution

exchanging 0 and a. We also note that any ϕ ∈ AutBn can likewise be written as
ϕ = ϕb ◦ V |Bn

for b ∈ Bn and V ∈ U(n). (See [19].)
To prove the classical Koebe distortion theorem for S(D), a standard technique

is to apply the bound on the second coefficient of the Taylor series expansion of a
function in S(D) to the function formed by composing an element of S(D) with a
member of AutD and renormalizing, an operation now known as a Koebe transform.
Pommerenke [20] coined the term “linear-invariant” for families in LS(D) that are
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invariant under all Koebe transforms and defined the order of a linear-invariant fam-
ily to be the supremum of the moduli of the second coefficients in the Taylor series
expansions of its elements. Pfaltzgraff [16] generalized this notion to several com-
plex variables as follows. For ϕ ∈ AutBn, the Koebe transform with respect to ϕ is
Λϕ : LS(Bn)→ LS(Bn) given by

Λϕ[f ](z) = Dϕ(0)−1Df(ϕ(0))−1[f(ϕ(z))− f(ϕ(0))], f ∈ LS(Bn), z ∈ Bn.

For ϕ,ψ ∈ AutBn, we have Λϕ◦ψ = Λψ ◦ Λϕ. It follows that Λϕ−1 = Λ−1
ϕ . A linear-

invariant family is a set F ⊆ LS(Bn) such that Λϕ[f ] ∈ F for all f ∈ F and ϕ ∈ AutBn.
If G ⊆ LS(Bn), then the linear-invariant family generated by G is

Λ[G] = {Λϕ[g] : ϕ ∈ AutBn, g ∈ G}.

The complexity inherent in the generalization to higher dimensions manifests
when defining the order of a linear-invariant family F ⊆ LS(Bn). In [16], Pfaltzgraff
defined the order of F to be

ordF =
1

2
sup
u∈Sn

sup
f∈F
| trD2f(0)(u, ·)| ∈

[
n+ 1

2
,∞
]
, (1.2)

and proved the sharp lower bound is as given. (Any f ∈ LS(Bn) has a Taylor series
expansion of the form

f(z) = z +
1

2
D2f(0)(z, z) + o(‖z‖2), z ∈ Bn,

and hence the expression (1.2) reduces to the definition of order given by Pommerenke
when n = 1.) He then proved the following volume-distortion theorem.

Theorem 1.1. Let F ⊆ LS(Bn) be a linear-invariant family such that α = ordF <∞.
For all f ∈ F,

(1− ‖z‖)α−(n+1)/2

(1 + ‖z‖)α+(n+1)/2
≤ |Jf(z)| ≤ (1 + ‖z‖)α−(n+1)/2

(1− ‖z‖)α+(n+1)/2
, z ∈ Bn.

When n = 1, this becomes Pommerenke’s distortion theorem for linear-invariant
families on D. In particular, S(D) is a linear-invariant family such that ord S(D) =
2 (due to the classical Bieberbach estimate [1]), and Theorem 1.1 reduces to the
aforementioned Koebe distortion theorem. When n ≥ 2, the linear-invariant family
S(Bn) has infinite order, but other families of interest have finite order. One such
linear-invariant family is the family of convex mappings

K(Bn) = {f ∈ S(Bn) : f(Bn) is convex}
(it is compact; see [8]). When n = 1, ordK(D) = 1 (the minimum possible order) and
any linear-invariant family of order 1 on D must be a subset of K(D). For n ≥ 2, things
are not so nice. Pfaltzgraff and Suffridge [18] showed that ordK(Bn) > (n+1)/2 (that
is, K(Bn) does not have minimum order), and the problem of determining the exact
value of ordK(Bn) remains open. Partly motivated by this, Pfaltzgraff and Suffridge
introduced [19] a second notion of order based on the operator norm of D2f(0)/2
for f in a linear-invariant family. This notion of order has some advantages. For
instance, the minimum norm order of a linear-invariant family on Bn is 1 regardless
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of n and K(Bn) has this norm order. Furthermore, having finite norm order implies
a linear-invariant family is a normal family and growth estimates can be obtained.
Nevertheless, the norm order is, in general, much more difficult to use and does not
seem to be as compatible with the extension operators we will study.

The following two identities from [16] used to prove Theorem 1.1 will be useful
in our work.

Lemma 1.2. Let f ∈ LS(Bn) and ϕ ∈ AutBn. If g = Λϕ[f ], then

trD2g(0)(w, ·) = trDf(ϕ(0))−1D2f(ϕ(0))(Dϕ(0)w, ·) + trDϕ(0)−1D2ϕ(0)(w, ·)
for all w ∈ Cn.

Lemma 1.3. For a ∈ Bn, we have

Dϕa(0)−1D2ϕa(0)(w, ·) = 〈w, a〉In + wa∗, w ∈ Cn.

In addition, Godula, Liczberski, and Starkov [5] obtained the following converse
to Theorem 1.1.

Theorem 1.4. If F ⊆ LS(Bn) is a linear-invariant family with ordF <∞, then

ordF = inf

{
α ≥ n+ 1

2
: |Jf(z)| ≤ (1 + ‖z‖)α−(n+1)/2

(1− ‖z‖)α+(n+1)/2
for z ∈ Bn and f ∈ F

}
.

Generally speaking, an extension operator is a function Φ: F → LS(Bn+m),
where F ⊆ LS(Bn), such that Φ[f ](z, 0) = (f(z), 0) for all f ∈ F and z ∈ Bn. (We
will consistently write points in Cn+m as ordered pairs in Cn × Cm.) The study of
extension operators focuses on those for which Φ[f ] inherits a useful characteristic of
f such as a geometric property of the mapping’s range or the ability to embed the
mapping in a Loewner chain. In this work, we will focus primarily on the operator

Φn,m,β [f ](z, w) =
(
f(z), [Jf(z)]βw

)
, f ∈ LS(Bn), (z, w) ∈ Bn+m,

for β ∈ C. The branch of the power function taking 0 to 1 is used. The operator
Φ1,n−1,1/2, n ≥ 2, is the Roper–Suffridge extension operator, the first such opera-
tor studied. It was introduced in [21] where the authors showed Φ1,n−1,1/2[K(D)] ⊆
K(Bn). Graham and Kohr [9] showed Φ1,n−1,1/2[S∗(D)] ⊆ S∗(Bn), where

S∗(Bn) = {f ∈ S(Bn) : f(Bn) is starlike with respect to 0}.
Pfaltzgraff and Suffridge introduced the operator Φn,1,1/(n+1) in [17] in their study of
linear-invariant families. Of note, Chirilă [3] first considered the perturbation Φn,1,β
for β ∈ [0, 1/(n+1)] in connection with Loewner theory and showed Φn,1,β [S∗(Bn)] ⊆
S∗(Bn+1) for such β, generalizing the same inclusion for the original Pfaltzgraff–
Suffridge extension operator given in [11] by Graham, Kohr, and Pfaltzgraff.

The image of a linear-invariant family under an extension operator will generally
not be linear-invariant, but we may consider the linear-invariant family generated by
the image. That approach was taken by Pfaltzgraff and Suffridge in [17] where they
showed that if F ⊆ LS(Bn) is a linear-invariant family of finite order, then

ord Λ[Φn,1,1/(n+1)[F]] =
n+ 2

n+ 1
ordF.
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In particular, a family of minimum order on Bn is extended in this manner to a family
of minimum order on Bn+1. Graham, Hamada, Kohr, and Suffridge [7] used a different
approach for a perturbation of the Roper–Suffridge extension operator, showing

ord Λ[Φ1,n−1,β [F]] = (1 + (n− 1)β) ordF +
(n− 1)(1− 2β)

2

for a linear-invariant family F ⊆ LS(D) of finite order, β ∈ [0, 1/2], and n ≥ 2. Again,
a family of minimum order is extended to a family of minimum order for such β.

In what follows, we generalize the work of Graham, Hamada, Kohr, and Suffridge
to produce an order result of this type for the general operator Φn,m,β , β ∈ C, that
will imply both of the above results and maintain the characteristic that families
of minimum order on Bn extend to families of minimum order on Bn+m for β ∈
[−1/m, 1/(n + 1)]. We will also observe that any linear-invariant family on Bn is
extended to a family of minimum order on Bn+m when β = −1/m. In no other cases
will a family of minimum order be produced. We will follow with some results showing
how the generation of a linear-invariant family from the composition of a linear-
invariant family on Bn with a member of a particular subgroup of AutCn preserves
order, allowing us to generate large linear-invariant families of minimum order and to
observe results as above for other commonly studied extension operators.

2. The order of Λ[Φn,m,β[F]]

The following lemma is a generalization of [7, Lemma 4.1], and its proof uses a
technique from [19].

Lemma 2.1. Let A ⊆ AutBn be such that {ϕ(0) : ϕ ∈ A} = Bn. If G ⊆ LS(Bn), then

ord Λ[G] =
1

2
sup
f∈G

sup
ϕ∈A

sup
u∈Sn

| trD2Λϕ[f ](0)(u, ·)|.

Proof. Let g ∈ Λ[G]. There are ψ ∈ AutBn and f ∈ G such that g = Λψ[f ]. Choose
ϕ ∈ A such that ϕ(0) = ψ(0). Then there is a U ∈ U(n) such that ψ = ϕ ◦ U |Bn

. Let
h = Λϕ[f ] ∈ Λ[G]. It follows that g = ΛU [h]. That is, g(z) = U∗h(Uz) for all z ∈ Bn.
Then Dg(z)u = U∗Dh(Uz)Uu for z ∈ Bn and u ∈ Sn. Differentiation of both sides
with respect to z yields

D2g(z)(u, ·) = U∗D2h(Uz)(Uu, ·)U, z ∈ Bn, u ∈ Sn.

It follows that

sup
u∈Sn

| trD2g(0)(u, ·)| = sup
u∈Sn

| trD2h(0)(u, ·)|

because the trace is a similarity invariant. This implies the result. �

The following lemma is a generalization of [7, Lemma 4.2], although our proof
uses a somewhat different technique (see also [8]).
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Lemma 2.2. Let f ∈ LS(Bn) and g ∈ H(Bn) such that g(0) = 1 and g(z) 6= 0
for all z ∈ Bn. If F ∈ H(Bn+m,Cn+m) is defined by F (z, w) = (f(z), g(z)w), then
F ∈ LS(Bn+m) and

sup
b∈Bm

sup
(u,v)∈Sn+m

| trD2Λϕ(0,b)
[F ](0, 0)((u, v), ·)|

= max

{
n+m+ 1, sup

(u,v)∈Sn+m

| trD2F (0, 0)((u, v), ·)|

}
.

Proof. Let b ∈ Bm, and set G = Λϕ(0,b)
[F ]. In block matrix form, we have

DF (z, w) =

[
Df(z) 0
wDg(z) g(z)Im

]
, (z, w) ∈ Bn+m. (2.1)

Clearly, F ∈ LS(Bn+m). For all (z, w) ∈ Bn+m and (u, v) ∈ Cn+m, differentiation of
DF (z, w)(u, v) = (Df(z)u,wDg(z)u+ g(z)v) with respect to (z, w) gives

D2F (z, w)((u, v), ·) =

[
D2f(z)(u, ·) 0

wD2g(z)(u, ·) + vDg(z) (Dg(z)u)Im

]
. (2.2)

Taking advantage of the fact that the operators in (2.1) and (2.2) are both lower
block-triangular, we obtain

trDF (0, b)−1D2F (0, b)((u, v), ·) = trD2f(0)(u, ·) +mDg(0)u, (u, v) ∈ Cn+m.

A direct calculation using (1.1) reveals Dϕ(0,b)(0, 0) = (0, b)(0, b)∗ − T(0,b).

If P ∈ L(Cn+m,Cn) is given by P (z, w) = z for (z, w) ∈ Cn+m, then
PDϕ(0,b)(0, 0)(u, v) = −sbu for (u, v) ∈ Cn+m. For such (u, v), we obtain

trDF (0, b)−1D2F (0, b)(Dϕ(0,b)(0, 0)(u, v), ·) = −sb(trD2f(0)(u, ·) +mDg(0)u).

We note that tr (u, v)(0, b)∗ = 〈v, b〉 for (u, v) ∈ Cn+m. For such (u, v), Lemma 1.3
gives

trDϕ(0,b)(0, 0)−1D2ϕ(0,b)(0, 0)((u, v), ·) = (n+m+ 1)〈v, b〉,
and by Lemma 1.2, we find

trD2G(0, 0)((u, v), ·) = −sb(trD2f(0)(u, ·) +mDg(0)u) + (n+m+ 1)〈v, b〉

for the given b.
If we write sx =

√
1− x2 for x ∈ [0, 1], we now have

sup
b∈Bm

sup
(u,v)∈Sn+m

| trD2Λϕ(0,b)
[F ](0, 0)((u, v), ·)|

= sup
b∈Bm

sup
(u,v)∈Sn+m

|−sb(trD2f(0)(u, ·) +mDg(0)u) + (n+m+ 1)〈v, b〉|

= sup
b∈Bm

sup
x∈[0,1]

sup
u∈Sn

sup
v∈Sm

|−sbx(trD2f(0)(u, ·) +mDg(0)u)

+ (n+m+ 1)sx〈v, b〉|

= sup
b∈Bm

sup
x∈[0,1]

(
xsb sup

u∈Sn
| trD2f(0)(u, ·) +mDg(0)u|+ (n+m+ 1)‖b‖sx

)
.
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It is a simple exercise in calculus to see that the function h : [0, 1]× [0, 1] → R given
by h(x, y) = αx

√
1− y2 + βy

√
1− x2, where α, β ≥ 0, attains its maximum value at

(at least) one of the points (1, 0) or (0, 1). From (2.2), we see that

sup
(u,v)∈Sn+m

| trD2F (0, 0)((u, v), ·)| = sup
u∈Sn

| trD2f(0)(u, ·) +mDg(0)u|,

giving the result. �

We now present our main result.

Theorem 2.3. Let F ⊆ LS(Bn) be a linear-invariant family and β ∈ C. If ordF <∞,
then

ord Λ[Φn,m,β [F]] = |1 +mβ| ordF +
m|1− β(n+ 1)|

2
.

If ordF =∞, then

ord Λ[Φn,m,β [F]] =

{
∞ if β 6= −1/m,
(n+m+ 1)/2 if β = −1/m.

Proof. Let f ∈ F and F = Φn,m,β [f ]. Now choose a ∈ Bn and put G = Λϕ(a,0)
[F ].

For clarity, we write ψa ∈ AutBn for the involution described in (1.1) to distinguish
it from members of AutBn+m. Using (1.1), we obtain

ϕ(a,0)(z, w) =

(
ψa(z),

−saw
1− 〈z, a〉

)
, (z, w) ∈ Bn+m.

We calculate

Dϕ(a,0)(0, 0) =

[
Dψa(0) 0

0 −saIm

]
, DF (a, 0) =

[
Df(a) 0

0 [Jf(a)]βIm

]
.

It follows that G can be written in terms of Λψa
[f ] and a function g ∈ H(Bn) as

follows:

G(z, w) = (Λψa
[f ](z), g(z)w), g(z) =

[Jf(ψa(z))]β

[Jf(a)]β(1− 〈z, a〉)
, (z, w) ∈ Bn+m.

Now G has the general form considered in Lemma 2.2, allowing us to take advantage
of the second-derivative expression (2.2) to write

trD2G(0, 0)((u, v), ·) = trD2Λψa [f ](0)(u, ·) +mDg(0)u, (u, v) ∈ Sn+m.

If Ω ⊆ C is open and A : Ω→ L(Cn) is analytic and such that A(ζ) is invertible
for all ζ ∈ Ω, then Jacobi’s formula for differentiation of the determinant of A (see
[6]) is

d

dζ
detA(ζ) = detA(ζ) tr[A(ζ)−1A′(ζ)], ζ ∈ Ω.
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We apply this for z ∈ Bn and u ∈ Cn to obtain

D[Jf ](z)u =

n∑
k=1

uk
∂

∂zk
Jf(z)

=

n∑
k=1

ukJf(z) tr

(
Df(z)−1 ∂

∂zk
Df(z)

)

=

n∑
k=1

ukJf(z) trDf(z)−1D2f(z)(ek, ·)

= Jf(z) trDf(z)−1D2f(z)(u, ·).
Observe that Lemmas 1.2 and 1.3 show

trDf(a)−1D2f(a)(Dψa(0)u, ·) = trD2Λψa
[f ](0)(u, ·)− tr(〈u, a〉In + ua∗)

= trD2Λψa [f ](0)(u, ·)− (n+ 1)〈u, a〉
for u ∈ Cn. For such u, we now can compute

Dg(0)u =
βD[Jf ](a)Dψa(0)u

Jf(a)
+ 〈u, a〉

= β trD2Λψa
[f ](0)(u, ·) + (1− β(n+ 1))〈u, a〉.

It follows that

trD2G(0, 0)((u, v), ·) = (1 +mβ) trD2Λψa [f ](0)(u, ·) +m(1− β(n+ 1))〈u, a〉
for all (u, v) ∈ Sn+m.

From the above, we now have

sup
f∈F

sup
a∈Bn

sup
(u,v)∈Sn+m

| trD2Λϕ(a,0)
[Φn,m,β [f ]](0, 0)((u, v), ·)|

= sup
f∈F

sup
a∈Bn

sup
u∈Sn

|(1 +mβ) trD2Λψa [f ](0)(u, ·) +m(1− β(n+ 1))〈u, a〉|.
(2.3)

In the case that α = ordF < ∞, we use Λψa
[f ] ∈ F for all f ∈ F, (1.2), and

(2.3) to see that

sup
f∈F

sup
a∈Bn

sup
(u,v)∈Sn+m

| trD2Λϕ(a,0)
[Φn,m,β [f ]](0, 0)((u, v), ·)|

≤ 2α|1 +mβ|+m|1− β(n+ 1)|.
(2.4)

Let ε ∈ (0, 2α), and set θ = arg(1+mβ) and η = arg(1−β(n+1)). There exist g0 ∈ F

and u0 ∈ Sn such that

eiθ trD2g0(0)(u0, ·) ≥ 2α− ε.
Let a0 = teiηu0 ∈ Bn for t ∈ (0, 1) and f0 = Λψa0

[g0]. Since ψa0 is an involution, we

have g0 = Λψa0
[f0], and hence

|(1 +mβ) trD2Λψa0
[f0](0)(u0, ·) +m(1− β(n+ 1))〈u0, a0〉|

≥ (2α− ε)|1 +mβ|+mt|1− β(n+ 1)|.

The arbitrary choices of ε and t and (2.3) show that equality is attained in (2.4).
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In the case that ordF =∞ and β = −1/m, we use (2.3) to see that

sup
f∈F

sup
a∈Bn

sup
(u,v)∈Sn+m

| trD2Λϕ(a,0)
[Φn,m,β [f ]](0, 0)((u, v), ·)|

= m|1− β(n+ 1)|
= n+m+ 1.

(2.5)

If ordF =∞ and β 6= −1/m, letting a = 0 in the supremum in (2.3) shows

sup
f∈F

sup
a∈Bn

sup
(u,v)∈Sn+m

| trD2Λϕ(a,0)
[Φn,m,β [f ]](0, 0)((u, v), ·)|

≥ sup
f∈F

sup
u∈Sn

|1 +mβ|| trD2f(0)(u, ·)|

=∞

(2.6)

Now let A = {ϕ(a,0) ◦ϕ(0,b) : a ∈ Bn, b ∈ Bm} ⊆ AutBn+m. For any a ∈ Bn and
b ∈ Bm, we have

(ϕ(a,0) ◦ ϕ(0,b))(0, 0) = ϕ(a,0)(0, b) = (a,−sab).

As noted above, Λϕ(a,0)
[Φn,m,β [f ]] has the form in Lemma 2.2 for all a ∈ Bn. Since

{(a,−sab) : a ∈ Bn, b ∈ Bm} = Bn+m, we use Lemma 2.1 along with Lemma 2.2 to
find that

ord Λ[Φn,m,β [F]]

=
1

2
sup
f∈F

sup
a∈Bn

sup
b∈Bm

sup
(u,v)∈Sn+m

| trD2(Λϕ(0,b)
◦ Λϕ(a,0)

)[Φn,m,β [f ]](0, 0)((u, v), ·)|

=
1

2
sup
f∈F

sup
a∈Bn

max

{
n+m+ 1,

sup
(u,v)∈Sn+m

| trD2Λϕ(0,a)
[Φn,m,β [f ]](0, 0)((u, v), ·)|

}
.

The result for the case ordF =∞ immediately follows from (2.5) and (2.6).

If α = ordF <∞, the equality in (2.4) observed earlier implies

ord Λ[Φn,m,β [F]] =
1

2
max{n+m+ 1, 2α|1 +mβ|+m|1− β(n+ 1)|}.

Using α ≥ (n+ 1)/2, we have

2α|1 +mβ|+m|1− β(n+ 1)| ≥ |n+ 1 +mβ(n+ 1)|+ |m−mβ(n+ 1)|
≥ |n+ 1 +m|.

(2.7)

This gives the result in this case. �

Example 2.4. To utilize Theorem 2.3 in a concrete manner, one must possess knowl-
edge of the order of a linear-invariant family F ⊆ LS(Bn). One may consult [5, 8, 17]
among other references for examples of linear-invariant families of various orders. We
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will simply take note of the well-known results that when n = 1 and α ≥ 1, we have
ord Λ[{kα}] = α, where kα ∈ LS(D) is the generalized Koebe function

kα(z) =
1

2α

[(
1 + z

1− z

)α
− 1

]
, z ∈ D,

where the principal branch of the power is used. (See [20].) In addition (see [2], for
instance), if g ∈ LS(D) is given by

g(z) =
1

2

(
1− exp

−2z

1− z

)
, z ∈ D,

then ord Λ[{g}] =∞.

We now observe an immediate consequence.

Corollary 2.5. Let F be a linear-invariant family of minimum order on Bn and β ∈ C.
Then Λ[Φn,m,β [F]] is a linear-invariant family of minimum order on Bn+m if and only
if β ∈ [−1/m, 1/(n+ 1)].

Proof. Clearly, Λ[Φn,m,β [F]] has minimum order if and only if both inequalities in
(2.7) are equalities. This holds for the first inequality because α = (n+ 1)/2.

Equality in the second inequality occurs if and only if either the complex numbers
n+1+mβ(n+1) and m−mβ(n+1) have the same argument or one of them is equal
to 0. This clearly occurs if and only if both numbers are nonnegative real numbers,
which coincides with β ∈ [−1/m, 1/(n+ 1)]. �

Remark 2.6. It is worth considering the special case where β = −1/m in Theorem
2.3. Indeed, for any linear-invariant family F ⊆ LS(Bn), the family Λ[Φn,m,−1/m[F]]
has minimum order on Bn+m. This includes the family Λ[Φn,m,−1/m[LS(Bn)]]. This
is not as surprising as it may seem, for if F ∈ Φn,m,−1/m[LS(Bn)], we can calculate
JF (z, w) = 1 for all (z, w) ∈ Bn+m. It is known [5, 17] that the linear-invariant family
generated by

G = {f ∈ LS(Bn) : Jf(z) = 1 for all z ∈ Bn}
has minimum order.

3. Compositions with automorphisms of Cn

Consider the following subgroup of AutCn and subspace of H(Cn):

Aut1 Cn = {Ψ ∈ AutCn : Ψ(0) = 0, DΨ(0) = In, and JΨ(z) = 1 for z ∈ Cn},
H0(Cn) = {G ∈ H(Cn) : G(0) = 0 and DG(0) = 0}.

Notable members of Aut1 Cn for n ≥ 2 are the normalized shears (see [22]) given by

ΨG(z) = (z1 +G(ẑ), ẑ), z ∈ Cn, (3.1)

where G ∈ H0(Cn−1).
As a consequence of the following simple result, we see that the linear-invariant

family generated by the composition a linear-invariant family with a member of
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Aut1 Cn has the same order as the original family. For notational convenience, if
F ⊆ H(Bn,Cn) and Ψ ∈ H(Cn,Cn), then we write

Ψ ◦ F = {Ψ ◦ f : f ∈ F}.
The proof relies on the following observation.

Remark 3.1. From the work done in [5] leading to the conclusion of Theorem 1.4
above, the following deduction can be drawn: If F ⊆ LS(Bn) is a linear-invariant
family and there exist α ≥ (n+ 1)/2 and r ∈ (0, 1) such that

|Jf(z)| ≤ (1 + ‖z‖)α−(n+1)/2

(1− ‖z‖)α+(n+1)/2
, f ∈ F, z ∈ Bn(0; r),

then ordF ≤ α. Clearly, the analogous result also holds using the lower estimate of
the Jacobian from Theorem 1.1.

Proposition 3.2. If F ⊆ LS(Bn) and Ψ ∈ Aut1 Cn, then ord Λ[Ψ ◦ F] = ord Λ[F].

Proof. Let g = Λϕ[Ψ ◦ f ] for some ϕ ∈ AutBn and f ∈ F. For all z ∈ Bn,

Jg(z) =
JΨ(f(ϕ(z)))Jf(ϕ(z))Jϕ(z)

JΨ(f(ϕ(0)))Jf(ϕ(0))Jϕ(0)

=
Jf(ϕ(z))Jϕ(z)

Jf(ϕ(0))Jϕ(0)

= JΛϕ[f ](z).

(3.2)

Suppose α = ord Λ[F] < ∞. Any g ∈ Λ[Ψ ◦ F] has the form above, and, by
Theorem 1.1, we have

|Jg(z)| = |JΛϕ[f ](z)| ≤ (1 + ‖z‖)α−(n+1)/2

(1− ‖z‖)α+(n+1)/2
, z ∈ Bn,

using (3.2). By Remark 3.1, we conclude that ord Λ[Ψ◦F] ≤ α. Since Ψ−1 ∈ Aut1 Cn,
we apply the same argument as above to obtain

α = ord Λ[F] = ord Λ[Ψ−1 ◦ (Ψ ◦ F)] ≤ ord Λ[Ψ ◦ F],

as needed in this case.
If ord Λ[F] = ∞, then let α ≥ (n + 1)/2. By Remark 3.1, there exist f ∈ F,

ϕ ∈ AutBn, and z ∈ Bn such that

|Jg(z)| = |JΛϕ[f ](z)| > (1 + ‖z‖)α−(n+1)/2

(1− ‖z‖)α+(n+1)/2

for g = Λϕ[Ψ◦f ] ∈ Λ[Ψ◦F] by (3.2). It follows from Theorem 1.1 that ord Λ[Ψ◦F] > α.
The arbitrary choice of α implies the result in this case. �

Remark 3.3. Godula, Liczberski, and Starkov [5] used Theorem 1.4 in a similar manner
to argue that if f, g ∈ LS(Bn) are such that Jf(z) = Jg(z) for all z ∈ Bn, then
ord Λ[{f}] = ord Λ[{g}]. While their proof depends on the families being assumed to
have finite order, the case of infinite order can be addressed as we have in the proof
of Proposition 3.2. Were this done, one could also prove Proposition 3.2 using their
result.
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A notable point of interest in the following corollary is that the family G is
linear-invariant without needing to be generated by a smaller family.

Corollary 3.4. Let F ⊆ LS(Bn) be a linear-invariant family. Then

G =
⋃

Ψ∈Aut1 Cn

Ψ ◦ F

is a linear-invariant family and ordG = ordF.

Proof. Once we verify that G is a linear-invariant family, the order claim follows from
Proposition 3.2. Let f ∈ F, Ψ ∈ Aut1 Cn, and ϕ ∈ AutBn. For any a ∈ Cn, let
Sa ∈ AutCn be the translation given by Sa(z) = z + a. Let

Ψ0 = Dϕ(0)−1Df(ϕ(0))−1DΨ(f(ϕ(0)))−1 ◦ S−Ψ(f(ϕ(0)))

◦Ψ ◦ Sf(ϕ(0)) ◦Df(ϕ(0))Dϕ(0).

Then it is elementary to see that Ψ0 ∈ Aut1 Cn. A direct calculation reveals Λϕ[Ψ ◦
f ] = Ψ0 ◦ Λϕ[f ] ∈ G, as needed. �

Remark 3.5. Proposition 3.2 and Corollary 3.4 are only interesting if n ≥ 2. Indeed,
if n = 1, then Aut1 C = {I1} and thus G = F in Corollary 3.4.

When n ≥ 2, Corollary 3.4 makes clear that linear-invariant families of finite
order on Bn are not, in general, normal families no matter the order. (This has previ-
ously been established; see [18], for instance.) Indeed, for any function G ∈ H0(Cn−1),

consider the shear ΨG as in (3.1). Let P̂ ∈ L(Cn,Cn−1) be given by P̂ z = ẑ for z ∈ Cn.
For any element f of the linear-invariant family G in Corollary 3.4 and G as described
here such that G(P̂ f(z)) 6= 0 for some z ∈ Bn, we have that ΨtG ◦ f ∈ G for all t > 0.
Clearly, {ΨtG ◦ f : t > 0} is not locally uniformly bounded.

Note that this is in contrast to linear-invariant families with finite norm order,
which must be normal families as noted in Section 1. Furthermore, since the norm
order agrees with the order when n = 1, the above observation only holds for n ≥ 2.

Many extension operators studied in conjunction with the theories of geometric
mappings and Loewner chains are of the form Φ[f ] = ΨG ◦Φ1,n−1,β [f ] for f ∈ LS(D)
where G ∈ H0(Cn−1) and β ∈ [0, 1/2]. (See [13] for instance.) We now see from
Theorem 2.3 and Proposition 3.2 that the extension operator Φn,m,β,G : LS(Bn) →
LS(Bn+m) given by

Φn,m,β,G[f ](z, w) = (f(z) +G([Jf(z)]βw), [Jf(z)]βw), (z, w) ∈ Bn+m,

where β ∈ C and G ∈ H0(Cm), is such that for any linear-invariant family F on Bn,
we have

ord Λ[Φn,m,β,G[F]] = ord Λ[ΨG ◦ Φn,m,β [F]] = α|1 +mβ|+ m|1− β(n+ 1)|
2

if α = ordF <∞ and, likewise,

ord Λ[Φn,m,β,G[F]] =

{
∞ if β 6= −1/m,
(n+m+ 1)/2 if β = −1/m,

if ordF = ∞. In particular, this process produces families of minimum order on
Bn+m when beginning with a linear-invariant family of minimum order on Bn for all
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G ∈ H0(Cm) and β ∈ [−1/m, 1/(n + 1)] (see Corollary 2.5) or when beginning with
any linear-invariant family for all G ∈ H0(Cm) and β = −1/m.

This is of note even when extending linear-invariant families on D (in which case
Theorem 2.3 reduces to a result in [7] if β ∈ [0, 1/2], as noted previously). Recall from
Section 1 that K(Bn) is a linear-invariant family that has minimum order if and only
if n = 1. We see that Λ[Φ1,n−1,β,G[K(D)]] is a linear-invariant family of minimum
order on Bn for any β ∈ [−1/(n− 1), 1/2] and G ∈ H0(Cn−1) if n ≥ 2. For G = 0 and
β ≥ 0, this family is a subset of K(Bn) if and only if β = 1/2, as shown in [7] (see
also [10]). For β = 1/2, it was shown in [15] (see also [14]) that this family is a subset
of K(Bn) if and only if G = Q, where Q : Cn−1 → C is a homogeneous polynomial of
degree 2 such that

‖Q‖ = sup
u∈Sn−1

|Q(u)| ≤ 1

2
.

Thus, for many choices of β and G, Λ[Φ1,n−1,β,G[K(D)]] is a linear-invariant fam-
ily of minimum order not lying in K(Bn), while Λ[Φ1,n−1,1/2,Q[K(D)]] is a linear-
invariant family of minimum order lying within K(Bn) when ‖Q‖ ≤ 1/2. We note that
Λ[Φ1,n−1,1/2,Q[K(D)]] was noted by Kohr to have minimum order (without proof) for
‖Q‖ of any size in [12].

In view of Corollary 3.4, we also see that⋃
Ψ∈Aut1 Cn

⋃
β∈[−1/(n−1),1/2]

Ψ ◦ Λ[Φ1,n−1,β [K(D)]]

is a linear-invariant family of rather substantial size of minimum order on Bn.
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