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1. Introduction

Let a, b ∈ R+, with a < b. Let C[a, b] be the set of all real valued functions
which are continuous on the interval [a, b]. Using a vectorial form of Maia’s fixed point
theorem, we study the existence and uniqueness of solutions (x1, x2) ∈ (C[a, b])2 for
the following Fredholm integral equation systems:x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

(1.1)

and x1(t) = g1(t) +
∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

(1.2)

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
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2. Preliminaries

We recall here some notions, notations and results which will be used in the
sequel of this paper.

2.1. L-space

The notion of L-space was introduced in 1906 by M. Fréchet ([4]). It is an abstract
space in which works one of the basic tools in the theory of operatorial equations,
especially in the fixed point theory: the sequence of successive approximations method.

Let X be a nonempty set. Let s(X) :=
{
{xn}n∈N | xn ∈ X, n ∈ N

}
. Let c(X)

be a subset of s(X) and Lim : c(X) → X be an operator. By definition, the triple
(X, c(X), Lim) is called L-space (denoted by (X,→)) if the following conditions are
satisfied:

(i) if xn = x, for all n ∈ N, then {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x.
(ii) if {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x, then for all subsequences {xni

}i∈N of
{xn}n∈N, we have that {xni}i∈N ∈ c(X) and Lim{xni}i∈N = x.

A simple example of an L-space is the pair (X,
d→), where X is a nonempty set

and
d→ is the convergence structure induced by a metric d on X.
In general, an L-space is any nonempty set endowed with a structure implying a

notion of convergence for sequences. Other examples of L-spaces are: Hausdorff topo-
logical spaces, generalized metric spaces in Perov’ sense (i.e. d(x, y) ∈ Rm+ ), generalized
metric spaces in Luxemburg’ sense (i.e. d(x, y) ∈ R+ ∪ {+∞}), K-metric spaces (i.e.
d(x, y) ∈ K, where K is a cone in an ordered Banach space), gauge spaces, 2-metric
spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces.

2.2. Picard operators and weakly Picard operators on L-spaces

Let (X,→) be an L-space. An operator f : X → X is called weakly Picard
operator (WPO) if the sequence of successive approximations, {fn(x)}n∈N, converges
for all x ∈ X and its limit (which generally depend on x) is a fixed point of f .

If an operator f is WPO and the fixed point set of f is a singleton, Ff = {x∗},
then by definition, f is called Picard operator (PO).

For a WPO, f : X → X, we define the operator f∞ : X → X, by

f∞(x) := lim
n→∞

fn(x).

Notice that, f∞(X) = Ff , i.e., f∞ is a set retraction of X on Ff .
If X is a nonempty set, then the triple (X,→,≤) is an ordered L-space if (X,→)

is an L-space and ≤ is a partial order relation on X which is closed with respect to
the convergence structure of the L-space.

In the setting of ordered L-spaces, we have some properties concerning WPOs
and POs.

Theorem 2.2.1 (Abstract Gronwall Lemma). Let (X,→,≤) be an ordered L-space and
f : X → X be an increasing WPO. Then:

(i) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞(x);
(ii) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞(x).
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In particular, if f is a PO and we denote Ff = {x∗}, then:

(i′) ∀ x ∈ X, x ≤ f(x) ⇒ x ≤ x∗;
(ii′) ∀ x ∈ X, x ≥ f(x) ⇒ x ≥ x∗.

Theorem 2.2.2 (Abstract Comparison Lemma). Let (X,→,≤) be an ordered L-space
and the operators f, g, h : X → X be such that:

(1) f ≤ g ≤ h;
(2) f, g, h are WPOs;
(3) g is increasing.

Then:

x, y, z ∈ X, x ≤ y ≤ z ⇒ f∞(x) ≤ g∞(y) ≤ h∞(z).

In particular, if f, g, h are POs and we denote Ff = {x∗}, Fg = {y∗}, Fh = {z∗},
then

∀ x, y, z ∈ X, x ≤ y ≤ z ⇒ x∗ ≤ y∗ ≤ z∗.

Regarding the theory of WPOs and POs see [12], [13], [15], [16], [18], [11], [17], [3].

2.3. Maia’s fixed point theorem

The following result was proved by M.G. Maia in [5].

Theorem 2.3.1. Let X be a nonempty set, d and ρ be two metrics on X and V : X → X
be an operator. We suppose that:

(1) there exists c > 0 such that, d(x, y) ≤ cρ(x, y), ∀ x, y ∈ X;
(2) (X, d) is a complete metric space;
(3) V : (X, d)→ (X, d) is continuous;
(4) V : (X, ρ)→ (X, ρ) is an l-contraction, i.e.,

∃ l ∈ [0, 1) such that ρ(V (x), V (y)) ≤ lρ(x, y), ∀ x, y ∈ X.

Then:

(i) FV = {x∗};
(ii) V : (X, d)→ (X, d) is PO.

Maia’s Theorem 2.3.1 remains true if we replace the condition (1) with the following
one:

(1′) there exists c > 0 such that, d(V (x), V (y)) ≤ cρ(x, y), ∀ x, y ∈ X.

Hence, we obtain the so called Rus’ variant of Maia’s fixed point theorem. More
considerations can be found in [11], [9], [10], [14].
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2.4. Matrices which converge to zero

We denote by Mm(R+) the set of all m ×m square matrices with positive real
elements, by Im the identity m×m matrix and by Om the zero m×m matrix.

A ∈Mm(R+) is said to be convergent to zero if An → Om as n→∞.
Some examples of matrices that converge to zero are the following:

a) A =

(
a a
b b

)
∈M2(R+), where a, b ∈ R+ and a+ b < 1;

b) A =

(
a b
a b

)
∈M2(R+), where a, b ∈ R+ and a+ b < 1;

c) A =

(
a b
0 c

)
∈M2(R+), where a, b, c ∈ R+ and max{a, c} < 1.

A classical result in matrix analysis is the following theorem (see [19], [1]), which
characterizes the matrices that converge to zero.

Theorem 2.4.1. Let A ∈Mm(R+). The following assertions are equivalent:

(1) A is convergent to zero;
(2) its spectral radius ρ(A) is strictly less than 1; that is, |λ| < 1, for any λ ∈ C

with det(A− λIm) = 0;
(3) the matrix (Im −A) is nonsingular and

(Im −A)−1 = Im +A+A2 + . . .+An + . . . ;

(4) the matrix (Im −A) is nonsingular and (Im −A)−1 has nonnegative elements.

Throughout this paper, we will make an identification between row and column vectors
in Rm.

2.5. Vector-valued metric spaces

Let X be a nonempty set. A mapping d : X ×X → Rm+ is called a vector-valued
metric on X if the following conditions are satisfied:

(1) d(x, y) = 0 ∈ Rm ⇔ x = y, for all x, y ∈ X;
(2) d(x, y) = d(y, x), for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

On Rm+ , the relation ≤ is defined in the component-wise sense.
Some examples of vector-valued metrics are the following:

Example 2.5.1. Let X := (C[a, b])2 and d : (C[a, b])2 × (C[a, b])2 → R2
+, defined by

d(x, y) :=

(
max
t∈[a,b]

|x1(t)− y1(t)|, max
t∈[a,b]

|x2(t)− y2(t)|
)
,

for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2.

Example 2.5.2. Let X := (C[a, b])2 and ρ : (C[a, b])2 × (C[a, b])2 → R2
+, defined by

ρ(x, y) :=

(∫ b

a

|x1(t)− y1(t)|2dt

) 1
2

,

(∫ b

a

|x2(t)− y2(t)|2dt

) 1
2

 ,
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for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2.

A nonempty set X endowed with a vector-valued metric d is called a generalized
metric space in Perov’ sense (or a Rm+ -metric space) and it is denoted by the pair
(X, d). The notions of convergent sequence, Cauchy sequence, completeness, open
and closed subset and so forth are similar to those defined for usual metric spaces.
The basic fixed point result which holds in generalized metric spaces in Perov’ sense
is the following (see [6], [7]).

Theorem 2.5.3 (Perov’s fixed point theorem). Let (X, d) be a complete generalized
metric space, where d : X ×X → Rm+ . Let f : X → X be an A-contraction, i.e. there
exists a matrix A ∈Mm(R+) convergent to zero, such that

d(f(x), f(y)) ≤ Ad(x, y),∀ x, y ∈ X.

Then f is PO in the L-space (X,
d→).

Remark 2.5.4. It would be of interest to extend the study from [8] and [2] to the case
of vector-valued metric spaces.

3. Vectorial Maia’s fixed point theorems

In this section we present the Rus’ variant of Maia’s fixed point theorem in the
setting of generalized metric spaces in Perov’s sense.

Theorem 3.1. Let X be a nonempty set, endowed with two vector-valued metrics,
d, ρ : X ×X → Rm+ . Let T : X → X be an operator. We assume that:

(1) there exists a matrix C ∈Mm(R+) such that

d(T (x), T (y)) ≤ Cρ(x, y), ∀ x, y ∈ X;

(2) (X, d) is a complete generalized metric space;
(3) T : (X, d)→ (X, d) is continuous;
(4) T : (X, ρ)→ (X, ρ) is an A-contraction, i.e. there exists a matrix A ∈Mm(R+)

convergent to zero, such that

ρ(T (x), T (y)) ≤ Aρ(x, y), ∀ x, y ∈ X.

Then T is PO in the L-spaces (X,
d→) and (X,

ρ→).

Proof. Let x0 ∈ X. By (4), the sequence of successive approximations {Tn(x0)}n∈N
is a Cauchy sequence in (X, ρ). Indeed, for n, p ∈ N we have

ρ(Tn(x0), Tn+p(x0)) ≤
n+p−1∑
k=n

ρ(T k(x0), T k+1(x0)) ≤
n+p−1∑
k=n

Akρ(x0, T (x0))

≤ An(Im −A)−1ρ(x0, T (x0))→ 0 as n, p→∞.
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By (1), we get that {Tn(x0)}n∈N is a Cauchy sequence in (X, d). By (2), there exists

x∗ ∈ X, such that Tn(x0)
d→ x∗ as n→∞. By (3), it follows that x∗ ∈ FT , since

d(x∗, T (x∗)) ≤ d(x∗, Tn(x0)) + d(Tn(x0), T (x∗))

= d(x∗, Tn(x0)) + d(T (Tn−1(x0)), T (x∗))

→ d(x∗, x∗) + d(T (x∗), T (x∗)) = 0, as n→∞.

By (4), we obtain the uniqueness of the fixed point x∗. Hence T is PO in (X,
d→).

We show next that T is PO in (X,
ρ→).

For any x0 ∈ X, since x∗ ∈ FT , by (4) we have

ρ(x∗, Tn(x0)) = ρ(Tn(x∗), Tn(x0)) ≤ Anρ(x∗, x0)→ 0 as n→∞

which implies that Tn(x0)
ρ→ x∗ as n→∞. Since x∗ is the unique fixed point, we get

that T is PO in (X,
ρ→). �

Remark 3.2. Notice that, in the proof of the above result, Perov’s Theorem cannot be
applied for T : (X, ρ) → (X, ρ), because the lack of completeness of the generalized
metric space (X, ρ).

Remark 3.3. From the proof of the above result, we can deduce the following weak
Perov’s contraction principle:

Theorem 3.4. Let (X, ρ) be a generalized metric space, where ρ : X ×X → Rm+ . Let
T : X → X be an operator. We assume that:

(i) FT 6= ∅;
(ii) there exists a matrix A ∈ Mm(R+) which converges to zero, such that

ρ(T (x), T (y)) ≤ Aρ(x, y), for all x, y ∈ X.

Then T is PO in the L-space (X,
ρ→).

Another fixed point result of Maia type in vectorial form is the following.

Theorem 3.5. Let X be a nonempty set, endowed with two vector-valued metrics,
d, ρ : X ×X → Rm+ . Let T : X → X be an operator. We assume that:

(1) FT 6= ∅;
(2) there exists a matrix C ∈Mm(R+) such that

d(T (x), T (y)) ≤ Cρ(x, y), ∀ x, y ∈ X;

(3) T : (X, ρ)→ (X, ρ) is an A-contraction, i.e. there exists a matrix A ∈Mm(R+)
convergent to zero, such that

ρ(T (x), T (y)) ≤ Aρ(x, y), ∀ x, y ∈ X.

Then T is PO in the L-spaces (X,
d→) and (X,

ρ→).

Proof. By applying Theorem 3.4, T is PO in (X,
ρ→). So FT = {x∗}. For any x0 ∈ X,

d(x∗, Tn+1(x0)) = d(Tn+1(x∗), Tn+1(x0))

≤ Cρ(Tn(x∗), Tn(x0))

≤ CAnρ(x∗, x0)→ 0
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as n→∞. So T is PO in (X,
d→). �

4. Applications of vectorial Maia’s fixed point theorem

In this section we study the existence and uniqueness of solutions for Fredholm
integral equations systems (1.1) and (1.2), by applying the vectorial Maia’s fixed point
theorem.
First, let us consider the system (1.1)x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R), are given functions.
We are searching the conditions in which the system (1.1) has a unique solution
(x1, x2) ∈ (C[a, b])2.
We assume that there exist LKj , LHj > 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2}.

On X := (C[a, b])2 we consider the metrics d, ρ : X ×X → R2
+, where

d(x, y) :=

max
t∈[a,b]

|x1(t)− y1(t)|

max
t∈[a,b]

|x2(t)− y2(t)|

 (4.1)

and

ρ(x, y) :=

(∫ ba |x1(t)− y1(t)|2dt
) 1

2( ∫ b
a
|x2(t)− y2(t)|2dt

) 1
2

 , (4.2)

for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2.
We consider the operator T : (C[a, b])2 → (C[a, b])2, defined by

T (x)(t) =

(
T1(x)(t)

T2(x)(t)

)

:=

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

) (4.3)

for all x = (x1, x2) ∈ (C[a, b])2.
We have,

ρ(T (x), T (y)) =

(∫ ba |T1(x)(t)− T1(y)(t)|2dt
) 1

2( ∫ b
a
|T2(x)(t)− T2(y)(t)|2dt

) 1
2


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and(
|T1(x)(t)− T1(y)(t)|
|T2(x)(t)− T2(y)(t)|

)
≤

(∫ b
a

∣∣K1(t, s, x1(s))−K1(t, s, y1(s))
∣∣ds∫ b

a

∣∣K2(t, s, x2(s))−K2(t, s, y2(s))
∣∣ds
)

+

(∫ b
a

∣∣H1(t, s, x1(s))−H1(t, s, y1(s))
∣∣ds∫ b

a

∣∣H2(t, s, x2(s))−H2(t, s, y2(s))
∣∣ds
)

≤

(∫ b
a
LK1 |x1(s)− y1(s)|ds∫ b

a
LK2
|x2(s)− y2(s)|ds

)
+

(∫ b
a
LH1 |x1(s)− y1(s)|ds∫ b

a
LH2
|x2(s)− y2(s)|ds

)
Hölder’s
inequality

≤

([( ∫ b
a
|LK1

|2ds
) 1

2 +
( ∫ b

a
|LH1

|2ds
) 1

2
]( ∫ b

a
|x1(s)− y1(s)|2ds

) 1
2[( ∫ b

a
|LK2 |2ds

) 1
2 +

( ∫ b
a
|LH2 |2ds

) 1
2
]( ∫ b

a
|x2(s)− y2(s)|2ds

) 1
2

)

=

((
LK1

+ LH1

)√
b− aρ̃(x1, y1)(

LK2
+ LH2

)√
b− aρ̃(x2, y2)

)
,

where

ρ̃(x1, y1) :=

(∫ b

a

|x1(s)− y1(s)|2ds

) 1
2

, ρ̃(x2, y2) :=

(∫ b

a

|x2(s)− y2(s)|2ds

) 1
2

.

Hence,

ρ(T (x), T (y)) ≤

(∫ ba [(LK1
+ LH1

)
√
b− aρ̃(x1, y1)]2dt

) 1
2( ∫ b

a
[(LK2 + LH2)

√
b− aρ̃(x2, y2)]2dt

) 1
2


=

(
(LK1

+ LH1
)(b− a)ρ̃(x1, y1)

(LK2 + LH2)(b− a)ρ̃(x2, y2)

)
= Aρ(x, y),

where

A :=

(
(LK1

+ LH1
)(b− a) 0

0 (LK2
+ LH2

)(b− a)

)
∈M2(R+)

is a matrix that converges to zero if (LK1 +LH1)(b−a) < 1 and (LK2 +LH2)(b−a) < 1.
So, if we add these two conditions, T becomes an A-contraction with respect to ρ.
In addition, for all x, y ∈ C[a, b], we have d(T (x), T (y)) ≤ Cρ(x, y), where

C :=

(
(LK1

+ LH1
)
√
b− a 0

0 (LK2
+ LH2

)
√
b− a

)
∈M2(R+).

By applying Theorem 3.1, the system (1.1) has a unique solution in (C[a, b])2. Hence,
we have obtained the following result:

Theorem 4.1. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds
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where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj , LHj > 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj |u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};
(ii) (LK1

+ LH1
)(b− a) < 1 and (LK2

+ LH2
)(b− a) < 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.

Remark 4.2. By Theorem 3.1, the operator T defined in (4.3) is PO. Hence, for all
t ∈ [a, b] we have x∗(t) = lim

n→∞
xn(t), for each x0 = (x10, x

2
0) ∈ (C[a, b])2, where

{xn}n∈N ⊂ (C[a, b])2 is defined by

xn+1(t) =

(
x1n+1(t)
x2n+1(t)

)
=

(
g1(t) +

∫ b
a
K1(t, s, x1n(s))ds+

∫ b
a
H1(t, s, x1n(s))ds

g2(t) +
∫ b
a
K2(t, s, x2n(s))ds+

∫ b
a
H2(t, s, x2n(s))ds

)
.

Corollary 4.3. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds

where g1, g2 ∈ C[a, b], K1,K2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj
> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};
(ii) LK1(b− a) < 1 and LK2(b− a) < 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.

Proof. We apply Theorem 4.1, by considering H1 and H2 as zero functions and by
taking LH1

= 0 and LH2
= 0. �

Now, let us consider the system (1.2)x1(t) = g1(t) +
∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that there exist LKj

, LHj
> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2}.
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On X := (C[a, b])2 we consider the metrics d, ρ : X × X → R2
+ defined as in

(4.1) and (4.2). Also, we consider the operator T : (C[a, b])2 → (C[a, b])2, defined by

T (x)(t) =

(
T1(x)(t)

T2(x)(t)

)

:=

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

) (4.4)

for all x = (x1, x2) ∈ (C[a, b])2.

In a similar manner as shown for the system (1.1), we get ρ(T (x), T (y)) ≤ Aρ(x, y),
for all x, y ∈ (C[a, b])2, where

A :=

(
LK1

(b− a) LH1
(b− a)

LH2
(b− a) LK2

(b− a)

)
∈M2(R+).

The matrix A converges to zero if∣∣(LK1
+ LK2

)±
√

(LK1
+ LK2

)2 − 4(LK1
LK2

− LH1
LH2

)
∣∣

2
(b− a) < 1.

So, if we add this condition, T becomes an A-contraction with respect to ρ.

In addition, for all x, y ∈ (C[a, b])2, we obtain d(T (x), T (y)) ≤ Cρ(x, y), where

C :=

(
LK1

√
b− a LH1

√
b− a

LH2

√
b− a LK2

√
b− a

)
∈M2(R+).

By applying Theorem 3.1, the system (1.2) has a unique solution in (C[a, b])2. Hence,
we have obtained the following result:

Theorem 4.4. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.

We assume that:

(i) there exist LKj
, LHj

> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};

(ii) b−a
2

∣∣(LK1
+ LK2

)±
√

(LK1
+ LK2

)2 − 4(LK1
LK2

− LH1
LH2

)
∣∣ < 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.
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Remark 4.5. By Theorem 3.1, the operator T defined in (4.4) is PO. Hence, for all
t ∈ [a, b] we have x∗(t) = lim

n→∞
xn(t), for each x0 = (x10, x

2
0) ∈ (C[a, b])2, where

{xn}n∈N ⊂ (C[a, b])2 is defined by

xn+1(t) =

(
x1n+1(t)
x2n+1(t)

)
=

(
g1(t) +

∫ b
a
K1(t, s, x1n(s))ds+

∫ b
a
H1(t, s, x2n(s))ds

g2(t) +
∫ b
a
K2(t, s, x2n(s))ds+

∫ b
a
H2(t, s, x1n(s))ds

)
.

Corollary 4.6. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LHj
> 0, j ∈ {1, 2} such that:

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj |u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};

(ii) (b− a)
√
LH1

LH2
< 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.

Proof. We apply Theorem 4.4, by considering K1 and K2 as zero functions and by
taking LK1

= 0 and LK2
= 0. �

5. Abstract Gronwall lemmas

Since the operators T , defined in (4.3) and (4.4), are POs, by using Theorem
2.2.1 we can establish the following abstract Gronwall lemmas for our systems (1.1)
and (1.2).

Theorem 5.1. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj
, LHj

> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj |u− v|,
|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj |u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};
(ii) (LK1

+ LH1
)(b− a) < 1 and (LK2

+ LH2
)(b− a) < 1;
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(iii) Kj(t, s, ·), Hj(t, s, ·) : R → R are increasing functions, for all t, s ∈ [a, b] and
j ∈ {1, 2}.

Let x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2 be the unique solution of the system.

Then the following implications hold:

(1) for all x = (x1, x2) ∈ (C[a, b])2 with(
x1(t)
x2(t)

)
≤

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

)
,

for all t ∈ [a, b], we have x ≤ x∗;
(2) for all x = (x1, x2) ∈ (C[a, b])2 with(

x1(t)
x2(t)

)
≥

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

)
,

for all t ∈ [a, b], we have x ≥ x∗.
Theorem 5.2. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj
, LHj

> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj |u− v|,
|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj

|u− v|,
for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};

(ii) b−a
2

∣∣(LK1
+ LK2

)±
√

(LK1
+ LK2

)2 − 4(LK1
LK2

− LH1
LH2

)
∣∣ < 1;

(iii) Kj(t, s, ·), Hj(t, s, ·) : R → R are increasing functions, for all t, s ∈ [a, b] and
j ∈ {1, 2}.

Let x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2 be the unique solution of the system.

Then the following implications hold:

(1) for all x = (x1, x2) ∈ (C[a, b])2 with(
x1(t)
x2(t)

)
≤

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

)
,

for all t ∈ [a, b], we have x ≤ x∗;
(2) for all x = (x1, x2) ∈ (C[a, b])2 with(

x1(t)
x2(t)

)
≥

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

)
,

for all t ∈ [a, b], we have x ≥ x∗.
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6. Abstract comparison lemmas

We can establish also some abstract comparison results, taking into account
Theorem 2.2.2. One of them is the following.

Theorem 6.1. Let a, b ∈ R+ with a < b. We consider the systems of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

(6.1)

y1(t) = g3(t) +
∫ b
a
K3(t, s, y1(s))ds+

∫ b
a
H3(t, s, y1(s))ds

y2(t) = g4(t) +
∫ b
a
K4(t, s, y2(s))ds+

∫ b
a
H4(t, s, y2(s))ds

(6.2)

z1(t) = g5(t) +
∫ b
a
K5(t, s, z1(s))ds+

∫ b
a
H5(t, s, z1(s))ds

z2(t) = g6(t) +
∫ b
a
K6(t, s, z2(s))ds+

∫ b
a
H6(t, s, z2(s))ds

(6.3)

where gi ∈ C[a, b], for all i = 1, 6 and Kj , Hj ∈ C([a, b]× [a, b]×R,R), for all j = 1, 6,
are given functions.

We assume that:

(i) there exist LKj
, LHj

> 0, j = 1, 6 such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j = 1, 6;
(ii) (LKj

+ LHj
)(b− a) < 1, for all j = 1, 6;

(iii) Kj(t, s, ·), Hj(t, s, ·) : R → R are increasing functions, for all t, s ∈ [a, b] and
j = 3, 4;

(iv) for all t ∈ [a, b],(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

)

≤

(
g3(t) +

∫ b
a
K3(t, s, x1(s))ds+

∫ b
a
H3(t, s, x1(s))ds

g4(t) +
∫ b
a
K4(t, s, x2(s))ds+

∫ b
a
H4(t, s, x2(s))ds

)

≤

(
g5(t) +

∫ b
a
K5(t, s, x1(s))ds+

∫ b
a
H5(t, s, x1(s))ds

g6(t) +
∫ b
a
K6(t, s, x2(s))ds+

∫ b
a
H6(t, s, x2(s))ds

)
.

Let x∗ = (x∗1, x
∗
2), y∗ = (y∗1 , y

∗
2), z∗ = (z∗1 , z

∗
2) ∈ (C[a, b])2 be the unique solutions of

the systems (6.1), (6.2) and respectively (6.3) .

Then for any x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ (C[a, b])2 we have

x ≤ y ≤ z ⇒ x∗ ≤ y∗ ≤ z∗.
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[17] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca,
2008.
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