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Bounds for blow-up time in a semilinear parabolic
problem with variable exponents

Abita Rahmoune and Benyattou Benabderrahmane

Abstract. This report deals with a blow-up of the solutions to a class of semi-
linear parabolic equations with variable exponents nonlinearities. Under some
appropriate assumptions on the given data, a more general lower bound for a
blow-up time is obtained if the solutions blow up. This result extends the recent
results given by Baghaei Khadijeh et al. [8], which ensures the lower bounds for
the blow-up time of solutions with initial data ¢ (0) = [, uo”dz, k = constant.
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1. Introduction

In this paper, we are concerned with the following semilinear parabolic equation
u—Au=u"®, zeQ, t>0
u=0onl, t>0 (1.1)
u(z,0) = up(z) >0, x € Q,
where 2 be a bounded domain in R™, with a smooth boundary T' = 99, T € (0, +00],
and the initial value ug € Hg (), the exponent p (.) is given measurable function on
Q such that:
1< p =ess (i)nfp (x) < p(z) < p2 =ess supp (z) < o0, (1.2)
z€< e
and satisfy the following Zhikov-Fan uniform local continuity condition:

1
lp(z) —p(y)| < , for all z, y in Q with |z — y| <3 M>0. (1.3)

~ [log |z —yll
The problem (1.1) arises from many important mathematical models in engineering
and physical sciences. For example, nuclear science, chemical reactions, heat transfer,
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population dynamics, biological sciences, etc., and have interested a great deal of
attention in the research, see [4, 7, 9] and the references therein. For problem (1.1),
Hua Wang et al. [10] established a blow-up result with positive initial energy under
some suitable assumptions on the parameters p(.) and ug. In [9], the authors proved
that there are non-negative solutions with a blow-up in finite time if and only if
p2 > 1. The authors in [11] obtained the solution of problem (1.1) blows up in finite
time when the initial energy is positive. The following problem was considered by R.
Abita in [3]
u— Aug — Au=uP . 2€Q, t>0.

The author proved that the nonnegative classical solutions blow-up in finite time with
arbitrary positive initial energy and suitable large initial values. Also, he employed
a differential inequality technique to obtain an upper bound for blow-up time if p(.)
and the initial value satisfies some conditions. In [8], the authors based exactly on
the idea on the one in [6], derived the lower bounds for the time of blow-up, if the
solutions blow-up. In order to declare the main results of this paper, we need to add
the following energy functional corresponding to the problem (1.1) (see [2])

BE(t) = % /Q IV (8)[2 da — /Q Iﬁu(m,t)p(w)ﬂdx. (1.4)

2. Lower bounds of the blow-up time

In this section, we investigate the lower bound for the blow-up time 7" in some
suitable measure. The idea of the proof of the following theorem is inspired by on the
one in [6]. For this goal, we start by the following lemma concerning the energy of the
solution.

Lemma 2.1. Let u(z,t) be a weak solution of (1.1), then E(t) is a nonincreasing
function on [0,T], that is
dE (t
()z—/uf(a:,t)dxgo (2.1)
dt Q

and the inequality E(t) < E(0) is satisfied.

We consider the following partition of €2,
QO ={xecQ|1> k(@) —-1)hu}, Q"={zcQ|1<(k(x)—1)In|ul}, Vt >0

where each QF depends on ¢, and setting

~ 1 1 -
E(O) = 5 /_ |Vu0‘2dx — /(’z_ Wug( )+1d1'.

Now, we are in a position to affirm our principal theorem results.

Theorem 2.2. Assume ug € LF() (), and the nonnegative weak solution u(z,t) of
problem (1.1) blows up in finite time T, then T has a lower bound by:

+oo d
Y
[ 22
e(0) Cy 4 Cyrysn=s
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where
1

¢ (0) :/QWUOMJJ)CZCL‘, (2.3)

where k (.) is a measurable function on Q such that

max (1,2(n—2) (p2 — 1)) < k1 = essegilnfk () <k(x) < kg

= ess supk (z) < oo, (2.4)
zeQ
and
VCx =sup |Vk (z)] € L*(Q), Cy >0 (2.5)

€N
and C; (i =1, 2) are positive constants will be described later.
Notation 2.3. We note that the presence of the variable-exponent nonlinearities in
(2.6) below, makes analysis in the paper somewhat harder than that in the related
ones, we will establish and give a precise estimate for the lifespan T" of the solution

in this case. The method used here is the differential inequality technique. However,
our argument is considerably different and it is more abbreviated.

Proof of Theorem (2.2). Set

1 k()
o (t :/ ——u(x,t dx. 2.6
= r@E@m - 20
Multiplying the equation Eq. (1.1) by u and integrating by parts, we see
1 1
! ) = o k(x)-1 d :/ - S k(x)-1 A p(x) d
7 () /52/4(3;)_1“ = @ =1 (But ) da

L k@ / L k@+p@)-1
/Qk(if)*l ak(r)-1

1 1
=— |V uk(m)1> Vudx—i—/ —— JufE TP gy
/ (k(x)—l o k@ 1"

where we have used the divergence theorem, the boundary condition on wu.
It is straightforward to check that

1 k(a)=1Y) _ o k(z) |, |2 VE(®) k@)1 1
V(k(z)—lu = u”" Jul Vu+k(1:)—1u In |ul R -1

then, we get
_ 1
o' (t) = —/ uF@) u) 72 | Vul? d —|—/ — @@l 4 9 (2.7)
Q Q k (.f) -1

where

= yFE) -1 1 B 1 . ) .
) /‘ <<k<x>—1>2 GACEDRS ')V’“( ) Vud
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Considering the following properties of the function G,
A7 1
g()\):?(l—'yln)\), 0<A<er;

G(0)=G(e7) =0, ¢ =-X""lnA, max G(N)=G(1) =,

0<A<e v

and using the fact that

/_|vu|2dxgzﬁ(0)+2/

. Wu(m,t)pum dz, (by (1.4) and (2.1))

applying the Holder, Young inequalities and (2.5), Q is evaluated as follows:

= [ Pt L — ! nlu x).Vudr
Q_/Q ((k:(a:)—l)2 K@ -1 |>Vk( ) Vud

, 1 1
_/ TS 5 — In|u| | V& (x) . Vudz
QN(1> (k(2)—1) Infu(,)]) (k(z)-1)°  k(z) -1
/ L)1 1 o1
2
QN1 (k(2)—1) Infu(a,)]) (k(z)-1)"  k(z)—

;uk(ﬂ*l —(k(z)=1Dlnlu u x)| dz
< [ G A= (k) D) 19l 9 o)

< /Q W \VE ()| |Vu| dz < 2(k11—1)2 <Ck +/_ |Vu|2dx)

T In |u|> Vk (z) .Vudx

1
<—— (cv+2E( +2/ S — z,tp(“”“dx)
2(k11)2<k O+ ) w1
1 2
< 5 <C’k +2E(0) + max </ u[P> ! dx,/ Ju|Pr T da:))
2(k; — 1) p+1 a- -
<1 (10 FE@O) + L BS |Q|) (2.8)
—_—5 by ek1-1 . .
-2 \27" pLt1
Because in Q1, we have
1 1
|| @)~ - In|u| | |Vk (z)| dz < 0,
/ (k(z)—1)?* Fk(z)—1

O+

while that of the first term in the right-hand side of (2.7) was estimated as follows

—/ [uf®)=2 |V u[? dz < — min (/ 2 |w2da:,/ |uk1_2|Vu|2d1;).
Q Q Q

Using the fact
VU] = a7~ [Vl
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to get
—/ \u|k(gc)_2 |Vul? do < —min( / ’ / ‘Vu 2 da:) (2.9)
Q
Plugging this estimate (2.8) and (2.9) into (2.7), we obtain
¢ (t) < min / ‘ 72 / ‘Vu 2| dx
Q k1
1
+ uk(z)"’p?_ldx—k /uk(z)ﬂ’l_ldas
ki —1 /Q ki—1Jq
1 1 1 potl
+— [ =Cr+ E(0) + ek1-1 Q) 2.10
i (G0 B0+ e (2.10)
By using (2.4), we can apply the Holder and Young inequalities to get
/ WF@FP—lgy < / Londz +/ g T (2.11)
Q Q Q
k(x)(2n—3)
< (supaq) Q] + (sup az) </ w22 da:) ,
Q
and
/ R R / l.asdx +/ a5 4y (2.12)
Q Q Q
k(z)(2n—3)
< <supa3> 1| + (supa4> (/ u~ 2(n=2) dm) ,
Q Q Q
where
2 =2)(k(z)+p2—1) _2n—=2)(k(x)+p2—1)
oap=1-— , Qo = ’
(2n —3) k (x) (2n —3)k (z)
20k @ ) 20 (k@) tp 1)
s (2n — 3)k (x) e (2n — 3) k (z) ’

observe that as > a4 and o < ag.
Combining (2.11) and (2.12) with (2.10) give
( ‘Vu? dac—i—/ ’Vu2 dac)
k() (2n—3)
( pa2> u 20=2) dx

1 1 0
+W <2Ck+E(O)+p1 +1 k1 T |Q> kll _|1$l§12p (Ot3—|—oz1) (213)
1 —

¢ (t) <
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We now make use of Schwarz’s inequality to the second term on the right-hand side
of (2.13) as follows

1 1
/ uk(gzggm dr < (/ uk(z)dx) i (/ umﬁ%l)dm) ’ (2.14)
Q Q Q
b ko) \ na T
< (/ uk(z)dx) / (u 2 > dx |
Q Q

Next, by using the Sobolev inequality (see [5]), for n > 3, we get

n
ko || 2(n—2)

< B2"-2 max <HVU2

n
k(@) || 2(n—2)

2 2
u

Vu

)

2n

n—2 2

" %2 2(77.n—2) %1 2(nn—2)
< DB2n-2) Yu + |Vu ,
2 2

2

Bl
(2.15)

where B is the best constant in the Sobolev inequality.
By inserting the last inequality in (2.14) and (2.15), we have

k(z)(2n—3)
u 2(n—2) dxg
Q

2 )
< BT (/ uk(z)dx) / dx + /
Q Q Q

Now, we can use the Young inequality to get

ky

Vu?

N

kg
2

Vu

n
2 i(n—2)
dx ,

3(n—2)

[ g <opette B ([ aeop) T g
o Q

4(n—2)em-s
T (:i ) ( /Q dz + /Q d:c)

where ¢ is a positive constant to be determined later. Combining (2.16) with (2.13),

we obtain
3(n—2) ko |2 Ky |2
o (1) < O+ Cop () FF 1y ( [ vt s [ |out dx),
Q Q

Vu Vu

where
C 1 Lo L E0)+ ! Ao + it (a3 + ay)
p— —_ 1— ~
k-t 2t 1 ol o
n 3n—8
Cy = supoy | B3n—8
2 k1 — (Qp 2) 4(n—2)esn-3
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If we choose € > 0 such that
4(n—2)(k1 —1)

(Sgpog) n (ks)?

0<e<

then, we obtain the differential inequality

3(n—2)

QOI (t) < Cl + CQQD (t) Sn—8 (217)
Integration of the differential inequality (2.17) from 0 to ¢ leads to
w(t) d
g
©(0) Cy + Cyy3n=3

In fact, let t — T, (2.18) leads to

+oo d
/ g 3(n—2) <T.
?(0) Cp + Cyy3n=s

where
1

0= ———— u"®dz.
0= [ rmr@
Thus, the proof is achieved. O
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