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1. Introduction

The study of PDE problems with variable exponents is a novel and quite inter-
esting topic. It comes from the theory of nonlinear elasticity, elastic mechanics, fluid
dynamics, electrorheological fluids, and image processing, etc. (see [1], [15], [16]).
First, we introduce the notations needed in this article. Let € an connected open
bounded domain of RY (N = 3) with Lipschitz boundary T'. To a given field of dis-
placement u, we associate a nonlinear deformation tensor E defined by

1
E (Vu(x)) = 3 (Vu™ + Vu + Vu' Va) ,

whose components are:

3

1 0u;  Ouy Oy, Oy, L.
- — - < < 3. .
Eij (Vu(@)) = 5 (8% + 5 +mZ:1 o7, . ) ,1<i,5<3 (1.1)
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The corresponding nonlinear constraints tensor o(u) = (o;;(u(z)))i<ij<s is then
given by:
3
oij(w(@)) = 3 aijen(e) Epn(Vu(z)), 1 <i,j <3, (1.2)
k,h=1

which describes a nonlinear relation between the stress tensor (o), =123 and the de-

formation tensor (E;;) The coeflicients of elasticity a;;xn satisfy the following

symmetry properties:

i,j=1,2,3"

Qijkh = Ajikh = Qijhk, for all 1 S i,j, k, h S 3. (13)

The aim of this paper is to prove the existence and uniqueness of weak solutions
for the following nonlinear elliptic problem, encountered in the theory of nonlinear
elasticity:

-0 +—0ij(u(z)) = fiz,u(x)) in Q, 1 <i <3,
Jj= 18

oij(u(z)) = Z az‘jkh(f) Ekh(VU(m)) inQ, 1<4,j<3,
(P)
m=1

1
2
3
Yooy (u(z))n;=0o0nT, 1<¢<3.

Problem (P) models the behavior of a heterogeneous material with Neumann’s condi-
tion on the boundary. The consideration of this general material is in no way restric-
tive. Indeed, we can applied this study to the most particular elastic materials, but
this particular case makes it easy, to describe the different stages of this work. The
tensor of the constraints considered here is nonlinear and grouped, as special cases,
some models used in Ciarlet [2], Dautry-Lions [4] and Lions [10]. Let us cite by way
of example (see [2], [8]):
1. The problem of displacement for a homogeneous or heterogeneous material of St
Vennan-Kirchhoff where:
- the applied volumetric forces f are dead (does not depend on u),
- the tensor of stress is in the form (material of StVennan-Kirchhoff):

oij(u(x)) = AtrEi;(Vu(x))) + 2uEi;(Vu(x)),
1<4,7<3, A>0, u>0,
2. The coefficients of elasticity have the form:
ijpg = AijOpq + 1(0ipGjq + 0iqljp), 1 <4y J, p, ¢ <3

with, A and p depend on x or not,
3. The applied volumetric forces f have the form f(§) =
4. Some models called "LES” (Large Eddy Simulations) used in fluid mechanics.
These problems are:

Pt e

—div(¢(z)a(Vu(r))) = f(z).
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For ¢ = 1 and a(¢) = |¢[P™ 72 ¢, the above equation may be described by:
— div(|Vu"™ " vu) = 1.

The operator Ay @ u — Ay (u) = div(|VuP™ 2 Vu) is called the p (z)-

Laplacian.
Several authors studied the system of elasticity with laws of particular behavior and
using various techniques in constant exposants Sobolev spaces for example in [2]
Ciarlet used the implicit function theorem to show the existence and uniqueness of
a solution, in [4] Dautry-Lions studied the linear problem in a regular boundary
domain, in [11], [12], [13] Merouani studied the Lamé (elasticity) system in a polygonal
boundary domain.
The bibliography quoted here does not claim to be exhaustive and the deficiencies it
certainly entails must be attributed to the author’s ignorance and not to the author’s
ill will. X
To solve our problem, we will consider an operator: u — A(u) = — ZI%OM (u(z)) as

j=10%j

operator of Leray-Lions [9], with Neumann’s condition on I", and we prove a theorem of
existence and uniqueness of solution using Galerkin techniques and monotone operator
theory.
This paper is organized as follows:

- Notations and properties of variable exponent Lebesgue-Sobolev spaces,

- Hypotheses and main result,

- Proof of theorem,

- Conclusion and bibliography.

2. Properties of variable exponent Lebesgue-Sobolev spaces

In this section, we recall some definitions and basic properties of the generalized
Lebesgue-Sobolev spaces LP(*) (Q), W1P(®) (Q) and Wol’p(z) (©), when Q is a bounded
open set of RY(N > 1) with a smooth boundary.

Let p: Q — [1,+00) be a continuous, real-valued function.

Denote by p— = min p(x) and p; = max p(x).
zeQ z€eQ
We introduce the variable exponent Lebesgue space

L@ (Q) = {u :  — R;u is measurable with / u ()P do < oo} ,
Q

endowed with the Luxemburg norm

Hu||LIJ(w)(Q) = inf {/\ >0: /Q

The following inequality will be used later

min { |l g 1l ) } < / 0 ()P da < mace { Nl )

u(z)

p(z)
de <1,.
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for any u € LP(*) (Q).
Lemma 2.1. [3], [5], [6], [7]
o The space (Lp(“’) (Q), ||.||Lp(z)(9)) is a Banach space.
o If p_ > 1, then LP(®) (Q) is reflexive and its conjugate space can be identified

with LP'®) () where, ﬁ + ﬁ = 1. Moreover, for any u € LP® (Q) and

v e LP @) (Q), we have the Hélder inequality

1 1
[ vl < (24 ) Tl Bollawiooy < 2l ol

o If py < +oo, then LP®) (Q) is separable.

o Some embedding stay true, for example, if 0 < |Q| < oo and p1, pa are vari-
able exponent so that p1 (x) < po(x) almost everywhere in §, then we have
172 (@) < [ (9).

Now, we define also the variable Sobolev space by
W) (@) = {u e '@ (9); |Vul € IO (@)},
endowed with the following norm
lullwrmw @) = 1l pow @) + IVl Loe q) -

Definition 2.2. The variable exponent p :  — [1, +00) is said to satisfy the log-Hélder
continuous condition if

Ve,yeQ, |z—y|l <1, |p(x)—py)| <w(z—yl),

where w : (0,00) — R is a nondecreasing function with 111% supw (a)In (1) < oc.
a—

Lemma 2.3. [3], [5], [6], [7]
o If1 <p_ <py < oo, then the space(Wl’p(”) (), ||.HW1,p<z)(Q)) is a separable

and reflexive Banach space.

o If p(x) satisfies the log-Holder continuous condition, then C* (Q) is dense
in WHP@) (Q). Moreover, we can define the Sobolev space with zero bound-
ary values, Wol’p(z) (Q) as the completion of C§° () with respect to the norm
- llwree @) -

o Forallue Wol’p(m) (), the Poincaré inequality

||u||LP(z)(Q) <C ||VU||Lp<m>(Q) )

holds. Moreover, [[ull;, 1. [Vull o) () is @ norm in Wol’p(m) (Q).
0

@~

Throughout this paper, we shall assume that the variable exponent p(z) sat-
isfy the log-Holder condition, and N < p_ < p; < oo because if p(z) > N then
Whrl) (Q) ¢ C(Q) for every x € Q.
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3. Hypotheses and main result

We consider the following problem:

E;; (V

2 @) = fileule) @, 1<i<3,
J*la J

- 3
oij(u(@) = > aijrn(r) Exp(Vu(z)) in Q, 1 <i4,5 <3,
k,h=1
(3.1)
:§< ZZ+Z%’;’;‘&;’;> inQ, 1<4,j <3,
3
Yooy (u(z))n;=00nT, 1<i<3.

Jj=1

This problem being that of Neumann, we must impose the necessary conditions of

existence namely the condition of compatibility:

fdx = 0.
Q

This is the hypotheses which concern Fy, and f :

Let us look for an adequate weak form of (3.1). Note that if w € (LP(®)(Q))

Vi,j,k,h =1%o 3:
1) Eyy, is a continuous function,

) (Coercivity) Ja > 0; such that Eyp, () &y > alé]”

Ve € R and, &; € R,
3) (Increase) 3C € R; |Ep ()] < C (1 + [P

3.2
4) (Bgn (&) = Ern (1)) (&5 — mij) = 0,¥€,m € R**3, and (82)
&ijrMij € R,
dag > 05 aijen > ap a.e. in €,

5) aijkn € L (Q);
6) f = (f1, f2, f3) is a Caratheodory function and,

fe (0t @)

9
, then

the growth condition on Ejp gives

B (w)] < € (14 [w]™")

< (C+ C |w|p<z)‘1) € LT (Q), 1<k, h<3.

So, if u € H, we have Ej;, (Vu) € LP @) (Q). Or

H= {u e (W) (@), me;(g) /Qu(a:) do = 0} ,

is a closed vector subspace of (Wl’p(l') (Q))s, provided with the norm

el = 19l ocor oy
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which is equivalent to the norm of (W1»(®) (Q))3 . We note that:
3
(W @) =HaF,

where F' is the space of constants. Let’s take then v € H, we have Vv € (L”(z) (Q))9 .
So we obtain from the inequality of Holder:

81}1'

Ekh(Vu)a e L' (Q),Vi,j,kh=1to 3.

x
It is therefore natural to look u] 63 H and take the test functions in H. We also
recall that if f(.,s) € (Lp/(x) (Q)) , the mapping v — /f(a:,u(m))v(x) dx acting
from H to R, is an element of H’. We denote by f this eglzement7 that is to say for
fe (Lp,(x) (Q))g, we have

) = [ £ (@ uta))v(e) da, Vo e H.
Q
The weak form of (3.1) is thus:

u € H,
23: 23: aijkh(x)Ekh(Vu(x))g;)f dr = (f,v) g, Yo € H. (33)

i,j=1k,h=1 J
Q

Theorem 3.1. Under the hypotheses (3.2), there exist u € H solution of (3.3). If,

moreover, (Exn (§) — Exn (n)) (&5 — nij) > 0, for all €, € R¥*3, &;.mi5 € R, &ij # 1y
then there exist a unique solution u of (3.3).

For the proof of this theorem, we will need the following (classical) integration lemmas:

Lemma 3.2. Let p : Q — |1, +oo[. If f, — f in LP®)(Q) and g, — g weakly in
LY @) (Q). So

/fngndxﬁ/fgdx when n — 00.
Q Q

Demonstration of lemma (3.2). We have:

/(fngn_fg)dx :’/ (fngn_fg_fgn""fgn)dx
Q Q

=’/Q[(fn—f)gn+f (90 — 9] da

< [ 151 gnlder‘/Qf (g0 — g)de

< 2. [fn = fll o @) lgnll o) (@) + [{gn — 9, F)] = 0.

Lemma 3.3. If Fy, € C (R R), [E (€)] < C (1+ |§|”(")‘1), kh =1 to 3, for

all € € R and if u, — u in (WHP®) (Q))3 then Exp, (Vuy,) — Epn (Vu), k,h =1
to 3, in L") (Q).
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The lemma (3.3) is proved by Lebesgue’s dominated convergence theorem.
Remark 3.4. [14] Let p € LL (Q) = {p € L= (Q), p_ > 1}, (u,) C LP@®) (Q) and u €
L@ (Q). If nlgr;o [un = ull o) () = 0. Then there exist a subsequence (upn;) C (un)
and a function g € LP(*) (Q) such that:

(1) Up; — wa.e. in Q,

(i1) |un;| < g(z) a.e. in Q.

Demonstration of lemma (3.3). u, — u in (W'P@ (Q))3 involves: u,, — u in
(Lp=) (Q))3 and Vu, — Vu in (LP® (Q))9 .

Vu, — Vu in (Lp(z) (Q))9 involves Vu,, — Vu a.e. in ), and as FEjj is continuous
then:

Eip, (Vuy) = Egp (Vu) ae., k,h=1t03
we have also
B (Vun)| < (C + C|Vun P71 € L5 (), k h =1 to 3.
So we deduce that
En (Vun) = Egn (Va) in L7 ().
We will also need for the proof the following lemma:

Lemma 3.5. (Finite-dimensional coercive operator) Let V' be a finite-dimensional
space, and T : V — V' continuous. We suppose that T is coercive, namely:

(T (v) 'U>V’,V
[v]ly

Then, for every b € V' there exist v € V such that T'(v) = b.

— +oo when |jv||,, = +o0.

4. Proof of theorem

Study of finite dimension problem
Since H is separable, (because H is a closed vector subspace of (WLP('T) (Q))B,

and (Wl’p(z) (Q))3 is a Banach space separable) then there exist a countable family
(fn)pen- dense in H. Let V,, = Vect{fi, i =1,...,n} be the vector space generated
by the first n functions of this family. So we have dimV,, < n, V,, C V,41 for all
n € N* and we have "LEJNV,Z = H. We deduce that for all v € H there exist a sequence

Vp € Vi, such that v,, — v in H when n — +4o00.
In the first step, we fix n € N* and look for u, solution of the following problem,
posed in finite dimension:

Up, € Vi,

SERS Ovi 3.4

/ S aijn(@) B (Van (@) 5 de = (£,0) g1 g1, Y0 € Vi (3-4)
i,j=1k,h=1 Lj

Q
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The application v — (f,v) 5, 5 is a linear mapping of V,, to R (it is also continuous
because dim V;, < +00). We denote by b,, this application. So b, € V,, and

{brs U>v7;,vn = (f, U>H/,H :

Let u € V,,. We denote by T, (u) the mapping of V,, into V! which has v € V,

associated
8’01'

35 @) Bun(Va(o) g

i,j=1k,h=1 Ly
Q

dx.

This application is linear, so it is also an element of V,; and we have

3 3 v,
(T ()0}, = [ X% aijun(@)Bun(Vu(e) 5 de.
no¥mn i,j=1k, h= Zj

We have thus defined an application T of V,, to V,,. We shall show that T is continuous
and coercive. We can thus deduce by the lemma (3.5), that T is surjective, and
therefore that there exist u,, € V,, satisfying T (u,,) = by, that is to say u, is the
solution of the problem (3.4).

Continuity of 7),. To ease the writing, we note V' =V,, equipped with ||ul|,, = |Ju| 4
and note T =T,,. Let u, w € V, we have:

IT ()~ T @)y = max (T () =T (@) 0}y

3 3 ov;
= max a; By (V) — Eyp, (VT)) ——dx,
max [ 323 (o) (B (V) = B (V)

3 3 Ov;
max [ 3 S aiun(e)(Bun (V) = Eun (V) 5

" vEH, [l =1 i,j=1k,h=1
Q

Putting
a = [|aijrnll oo ()
we obtain by Hoélder inequality

1T (w) =T @)y
3 3 Bvi
< max  2a > > ||Exn (Vu) = Exn (VO o) || 5
veH,|vllz=1 ;j=1k h=1 Oz Lr(@)(Q)

3 3
< QG,ZM; ) [ Ekn (V) = Egn (VU) || Lo ) ) -
i,j=1k,h=

Thus if (uy),cy is a sequence of V' such that u,, — @ in V, we have

3

3
1T (un) = T @)y, < 2a Zlk; |1 Bkn (Vun) — B (V)| 107 ) () -
i,J =

As the norm in H equivalent to the norm in (Wl’p(m) (Q))S, then u, — win V involves

u, — u in (WHP@) (Q))3 .
In view of lemma (3.3), we obtain Eg, (Vu,) — Egp (V) in LP' @) (Q), Vi, h = 1
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to 3. We have thus shown that T (u,) — T (@) in V', so T is continuous.
Coercivity of T,,. Taking into account, definition and assumptions (3.2), we obtain:

3 3 ou;
(T (u) w)yyry= [ X 2 aijkh(x)Ekh(vu(x))au dz,
j, bi=Lhh=1 Ly

3 3 ou;
> (o %)) Z Z Ekh(vu(x))a

Qi,j=1k,h=1 T

> aoaCl/ IVul"™ da,
Q

dx,

> agaCymin {[Vul, ) 0 IVl g |
> apaCy min { JJul|7 (w7}

Consequently, the operator T' is coercive. This yields the existence of solution for
problem (3.4).

Study of infinite dimension problem

The solution of the problem (3.4) is obtained.
So to show the existence of u a solution of (3.3), we will estimate u, the solution of
(3.4) and then by crossing to the limit when n — 400 we will have the solution u of
our problem (3.3).
Therefore that technique used to show that the limit of the nonlinear term is the
desired term.
a. Estimation on wu,,
In view of coercivity, if we substitute v by w,, in (3.4), we obtain:

200 Cs [ [V < |yl
on the other hand

apaCymin {{lun |7 unlzf b < 1 el -

b. Passage to the limit
Since (un), oy is bounded in H, which is reflexive (because H is a closed vector

subspace of (W17 (Q))3, and (W@ (Q))3 is a reflexive Banach space), we deduce
that there exist a subsequence denoted again (uy),, ¢y such that u, — u weakly in H.

By hypothesis (3), the sequence (Exp (Vun)),, ¢y is bounded in LP'(#) (), hence there
exist p € L¥'(*) (Q) such that, with a close subsequence,

Ein (Vun) — p weakly in '@ (Q).
Let v € H, then there exist v, € V,, n € N* such that

v, — v in H,

Vv, = Vv in (L”(z) (Q))g.
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We substitute v by vy, in (3.4), we obtain:

3vm-

[ 55 o) (Vi () G2
Q i,j=1k,h=

Tj

1
= (f,on) g gy » Y0 E Vy.

Since (f,v,) — (f,v), Exn (Vun) — p weakly in LP ) (Q) and %”77 - g;, fori=1

to 3 strongly in LP(*) (Q) (because Vv, — Vo in (LP(®) (Q))gstrongly), using the
lemma (3.2), we obtain

3. 3 v,
5% eum@ingitde = () o€ B (3.5)

o ,j=1k,h=1
We tend to conclude that p is equal to Eg, (Vu). Unfortunately, this is not obvious
because the E}j are nonlinear.

c. Limit of nonlinear term

Finally, it remains to prove that

3 3 avi
/ > > avzjkh(z)pa dzx =
i,j=1k,h=1 € 5

3 3Q v, (3.6)
> aikn(@)Egn(Vu(z)) 5
J, bi=1kh=1 z;

(I) First, we have

3 3 aunz
lim / S aggen (@) B (Vi () 22
n—o0 0 i,j=1k,h=1 8xj
3 3 O
:/ Z Z az]kh(x)pau dx.
1,j=1k,h=1 Lj
Q
Indeed
3 3 8um
[ 3% anl@)Eun(Vun (@) G2t = (fua) = (F20)
Ql,j:lk,h:l .13_7

(II) Proof of (3.6)
Let v € H, there exist (v,),cy such that v, € V;, for all n € N and v, — v in H
when n — 4-o00. We will pass to the limit in the term

3 3 .
/ > > Gijkn(T) Epn(Vug(z)) 3 dz,
[ i g=1kh= L
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thanks to the hypothesis (4) of (3.2).

Indeed,
3 3 aunz avni
0 S / Z Z aijkh(x)(Ekh (Vun) — Ekh (Vl)n)) < — ) da:
f, bi=1k,h=1 Ox; Oz
3 3 Uni 3 3 Uni
— [ 25 apun(@)Eun (Vu) G2de = [ 5 aun(@)Eu (Va,)
ij=1k,h=1 Ox; i1k el Ox;

= Tl,n - T2,n - T3,n + T4,n~
It has been seen that in (I):

lim Ty, =
n—+o0o i
0"
we have

3 3 .
lim Ty, = y ——dx,

by a product of a strong convergence in LP(*) (Q) and a weak convergence in L¥' (%) (Q)
(lemma (3.2)).
The same

3 3 ou;
lim Tgn:/ > 2 k() Egn (Vo) 2 —du,

n—rto0 =1k =1 Ox;
Q
by a product of a strong convergence in L? (%) (Q) and a weak convergence in LP(*) (Q).

Finally, we have

:I/.,
1 T

3 dv;
lim T4n Z al-jkh(x)Ekh (V'U) d
n—-+4o0o i h—
Q

by the product of a strong convergence in L” () (Q) and a strong convergence in

L) (Q).
The passage to the limit in inequality thus gives:
5 3 du; v,
S S aswn() (p— Exn (V) ( . “) dz >0 for all v € H.
j, bi=Lhh=1 Ox; Oz

1

The function test v is now astutely chosen. We take v = u + —w with w € H and
n

n € N*. We obtain

3 3 1 ow;
—— [ > > aijn(x) | p— Exn | Vu+ =Vw dz > 0,
h=1 n 9

ij=1k, Ty
Q
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SO

3 3 1 ow
/ > 2 Gijkn(T) <p — Eyn (Vu + Vw)> ,
5 ij=1k,h=1 n 695]

1
but u + SW U in H, thus by the lemma (3.3),

1 ,
Epn (Vu + vw> — Epp (Vu) in LP'®) (Q) .
n

By passing to the limit when n — 400, we obtain then

3 3 8’[1)1'
J 2,2 @@ (o~ B (T0) 52

kh=1
Q

By the linearity (we can change w in —w), we get:

3 3 8wi
[ 2,3 (o) (o~ Fio (V) 5

kh=1
Q

we deduce that

3 3 ﬁwi 3 3 awi
Z Z aijkh(x)pa—dx = / Z Z aijkh(x)Ekh (VU) d:v, Yw € H.
Z i he ox

i,j=1k,h=1 ij=1k,
Q

We have thus proved that u is a solution of (3.3).

Uniqueness

We suppose that (Egp (&) — Exn (1)) (§i5 — i) > 0, if &5 # mij, and f does not
depend to u. Let u; and us be two solutions:

3 3 A,
/Z > aijkh(ff)Ekh(Vuz(w))az' =(f )y, 1=1,2 YoeH.
1,]= J

,J=1k,h=1
Q

)

Subtracting term to term and substituting v by u; — ug, we obtain:

3 3 8’&1' 8u24
/Z 55 agn() (Ben (Vur) — By (V) (22— 92030, _ g,

i,j=1k,h=1 Ox;  Oxj
Since
3 3 ou i ou i
M= Y% agin(@) (B (Vur) = Bgn(Vuo)) (5 — 52) >0,

4,j=1k,h=1 al‘j axj

Ouy; , Ous; Ouy;  Oug; o
and M > 0 if 228 £ TU2 o got TU — TU20 0 0 Vi j =1 to 3, and thus uy = us

Oz Oz, Oz, O0x;j

a.e.
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5. Conclusion

In this work, we consider the nonlinear elasticity system as Leray—Lions’s oper-
ators with variable exponents, to study the existence and uniqueness of Neumann'’s
problem solution by Galerkin techniques and monotone operator theory. It has been
found that these techniques adapt well to this type of problems with different bound-
ary conditions.

From a perspective of this work, first, we will consider the same problem with the
boundary conditions Robin, Tresca, and secondly, the boundary conditions no homo-
geneous of Dirichlet, Neumann, mixed and Robin.
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