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Abstract. In this paper, we propose a relaxed version of the gradient projection
method for strongly monotone variational inequalities defined on a level set of a
(possibly non-differentiable) convex function. Our algorithm can be implemented
easily since it computes on every iteration one projection onto some half-space
containing the feasible set and only one value of the underlying mapping. Under
mild and standard conditions we establish the strong convergence of the proposed
algorithm. Numerical results and comparisons for the image deblurring problem
show that our method can outperform related algorithms in the literature.
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1. Introduction

The variational inequality problem (VIP) is to find a point x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0 ∀y ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H with the inner
product 〈., .〉 and its induced norm ‖.‖, and A : H → H is a single-valued mapping.
Let us denote by Sol(C,A) the solution set of the problem (1.1), i.e.,

Sol(C,A) = {x ∈ C : 〈Ax, y − x〉 ≥ 0 ∀y ∈ C}.
The variational inequality problem (VIP) has received much attention in the

past several decades due to its applications in a large variety of problems arising
in economics, optimization, transportation research, game theory, signal and image
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processing, data science, etc., see [1, 4, 8, 14, 15, 18, 19, 22, 20] and the references
therein. There are many iterative methods for solving variational inequalities, most of
which are based on projection methods. The simplest form is the gradient projection
method [5] as follows: {

x0 ∈ C,
xk+1 = PC(xk − λAxk), k ≥ 0,

where PC denotes the metric projection of H onto the set C, λ is a positive real
number. The convergence of this method can be proved under a strong condition that
the mapping A is strongly monotone and Lipschitz continuous. In order to relax the
strong monotonicity assumption, Korpelevich [15] proposed the extragradient method
which requires an additional projection at each iteration. Under the conditions that
A is monotone and Lipschitz continuous, this method is shown to be weakly conver-
gent in the setting of Hilbert spaces. Many researchers proposed improvements of the
extragradient method, see, e.g., Censor et al. [4], He [6], Iusem-Svaiter [11], Khobotov
[13], Malitsky and Semenov [22], Popov [23], Solodov and Svaiter [24], Tinti [25],
Tseng [26], Malitsky [20], Maingé [18], Maingé and Gobinddass [19], Malitsky [21]
and the references therein. In many real world applications, the feasible set is given in
the form of C = {x ∈ H : c(x) ≤ 0}, where c is a convex function but not necessarily
differentiable. For example, in LASSO problem, the function c(x) = ‖x‖1 − τ, τ > 0
satisfies the above requirement. Very recently, the authors in [2, 7, 9] used the subgra-
dient extragradient method [4] and projection and contraction method [6] to propose
relaxed projection algorithms for the variational inequality (1.1). However, the con-
vergence of algorithms in [2, 9, 7] requires that c is a continuously differentiable convex
function such that c′(x) is Lipschitz continuous. This makes the real applications of
their method very restrictive.

Our concern now is the following: Can we design a new relaxed projection method
to solve the variational inequality (1.1) efficiently without demanding differentiability
of the convex function c?

In this paper, we give a positive answer to this question. Motivated by the
algorithms in [2, 7, 8, 9], we will introduce an efficient new algorithm for solving
the VIP (1.1). The main feature of our method is that it requires only one value of
the underlying mapping per iteration with no need for projections onto the feasible
set. Theoretical analysis and experimental results show that our algorithm is more
efficient than the previous ones for variational inequality problems.

The rest of the paper is organized as follows. After collecting some definitions and
basic results in Section 2, we prove in Section 3 the strong convergence of the proposed
algorithm. Finally, in Section 4 we provide some numerical results to illustrate the
convergence of our algorithm and compare it with the previous algorithms.
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2. Preliminaries

Let H be a real Hilbert space endowed with the inner product 〈., .〉 and the
associated norm ‖.‖. When {xk} is a sequence in H, we denote strong convergence of
{xk} to x ∈ H by xk → x and weak convergence by xk ⇀ x. For a given sequence
{xk} ⊂ H, ωw(xk) denotes the weak ω-limit set of {xk}, i.e.,

ωw(xk) := {x ∈ H : xkj ⇀ x for some subsequence {kj} of {k}}.
A useful and simple norm equality is the following

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2

− γβ‖y − z‖2 − αγ‖x− z‖2, (2.1)

for all x, y, z ∈ H and α, β, γ ∈ [0, 1] satisfying α + β + γ = 1. Let C be a nonempty
closed convex subset of H. For every element x ∈ H, there exists a unique nearest
point in C, denoted by PCx such that

PCx := argmin
y∈C

||x− y||.

PC is called the metric projection of H onto C.

Lemma 2.1. The metric projection PC has the following basic properties:

(1) 〈x− PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C;

(2) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 for all x ∈ H, y ∈ C;

(3) ‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉 for every x, y ∈ H;

(4) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ for all x, y ∈ H.

We will focus on solving the problem (1.1) governed by Lipschitz continuous and
strongly monotone A, i.e., there exist two positive constants L and η such that

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x, y ∈ H,
and

〈Ax−Ay, x− y〉 ≥ η‖x− y‖2 ∀x, y ∈ H,
respectively. In this case, we also say that A is L-Lipschitz continuous and η-strongly
monotone.

Let g : H → (−∞,∞], domg := {x ∈ H : g(x) < +∞}. We recall that the
subdifferential of g at x ∈ H is defined as the set of all subgradients of g at x:

∂g(x) := {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉 ∀y ∈ H}. (2.2)

g is strongly convex with constant m > 0 if and only if g(x) − m
2 ‖x‖

2 is convex. We
already know that if g is lower semicontinuous convex at x ∈ int(domg), then ∂g(x) is
nonempty and bounded. The next lemmas are essential for our analysis in the sequel.

Lemma 2.2. (Cegielski and Zalas [3], Theorem 5) Assume that A is a L-Lipschtz
continuous and η-strongly monotone operator and µ is a constant such that µ ∈(

0,
2η

L2

)
. Let Tµ = PC(I − µA) (or I − µA), where I is the identity operator on

H. Then Tµ is a strict contraction with coefficient 1− τ , where τ = 1
2µ(2η − µL2).
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Lemma 2.3. (Maingé [16], Lemma 3.1; Xu [27], Lemma 2.5) Let {ak}, {bk} and {ck}
be sequences of nonnegative real numbers such that

ak+1 ≤ (1− δk)ak + bk + ck, k ≥ 1,

where {δk} is a sequence in (0, 1) and {bk} is a real sequence. Assume that

∞∑
k=1

ck <∞.

Then the following results hold:

(1) If bk ≤ δkM for some M ≥ 0 and for all k ≥ 1 then {ak} is a bounded sequence.

(2) If

∞∑
k=1

δk =∞ and lim sup
k→∞

bk/δk ≤ 0, then lim
k→∞

ak = 0.

Lemma 2.4. ( Maingé [17], Lemma 3.1) Let {Γn} be a sequence of real numbers that
does not decrease at infinity, in the sense that there exists a subsequence {Γnj} of
{Γn} such that Γnj < Γnj+1 for all j ≥ 0. Also consider the sequence of integers
{τ(n)}n≥n0

defined by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then {τ(n)}n≥n0
is a nondecreasing sequence verifying lim

n→∞
τ(n) = ∞ and, for all

n ≥ n0,

max{Γτ(n),Γn} ≤ Γτ(n)+1.

3. A relaxed gradient projection algorithm

In this section, we consider VIP (1.1) in which C is given by

C = {x ∈ H : c(x) ≤ 0}.

where c : H → R is a convex and lower semicontinuous function.

We need the following basic assumptions for VIP (1.1):

(C1) Sol(C,A) 6= ∅;

(C2) The mapping A is strongly monotone and L-Lipschitz continuous;

(C3) ∂c is a bounded operator (i.e., bounded on bounded sets).

3.1. The algorithm

The algorithm is designed as follows.



A relaxed version of the gradient projection method 77

Algorithm 3.1 (Relaxed gradient projection algorithm)

Step 0 (Initialization): Select initial x0, x1 ∈ C, θ ∈ [0, 1) and two positive real number
sequences {βk}, {εk} satisfying

lim
k→∞

βk = 0,

∞∑
k=0

βk = +∞, εk = o(βk), (3.1)

where εk = o(βk) means that the sequence {εk} is an infinitesimal of higher order
than {βk}. Set k := 1.

Step 1: Given xk−1 and xk (k ≥ 1), choose αk such that

αk =

min

{
θ,

εk
‖xk − xk−1‖

}
if xk 6= xk−1,

θ otherwise.
(3.2)

Compute wk = xk + αk(xk − xk−1) and take ξk ∈ ∂c(wk). Construct the half-space

Ck = {x ∈ H : c(wk) + 〈ξk, x− wk〉 ≤ 0},
and calculate

xk+1 = PCk(wk − βkAwk). (3.3)

Step 2: If xk+1 = wk then stop. Otherwise set k := k + 1 and return to Step 1.

Remark 3.1. We have C ⊆ Ck for every k ≥ 0. Indeed, we obtain by (2.2) and
ξk ∈ ∂c(wk) that

c(x)− c(wk) ≥ 〈ξk, x− wk〉 ∀x ∈ H.
If x ∈ C then we get c(wk) + 〈ξk, x − wk〉 ≤ 0, i.e., x ∈ Ck. Hence, the statement is
true.

3.2. Convergence analysis

We first show that the stopping criterion Algorithm 3.1 is valid.

Lemma 3.2. If wk = xk+1 then wk ∈ Sol(C,A).

Proof. If wk = xk+1 then by (3.3) and Lemma 2.1 (1), we have

〈wk − λkAwk − wk, y − wk〉 ≤ 0 ∀y ∈ Ck,
or equivalently,

〈Awk, y − wk〉 ≥ 0 ∀y ∈ Ck.
Therefore, we get

〈Awk, y − wk〉 ≥ 0 ∀y ∈ C.

Hence wk ∈ Sol(C,A). �

A key lemma for our convergence theorem is presented next.

Lemma 3.3. Assume that the conditions (C1)-(C3) hold. Then the sequence {xk}
generated by Algorithm 3.1 is bounded.
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Proof. We have

‖xk+1 − z‖ = ‖PCk(wk − βkAwk)− z‖

≤ ‖(I − βkA)wk − (I − βkA)z − βkAz‖

= (1− γk)‖wk − z‖+ βk‖Az‖. (3.4)

Moreover, we have

‖wk − z‖ = ‖xk − z + αk(xk − xk−1)‖
≤ ‖xk − z‖+ αk‖xk − xk−1‖. (3.5)

Combining (3.5) and (3.4), we immediately get

‖xk+1 − z‖ ≤ (1− γk)‖xk − z‖+ (1− γk)αk‖xk − xk−1‖+ βk‖Az‖.

By (3.1) and (3.2), we see that

lim
k→∞

bk
γk

= lim
k→∞

(1− γk)αk‖xk − xk−1‖+ βk‖Az‖
γk

,

= lim
k→∞

[
2(1− γk)

2η − βkL2

αk
βk
‖xk − xk−1‖+

2

2η − βkL2
‖Az‖

]
=
‖Az‖
η

,

where bk = (1− γk)αk‖xk − xk−1‖+ βk‖Az‖.
This implies that the sequence

{
bk
γk

}
is bounded. Using Lemma 2.3 (1), we conclude

that the sequence {‖xk − z‖} is bounded. This shows that the sequence {xk} is
bounded and so is {wk}. �

Lemma 3.4. Assume that the conditions (C1)-(C3) hold and let {xk} be the sequence
generated by Algorithm 3.1. Then, for each z ∈ C, we have

‖xk+1 − z‖2 ≤ (1− γk)(‖xk − z‖2 + 2αk‖xk − xk−1‖‖xk − z‖+ α2
k‖xk − xk−1‖2)

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
.

Proof. Let γk = 1
2βk(2η − βkL2). Since βk → 0 as k →∞, there exists some positive

integer k0 such that

0 < βk <
η

L2
(3.6)

for all k ≥ k0. In view of Lemma 2.6, we obtain from (3.6) that PCk(I − βkA) (so is
I − βkA) is a strict contraction with coefficient 1− γk for all k ≥ k0. For each z ∈ C,
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we have

‖xk+1 − z‖2 = ‖PCk(wk − βkAwk)− z‖2

≤ ‖(I − βkA)wk − (I − βkA)z − βkAz‖2

= (1− γk)‖wk − z‖2 − 2βk〈Az,wk − z − βkAwk〉

≤ (1− γk)‖wk − z‖2 − 2βk〈Az,wk − z〉+ 2β2
k‖Az‖‖Awk‖

= (1− γk)‖wk − z‖2 + γk

[
−4

2η − βkL2
〈Az,wk − z〉

+
4βk

2η − βkL2
‖Az‖‖Awk‖

]
.

Using (3.5) we arrive at

‖xk+1 − z‖2 ≤ (1− γk)(‖xk − z‖+ αk‖xk − xk−1‖)2

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]

= (1− γk)(‖xk − z‖2 + 2αk‖xk − xk−1‖‖xk − z‖+ α2
k‖xk − xk−1‖2)

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
.

Therefore, the proof is complete. �

We are now in a position to establish the strong convergence theorem of Algo-
rithm 3.1.

Theorem 3.5. Assume that the conditions (C1)-(C3) hold. Then any sequence {xk}
generated by Algorithm 3.1 converges strongly to the unique solution of the variational
inequality problem (1.1).

Proof. For each z ∈ C, using the nonexpansive property of projection operators, we
have

‖xk+1 − z‖2 = ‖PCk(wk − βkAwk)− PCkwk + PCkw
k − PCkz‖2

= ‖PCkwk − PCkz‖2 + 2βk‖wk − z‖‖Awk‖+ β2
k‖Awk‖2

≤ ‖wk − z‖2 − ‖wk − PCkwk‖2 + 2βk‖wk − z‖‖Awk‖+ β2
k‖Awk‖2

= ‖wk − z‖2 − ‖wk − PCkwk‖2 + βkM, (3.7)

where M ≥ supk{2‖wk − z‖‖Awk‖+ βk‖Awk‖2}.
On the other hand, by applying (2.1) we get

‖wk − z‖2 = ‖(1 + αk)(xk − z)− αk(xk−1 − z)‖2

= (1 + αk)‖xk − z‖2 − αk‖xk−1 − z‖2 + αk(1 + αk)‖xk − xk−1‖2

≤ (1 + αk)‖xk − z‖2 − αk‖xk−1 − z‖2 + 2αk‖xk − xk−1‖2. (3.8)
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Combining (3.7) and (3.8) we have

‖xk+1 − z‖2 ≤ (1 + αk)‖xk − z‖2 − αk‖xk−1 − z‖2 + 2αk‖xk − xk−1‖2

− ‖wk − PCkwk‖2 + βkM.

Putting Γk := ‖xk − z‖2 for all k ∈ N we have

‖wk − PCkwk‖2 ≤ Γk − Γk+1 + αk(Γk − Γk−1) + 2αk‖xk − xk−1‖2 + βkM. (3.9)

Now, we consider two possible cases:

Case 1. Assume that there exists k0 ≥ 0 such that for each k ≥ k0, Γk+1 ≤ Γk.
In this case, lim

k→∞
Γk exists and lim

k→∞
(Γk − Γk+1) = 0.

Since lim
k→∞

βk = 0 and lim
k→∞

αk‖xk − xk−1‖2 = 0, it follows from (3.9) that

lim
k→∞

‖wk − PCkwk‖2 = 0. (3.10)

We now show that ωw(xk) ⊂ C. Let x̄ ∈ ωw(xk) be an arbitrary element. Since {xk}
is bounded, there exists a subsequence {xkl} that converges weakly to x̄ ∈ Ck. Note
that

lim
k→∞

‖wk − xk‖ = lim
k→∞

αk‖xk − xk−1‖ = 0. (3.11)

It follows from (3.11) that {wkl} also converges weakly to x̄. Next we verify that
x̄ ∈ C.

Due to PCklw
kl ∈ Ckl , it follows from the definition of Ckl that

c(wkl) + 〈ξkl , PCklw
kl − wkl〉 ≤ 0,

where ξkl ∈ ∂c(wkl). The use of the Cauchy-Schwart inquality implies that

c(wkl) ≤ ‖ξkl‖
∥∥PCklwkl − wkl∥∥. (3.12)

From the boundedness assumption of ξkl and (3.10), (3.12), we have

c(wkl) ≤ ‖ξkl‖
∥∥PCklwkl − wkl∥∥→ 0. (3.13)

From the weak lower-semicontinuity of the convex function c(x) and since wkl ⇀ x̄,
it follows from (3.13) that

c(x̄) ≤ lim inf
l→∞

c(wkl) ≤ 0,

which means that x̄ ∈ C.

Using Lemma 3.4 we have

‖xk+1 − z‖2 ≤ (1− γk)(‖xk − z‖2 + 2αk‖xk − xk−1‖‖xk − z‖+ α2
k‖xk − xk−1‖2)

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
. (3.14)
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Besides, we obtain

‖xk − z‖2 + 2αk‖xk − z‖
∥∥xk − xk−1∥∥+ α2

k‖xk − xk−1‖2

≤ ‖xk − z‖2 + 2αk‖xk − z‖
∥∥xk − xk−1∥∥+ αk‖xk − xk−1‖2

≤ ‖xk − z‖2 + 3M1αk‖xk − xk−1‖, (3.15)

where M1 = sup
k∈N
{‖xk − z‖, ‖xk − xk−1‖}.

Combining (3.14) and (3.15) we get

‖xk+1 − z‖2 ≤ (1− γk)‖xk − z‖2 + 3M1(1− γk)αk‖xk − xk−1‖

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]

≤ (1− γk)‖xk − z‖2 + γk

[
3M1(1− γk)

αk
γk
‖xk − xk−1‖

+
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
. (3.16)

It is easy to see that

lim
k→∞

[
(1− γk)

αk
γk
‖xk − xk−1‖+

4βk
2η − βkL2

‖Az‖‖Awk‖
]

= 0. (3.17)

To apply Lemma 2.3, it remains to show that lim sup
k→∞

〈Az,wk − z〉 ≥ 0. Indeed, since

z ∈ Sol(C,A), we get that

lim sup
k→∞

〈Az,wk − z〉 = max
ẑ∈ωw({wk})

〈Az, ẑ − z〉 ≥ 0.

By applying Lemma 2.3 to (3.16) with the data

ak := ‖xk − z‖2, δk := γk, ck := 0,

bk := 3M1(1− γk)
αk
γk
‖xk − xk−1‖+

−4

2η − βkL2
〈Az,wk − z〉

+
4βk

2η − βkL2
‖Az‖‖Awk‖

we immediately deduce that the sequence {xk} converges strongly to z ∈ Sol(C,A).

Case 2. Assume that there exists a subsequence {Γkm} ⊂ {Γk} such that Γkm ≤ Γkm+1

for all m ∈ N. In this case, we can define τ : N→ N by

τ(k) = max{n ≤ k : Γn < Γn+1}.
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Then we have from Lemma 2.4 that τ(k)→∞ as k →∞ and Γτ(k) < Γτ(k)+1.
So, we have from (3.9) that

‖wτ(k) − PCτ(k)w
τ(k)‖2 ≤ Γτ(k) − Γτ(k)+1 + ατ(k)(Γτ(k) − Γτ(k)−1)

+ 2ατ(k)‖xτ(k) − xτ(k)−1‖2 + βτ(k)M

≤ ατ(k)‖xτ(k) − xτ(k)−1‖
(√

Γτ(k) +
√

Γτ(k)−1

)
+ 2ατ(k)‖xτ(k) − xτ(k)−1‖2 + βτ(k)M

→ 0. (3.18)

Following the same lines as in the proof of Case 1, we get from (3.18) that

lim
k→∞

‖wτ(k) − PCτ(k)w
τ(k)‖2 = 0,

lim sup
k→∞

〈Az,wτ(k) − z〉 = max
ẑ∈ωw({wτ(k)})

〈Az, ẑ − z〉 ≥ 0 (3.19)

and

‖xτ(k)+1 − z‖2 ≤ (1− γτ(k))‖xτ(k) − z‖2

+ γτ(k)

[
3M1(1− γτ(k))

ατ(k)

γτ(k)
‖xτ(k) − xτ(k)−1‖

+
−4

2η − βτ(k)L2
〈Az,wτ(k) − z〉+

4βτ(k)

2η − βτ(k)L2
‖Az‖‖Awτ(k)‖

]
.

(3.20)

Since Γτ(k) < Γτ(k)+1, we have from (3.20) that

‖xτ(k) − z‖2 ≤ 3M1(1− γτ(k))
ατ(k)

γτ(k)
‖xτ(k) − xτ(k)−1‖

+
−4

2η − βτ(k)L2
〈Az,wτ(k) − z〉+

4βτ(k)

2η − βτ(k)L2
‖Az‖‖Awτ(k)‖. (3.21)

Combining (3.17), (3.19) and (3.21) yields

lim sup
k→∞

‖xτ(k) − z‖2 ≤ 0,

and hence
lim
k→∞

‖xτ(k) − z‖2 = 0.

From (3.20), we have

lim sup
k→∞

‖xτ(k)+1 − z‖2 ≤ lim sup
k→∞

‖xτ(k) − z‖2.

Thus
lim
k→∞

‖xτ(k)+1 − z‖2 = 0.

Therefore, by Lemma 2.4, we obtain

0 ≤ ‖xk − z‖ ≤ max{‖xτ(k) − z‖, ‖xk − z‖} ≤ ‖xτ(k)+1 − z‖ → 0.

Consequently, {xk} converges strongly to z ∈ Sol(C,A). �
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4. Numerical results

Example 4.1. Image restoration problems can be formulated as an inverse problem as
follows:

y = Ax+ v, (4.1)

where A ∈ Rm×n represents a known blurring operator (which is called the point
spread function: PSF), y ∈ Rm×1 represents the blurred image, and v ∈ Rm×1 stands
for the additive noises or perturbation signals, x ∈ Rn×1 is the unknown original
image whose size is assumed to be the same as that of y (that is, m = n). In most
cases, this problem is ill-posed, hence directly inverting A would lead to bad and
possibly multiple solutions. To overcome this difficulty, a popular strategy is to use a
regularization based method, which provides the prior knowledge of images that one
wants to reconstruct. In this paper, the problem (4.1) is approximately solved by the
following optimization model:

min
x∈Rn2

f(x) :=
1

2
‖Ax− y‖2 +

1

2
α‖x‖2, (4.2)

s.t. ‖x‖1 ≤ t,

where α is a positive parameter, and ‖.‖1 is the `1-norm, which is to make small
component of x to become zero. The objective function of the problem (4.2) is strongly
convex. Note that, the objective f is strongly convex and differentiable with the
gradient given by

∇f(x) = A∗(Ax− y) + αx,

where A∗ is the adjoint of A.

We observe that the gradient ∇f is (‖A‖2 + α)-Lipschitz continuous and α-strongly
monotone. We already know that x∗ solves (4.2) if and only if x∗ solves the variational
inequality problem of finding x ∈ C such that

〈∇f(x), y − x〉 ≥ 0 ∀y ∈ C,

where C := {x ∈ Rn2

: ‖x‖1 ≤ t}.

The quality of the restoration is measured by the peak signal-to-noise ratio (PSNR)
in decibel (dB):

PSNR(x) = 20 log10

xmax√
Var(x, x̄)

,

where

Var(x, x̄) =

∑n2

j=1[x̄(j)− x(j)]2

n2
,

and x̄ is the true image and xmax is the maximum possible pixel value of the image.
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Original image Blurred and noisy image

Original image Blurred and noisy image

Figure 1. Cameraman original and blurred and noisy images on
top; Lena original and blurred and noisy images below.

All the codes were written in Matlab (R2016a) and run on PC with Intel(R)
Core(TM) i3-370M Processor 2.40 GHz. In the numerical results reported in the
following tables, ‘Iter.’ and ‘Sec.’ stand for the number of iterations and the CPU
time in seconds, respectively. We now apply our proposed algorithm - Algorithm 3.1
(IGPM) and the strongly convergent algorithms in the literature including Algorithm
1 of Hieu and Thong [10] (VPRGM), Algorithm 3.1 of Khanh and Vuong [12] (GPM),
and the golden ratio algorithm of Malitsky [21] (GRA) with diminishing step sizes
to recover the blurred Lena and Cameraman images. The size of the image is m =
n = 256. The original and the blurred images are shown in Figure 1. For all tested

algorithms, we use the same starting points x0 = x1 = 0 (0 is a vector in Rn2

in
which all components are zero) and limit the number of iterations by 2500 for all
algorithms as well. Moreover, we set A = RW , where R is the blur matrix and W
denotes the inverse wavelet transform. The blur kernel is taken to be hij = 1

1+i2+j2 , for

i, j = −4, ..., 4. An additive zero-mean white Gaussian noise with standard deviation
10−3 was added to the images.
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Moreover, for Algorithm 3.1 (IGPM), we take εk = 1
k1.1 , θ = 0.6; αk is computed

by (3.2).

We take the same stepsizes λk = 1
k0.3 , the regularization parameter α = 2e−5 for

all algorithms. Besides, we choose θk = 1 for VPRGM of [10]. The comparison of four
algorithms with Cameraman and Lena images are reported in Table 1 and Table 2,
respectively. The reconstructed images are presented in Figures 2, 4. The convergence
behaviour of algorithms is given in Figures 3, 5. In these figures, the value of PSNR
for all algorithms is represented by the y-axis, the running time is represented by the
x-axis.

Sec. Iter PSNR

GRA 112.9531 2500 28.4390
VPRGM 113.5313 2500 31.8681
GPM 113.6406 2500 31.8692
Our algorithm (IGPM) 83.6 2500 37.0024

Table 1. Comparison of four algorithms for reconstructing the blurred
Cameraman image.

Sec. Iter PSNR

GRA 112.9531 2500 31.9244
VPRGM 117.6094 2500 35.2395
GPM 117.0469 2500 35.7691
Our algorithm (IGPM) 94.2031 2500 44.5633

Table 2. Comparison of four algorithms for reconstructing the blurred
Lena image.
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Reconstructed image using GRA Reconstructed image using VPRGM

Reconstructed image using GPM Reconstructed image using IGPM

Figure 2. The reconstructed images with the Cameraman image
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Figure 3. Evolution of PSNR with the Cameraman image
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Reconstructed image using GRA Reconstructed image using VPRGM

Reconstructed image using GPM Reconstructed image using IGPM

Figure 4. The reconstructed images with the Lena image
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Figure 5. Evolution of PSNR with the Lena image
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Figures 3, 5 clearly demonstrate that IGPM gives lower running time compared
to others. Clearly, our method provides clearer images and improved PSNR values.
We emphasize here that these numerical results are very preliminary.
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