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Abstract. It is well known that of all the extensions of the Banach-Caccioppoli

Contraction Principle, the most general result was established by Ćirić in 1974.

In this paper, we will present some results related to Ćirić type operator in com-
plete metric spaces. Existence and uniqueness are re-called and several stability
properties (data dependence and Ostrowski stability property) are proved. Using
the retraction-displacement condition, we will establish the well-posedness and
the Ulam-Hyers stability property of the fixed point equation x = f(x).
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1. Introduction and preliminaries

Let (X, d) be a metric space and f : X → X be an operator. For A ⊂ X, let
δ(A) := sup {d(a, b) : a, b ∈ A} the diameter of the set A. For each x ∈ X, we denote:

O(x, n) = {x, f(x), ..., fn(x)} , n = 1, 2, ...,

O(x,∞) = {x, f(x), ..., fn(x), ...} .

Definition 1.1. (Ćirić [2]) Let (X, d) be a metric space and f : X → X be an operator.
Then X is said to be f -orbitally complete if every Cauchy sequence which is contained
in O(x,∞), for some x ∈ X converges in X.

The following classes of operators in a metric space (X, d) are important for our
approach.
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48 Mădălina Moga

Definition 1.2. Let (X, d) be a metric space and f : X → X be an operator. Then f
is said to be an α-contraction if there exists α ∈ [0, 1) such that

d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X. (1.1)

Definition 1.3. (Rus [6]) Let (X, d) be a metric space and f : X → X be an operator.
Then f is said to be a graphic α-contraction if there exists α ∈ [0, 1) such that

d(f2(x), f(x)) ≤ αd(x, f(x)), for all x ∈ X. (1.2)

Through this paper we denote N := {0, 1, 2, · · · } the set of all natural numbers
and by N∗ = N \ {0}.

We recall that, Fix(f) = {x ∈ X|x = f(x)} is the fixed point set of f and we
denote by (fn(x))n∈N the sequence of Picard iterates for f starting from x0 ∈ X, where
fn = f ◦f ◦· · ·◦f for n-times. Notice that the sequence of Picard iterates for f starting
from x0 ∈ X can be recursively defined by the formula xn+1 = f(xn), for n ∈ N,
where xn := fn(x0), n ∈ N.

Definition 1.4. (Ćirić [2]) An operator f : X → X is said to be a generalized con-
traction if and only if for every x, y ∈ X there exists nonnegative numbers q, r, s and
t, which may depend on both x and y, such that sup {q + r + s+ 2t : x, y ∈ X} < 1
and

d(f(x), f(y)) ≤ q · d(x, y) + r · d(x, f(x))+

+ s · d(y, f(y)) + t · [d(x, f(y)) + d(y, f(x))] .

Definition 1.5. (Ćirić [2]) Let (X, d) be a metric space and f : X → X be an operator.

Then X is said to be a Ćirić type operator (named a quasi-contraction in the original
paper [2]) if there exists a number q ∈ (0, 1), such that

d(f(x), f(y)) ≤ q ·max {d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))} , (1.3)

for all x, y ∈ X.

It is well known (see [4]) that of all the extensions of Banach-Caccioppoli Con-

traction Principle, the most general result was established by Ćirić in 1974 for the
above class of operators.

In the following example we present a Ćirić type operator which is not a gener-
alized contraction.

Example 1.6. Let

X1 =
{m
n

: m = 0, 1, 2, 4, 6, ...;n = 1, 3, 7, ..., 2k + 1, ...
}
,

X2 =
{n
n

: m = 1, 2, 4, 6, 8, ...;n = 2, 5, 8, ..., 3k + 2, ...
}
,

where k ∈ N and let X = X1 ∪X2. Let us define f : X → X by

f(x) =


2

3
x , x ∈ X1,

1

5
x , x ∈ X2.
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The mapping f is a Ćirić type operator with q =
2

3
. If both x and y are in X1 or in

X2, then

d(f(x), f(y)) ≤ 2

3
d(x, y)

If we take x ∈ X1 and y ∈ X2, then we have that

x ≥ 3

10
y implies d(f(x), f(y)) =

2

3

(
x− 3

10
y

)
≤ 2

3

(
x− 1

5
y

)
=

2

3
d(x, f(y))

x <
3

10
y implies d(f(x), f(y)) =

2

3

(
3

10
y − x

)
≤ 2

3
(y − x) =

2

3
d(x, y)

Thus, we have that f satisfies the following condition:

d(f(x), f(y)) ≤ 2

3
max {d(x, y), d(x, f(y)), d(y, f(x))}

and, hence, it is Ćirić type operator.
In the following step we show that f is not a generalized contraction on X. Let

x = 1 and y = 1
2 . Then we have that

q · d(x, y) + r · d(x, f(x)) + s · d(y, f(y)) + t · [d(x, f(y)) + d(y, f(x))]

=
1

2
q +

1

3
r +

4

10
s+

32

30
t < (q + r + s+ 2t)

32

60

<
32

60
<

17

30
= d(f(x), f(y)),

as q + r + s+ 2t < 1, we can see that f is not a generalized contraction.

In this paper, we will present some results related to Ćirić type operator in
complete metric spaces. Existence and uniqueness are re-called and several stability
properties (data dependence and Ostrowski stability property) are proved. Using the
retraction-displacement condition, we will establish the well-posedness and the Ulam-
Hyers stability property of the fixed point equation x = f(x).

Our results generalize and complement some theorems given in [1], [2], [3], [5],
[6], [7], [8].

2. Main results

In this section we will consider a metric space (X, d) and f : X → X a Ćirić type

operator. Besides the usual properties which are proved by Ćirić in [2], we will prove
some other stability properties. More precisely, we will establish the continuous data
dependence property of the fixed point and the Ostrowski stability property for the
operator f . Moreover, using the retraction-displacement condition and we also prove
that the fixed point equation x = f(x) is well-posed and Ulam-Hyers stable.

Theorem 2.1. (Ćirić [2]) Let (X, d) be a metric space and f : X → X be a Ćirić type
operator. Suppose that X is f -orbitally complete. Then:

1. f has a unique fixed point x∗ in X and lim
n→∞

fn(x) = x∗, i.e., f is a Picard

operator;
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2. d(fn(x), x∗) ≤ qn

1−qd(x, f(x)), for every x ∈ X and every n ∈ N∗;

The idea of the proof is based on the following two relations:
(i) if n ∈ N∗, then for each x ∈ X we have that d(f i(x), f j(x)) ≤ qδ(O(x, n)),

for every i, j ∈ N∗;
(ii) for each x ∈ X we have that δ(O(x,∞)) ≤ 1

1−qd(x, f(x)).

A second result in [2] shows that if there exists p ∈ N with p ≥ 2 such that fp

is a Ćirić type operator, then f is a Picard operator.

Remark 2.2. If f : X → X satisfies all the assumptions in Theorem 2.1, then we have
the following additional conclusion:

3. f satisfies the retraction-displacement condition

d(x, x∗) ≤ 1

1− q
d(x, f(x)), for all x ∈ X. (2.1)

Remark 2.3. The conclusion 3. follows by 2. in the following way. Take n = 1 in 2.
Then, we have

d(f(x), x∗) ≤ q

1− q
d(x, f(x)), for all x ∈ X.

Hence

d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ 1

1− q
d(x, f(x)), for all x ∈ X.

Lemma 2.4 (Cauchy-Toeplitz Lemma). Let (an)n∈N, (bn)n∈N be two sequences of pos-

itive numbers such that
∑
n≥0

an <∞ and lim
n→∞

bn = 0. Then

lim
n→∞

(
n∑

k=0

an−kbk

)
= 0

The following notion is essential in our approach.

Definition 2.5. (Rus [8]) Let (X, d) be a metric space and f : X → X be an operator
such that Fix(f) 6= ∅. We say that f satisfies the retraction-displacement condition
if there exists c > 0 and a set retraction ρ : X → Fix(f) such that

d(x, ρ(x)) ≤ cd(x, f(x)), for all x ∈ X. (2.2)

If Fix(f) = {x∗} then we have

d(x, x∗) ≤ cd(x, f(x)), for all x ∈ X.

For example, if f : X → X is an α-contraction and (X, d) is a complete metric
space then f satisfies the following retraction-displacement condition

d(x, x∗) ≤ 1

1− α
d(x, f(x)), for all x ∈ X.

On the same lines, if f : X → X is a graphic α-contraction then it satisfies the
retraction-displacement condition

d(x, ρ(x)) ≤ 1

1− α
d(x, f(x)), for all x ∈ X,
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where ρ : X → Fix(f) is defined by

ρ(x) = lim
n→∞

fn(x).

The following theorem is the main result of the paper.

Theorem 2.6. Let (X, d) be a metric space, f : X → X be a Ćirić type operator and
suppose that X is f -orbitally complete. Denote by x∗ ∈ X the unique fixed point of f .
Then the following conclusions hold:

1. the fixed point x = f(x) equation has the data dependence property, i.e., for any
operator g : X → X such that Fix(g) 6= ∅ and d(f(x), g(x)) ≤ η, for all x ∈ X
and some η > 0, we have

d(x∗, u∗) ≤ 1 + q

1− q
η,

for all u∗ ∈ Fix(g).
2. the fixed point equation is well-posed, i.e., for every sequence (un)n∈N ⊂ X such

that

d(un, f(un))→ 0,

as n→∞, we have that un → x∗, as n→∞;
3. the fixed point equation is Ulam-Hyers stable, i.e., there exists c > 0 such that

for any ε > 0 and any u∗ ∈ X an ε-solution of the fixed point equation (in the
sense that d(u∗, f(u∗)) ≤ ε), we have

d(u∗, x∗) ≤ c · ε.
4. if q < 1

2 , then the fixed point equation has the Ostrowski stability property, i.e.,
for any sequence (un)n∈N ⊂ X with d(un+1, f(un))→ 0 as n→∞, we have that
un → x∗;

5. if q < 1
2 , then f is a graphic q

1−q -contraction;

6. if q < 1
3 , then the operator f is a quasi-contraction, in the sense that there exists

β := q
1−2q < 1 such that

d(f(x), x∗) ≤ βd(x, x∗), for every x ∈ X.

Proof.

1. To prove data dependence we will take u∗ ∈ Fix(g) such that d(f(x), g(x)) ≤ η.

Then, we will prove that d(x∗, u∗) ≤ 1 + q

1− q
η.

d(x∗, u∗) = d(f(x∗), g(u∗)) ≤ d(f(x∗), f(u∗)) + d(f(u∗), g(u∗))

≤ q ·max {d(x∗, u∗), d(x∗, f(x∗)), d(u∗, f(u∗)), d(x∗, f(u∗)),

d(u∗, f(x∗))}+ d(f(u∗), g(u∗))

≤ q ·max {d(x∗, u∗), d(u∗, g(u∗)) + d(g(u∗), f(u∗)),

d(x∗, g(u∗)) + d(g(u∗), f(u∗)), d(x∗, u∗)}+ η

≤ q ·max {d(x∗, u∗), η, d(x∗, u∗) + η, d(x∗, u∗)}+ η

≤ q(d(x∗, u∗) + η) + η
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Hence, we get that

d(x∗, u∗) ≤ 1 + q

1− q
η

2. We will prove that the fixed point equation is well-posed. Let us estimate the
distance between un and x∗, where (un)n ∈ N is a sequence in X such that
d(un, f(un))→ 0 as n→∞.
In order to prove this, we will use the retraction-displacement condition (2.1).
We have:

d(un, x
∗) ≤ 1

1− q
d(un, f(un))→ 0 as n→∞

3. Let ε > 0 and u∗ ∈ X be an ε-solution of the fixed point equation x = f(x),
i.e., d(u∗, f(u∗)) ≤ ε. Using the retraction-displacement condition (2.1) we will
estimate the distance between x∗ and u∗:

d(x∗, u∗) = d(u∗, x∗) ≤ 1

1− q
d(u∗, f(u∗)) ≤ 1

1− q
ε

There exists c > 0 such that c := 1
1−q . Then it follows that

d(x∗, u∗) ≤ c · ε

which proves that the fixed point equation x = f(x) is Ulam-Hyers stable.
4. We will show that the operator f : X → X has the Ostrowski property. We

observe that:

d(un+1, x
∗) ≤ d(un+1, f(un)) + d(f(un), x∗) (2.3)

We take separately d(f(un), x∗) from the above inequality and we have:

d(f(un), x∗) = d(f(un), f(x∗))

≤ q ·max {d(un, x
∗), d(un, f(un)), d(x∗, f(x∗), d(un, f(x∗)),

d(x∗, f(un))}
≤ q ·max {d(un, x

∗), d(un, x
∗) + d(x∗, f(un)), d(un, x

∗),

d(x∗, f(un))}
≤ q(d(un, x

∗) + d(x∗, f(un))).

Thus

d(f(un), x∗) ≤ q

1− q
d(un, x

∗) (2.4)

We replace in (2.3) the relation obtained in inequality (2.4):

d(un+1, x
∗) ≤ d(un+1, f(un)) +

q

1− q
d(un, x

∗) (2.5)
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We denote: α :=
q

1− q
< 1.

We will use Cauchy-Toeplitz Lemma and we obtain:

d(un+1, x
∗) ≤ d(un+1, f(yn)) + αd(un, x

∗)

≤ d(un+1, f(un)) + α[d(un, f(un−1)) + αd(un−1, x
∗)]

≤ d(un+1, f(un)) + αd(un, f(un−1)) + α2d(un−1, x
∗) ≤ ... ≤

≤ d(un+1, f(un)) + αd(un, f(un−1)) + α2d(un−1, f(un−2))

+ ...+ αnd(u1, f(u0)) + αn+1d(u0, x
∗)→ 0 as n→∞.

5. If we put y := f(x) in the Ćirić type operator condition, we get

d(f(x), f2(x)) ≤ qmax{d(x, f(x)), d(f(x), f2(x)), d(x, f2(x))}
≤ q

(
d(x, f(x)) + d(f(x), f2(x))

)
.

Thus, we get that d(f(x), f2(x)) ≤ q
1−qd(x, f(x)), for every x ∈ X.

6. We will show now that f is a quasi-contraction, in the sense that

d(f(x), x∗) ≤ βd(x, x∗), for every x ∈ X,
where β := q

1−2q < 1. Indeed, by the second conclusion of Theorem 2.1 for

n = 1, we have d(f(x), x∗) ≤ q
1−qd(x, f(x)), for every x ∈ X. Then, we can

write successively:

d(f(x), x∗) ≤ q

1− q
d(x, f(x)) ≤ q

1− q
(d(x, x∗) + d(f(x), x∗)) .

As a consequence,

d(f(x), x∗) ≤ q

1− 2q
d(x, x∗), for each x ∈ X. �
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