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Abstract. In this paper we study some properties of the adjusted normal cone
operator of quasiconvex functions. In particular, we introduce a new notion of
maximal quasimotonicity for set-valued maps different from similar ones recently
appeared in the literature, and we show that it is enjoyed by this operator. More-
over, we prove the s×w∗ cone upper semicontinuity of the normal cone operator
in the domain of f in case the set of global minima has non empty interior.
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1. Introduction

The notion of maximal monotone operator dates back to the sixties and, since
then, it has been extensively studied in literature (see, for instance, [9] and the ref-
erences therein). One of the main interests for maximal monotone operators is the
strong relationship between convexity of a function and maximal monotonicity of its
associated subdifferential operator.

In recent years different generalizations of monotonicity have been proposed,
both in the scalar (see [16]) and in the set-valued case, in finite and infinite dimen-
sional spaces. Among them the most studied are, without a doubt, pseudomonotonic-
ity and quasimonotonicity. Many nice properties of these classes of operators have
been proved, but little effort has been devoted to the study of a suitable notion
of maximality. To fill this gap, Hadjisavvas in [14] introduced and studied maximal
pseudomonotone operators T : X ⇒ X∗, where X is a Banach space and X∗ denotes
its dual, while the notion of maximality for quasimonotone operators has been ad-
dressed in the recent works by Aussel and Eberhard [6], and by Bueno and Cotrina
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[11]. In particular, in [11] the authors extend the notion of polarity introduced by
Mart́ınez-Legaz and Svaiter in 2005 ([17]), by defining the quasimonotone polar of
a set-valued operator in order to characterize maximal quasimonotone operators via
graph inclusion.

In this work we define a new notion of maximality for a quasimonotone operator
defined on a Banach space, that is based both on the notion of quasimonotone polar
of an operator T and on its behaviour at the points in the interior of the effective
domain of T . This property is enjoyed, in particular, by the Clarke subdifferential ∂of,
where f is quasiconvex and locally Lipschitz, under suitable restrictions on ∂o, as well
as by the adjusted normal cone operator to the sublevel sets of a quasiconvex, lower
semicontinuous and solid function, provided suitable assumptions on the minima are
satisfied. The interest in studying the properties of the adjusted normal cone operator
is due to the crucial role it plays in characterizing quasiconvexity (see [7]).

The paper is organized as follows: In Section 2 we present some preliminary
notions and results. In Section 3 the new definition of maximal quasimonotonicity
for operators is introduced; some properties of maximal quasimonotone operators
are established, together with a sufficient condition that can be compared with a
similar one for maximal monotone operators. Section 4 is devoted to the investigation
of the properties of the adjusted normal cone operator of a lower semicontinuous
and quasiconvex function in terms of maximal quasimonotonicity and cone upper
semicontinuity. In particular, the cone upper semicontinuity is proved in the domain
of f in case the set of global minima has non empty interior, thereby extending a
result in [7].

2. Preliminaries

Let X be a real Banach space, X∗ its topological dual, and 〈·, ·〉 the duality
mapping. In the following, {xα} and {x∗α}, with α ∈ Γ will denote nets in X and X∗,
respectively.

For x ∈ X and r > 0, B(x, r), B(x, r) and S(x, r) will denote the open ball,
the closed ball and the sphere centered at x with radius r, respectively. Also, given a
nonempty set A ⊆ X, let B(A, ε) = {x ∈ X : dist(x,A) < ε} and B(A, ε) = {x ∈ X :
dist(x,A) ≤ ε}, where dist(x,A) = infy∈A‖x− y‖ is the distance of x from A. A set
L in a topological vector space is said to be a cone if it is closed under multiplication
by nonnegative scalars; a set L is said to be an open cone if it is an open set, closed
under multiplication by positive scalars. A convex set B is called a base of a cone L
if and only if 0 /∈ B and L = ∪t≥0tB.

The domain and the graph of a set valued map T : X ⇒ X∗ will be denoted by
dom(T ) and Gr(T ), while the effective domain of T is given by

edom(T ) = {x ∈ dom(T ) : T (x) 6= {0}}.

For any x∗ ∈ X∗, let R+x
∗ = {tx∗ ∈ X∗ : t ≥ 0} and for any B ⊆ X∗ let

R+B = ∪x∗∈BR+x
∗. The operator (R+T ) : X ⇒ X∗ is given by

(R+T )(x) = R+(T (x)) = ∪x∗∈T (x)R+x
∗.
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Given (x, x∗), (y, y∗) ∈ X ×X∗, (x, x∗) is said to be quasimonotonically related
to (y, y∗), denoted by (x, x∗) ↑ (y, y∗), if

min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0

(see for instance [11] and the references therein). Note that (x, 0) is quasimonotonically
related to any (y, y∗) ∈ X ×X∗. Relation ↑ is a tolerance relation, i.e., it is reflexive
and symmetric but in general not transitive.

The quasimonotone polar T ν : X ⇒ X∗ of T is given by

T ν(x) = {x∗ ∈ X∗ : (x, x∗) ↑ (y, y∗) ∀y∗ ∈ T (y), y ∈ dom(T )}
= {x∗ ∈ X∗ : (x, x∗) ↑ (y, y∗) ∀y∗ ∈ T (y), y ∈ edom(T )}

Note that 0 ∈ T ν(x) and that T ν(x) is a cone for all x ∈ X. Moreover, T ν(x) is a
convex and w∗-closed set (see Corollary 3.8 in [11]), that can be not pointed (see, for
instance, the next Example 3.2).

Moreover, the following proposition, related to Lemma 1 in [6] and to Proposition
3.5 in [14] holds :

Proposition 2.1. Let T : X ⇒ X∗ be an operator. If (xα, x
∗
α) ∈ Gr(T ν), (xα, x

∗
α) →

(x, x∗) in the w × w∗ topology, and lim supα 〈x∗α, xα〉 ≤ 〈x∗, x〉, then x∗ ∈ T ν(x).
In particular, Gr(T ν) is sequentially closed in the s × w∗ topology and in the w × s
topology.

Proof. Take any (y, y∗) ∈ Gr(T ). Since (xα, x
∗
α) ↑ (y, y∗), we have

min {〈x∗α, y − xα〉 , 〈y∗, xα − y〉} ≤ 0.

By our assumptions,

lim inf
α
〈x∗α, y − xα〉 = 〈x∗, y〉 − lim sup

α
〈x∗α, xα〉 ≥ 〈x∗, y − x〉 .

Thus

min {〈x∗, y − x〉 , 〈y∗, x− y〉} ≤ 0

which says that (x, x∗) ∈ Gr(T ν).
In particular, Gr(T ν) is sequentially closed in the s × w∗ and in the w × s

topologies, because, in these cases, we have lim 〈x∗n, xn〉 = 〈x∗, x〉. �

In the sequel we will introduce the notions of quasimonotonicity, cone upper
semicontinuity, upper sign continuity for an operator T . The reader can easily convince
himself that all the definitions hold for T if and only if they hold for R+T.

A map T : X ⇒ X∗ is said to be

(i) quasimonotone if T (x) ⊆ T ν(x), for all x ∈ X; equivalently, for every x, y ∈ X,
x∗ ∈ T (x), y∗ ∈ T (y),

min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0;

(ii) s × w∗ cone upper semicontinuous (cone usc) at x ∈ edom(T ) if for every w∗-
open cone K such that T (x) ⊆ K ∪{0}, there exists a neighborhood U of x such
that T (y) ⊆ K ∪ {0} for all y ∈ U (see Definition 5 in [6]);
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(iii) upper sign continuous at x if for every v ∈ X,

∃δ > 0 : ∀t ∈ ]0, δ[ ,∃x∗ ∈ T (x+ tv)\{0} : 〈x∗, v〉 ≥ 0

⇒ ∃x∗ ∈ T (x)\{0} : 〈x∗, v〉 ≥ 0
(2.1)

In particular, the second definition fits well with operators T : X ⇒ X∗ whose
values are unbounded convex cones. In this case, if T (x) has a base for every x ∈
edom(T ), the notion is equivalent to Definition 2.1 in [7]. Moreover, our definition of
upper sign continuity is slightly different from Definition 9 in [6].

It is easy to verify that the definition (ii) is stronger than (iii). Indeed, the
following result holds:

Proposition 2.2. If T : X ⇒ X∗ is cone upper semicontinuous at x ∈ edom(T ), then
T is upper sign continuous at x.

Proof. Suppose first that for every v ∈ X, the l.h.s. in (2.1) is never satisfied; in this
case, there is nothing to prove. Otherwise, suppose that there exists v ∈ X such that
the l.h.s. holds, but 〈x∗, v〉 < 0 for every x∗ ∈ T (x) \ {0}. The set

Kv = {x∗ ∈ X∗ : 〈x∗, v〉 < 0}
is a w∗-open cone with T (x) ⊆ Kv ∪ {0}. From the cone upper semicontinuity at x,
for t small enough, T (x+ tv) ⊆ Kv ∪ {0}, a contradiction. �

The cone upper semicontinuity of a conic valued operator, under mild conditions,
implies also the closedness of the graph of the operator in the s×w∗ topology as shown
in the following result:

Proposition 2.3. Let T : X ⇒ X∗ be such that for all x ∈ X, T (x) is a convex,
w∗-closed cone with a w∗-compact base. If dom(T ) is closed and T is cone usc, then
Gr(T ) is closed in the s× w∗ topology.

Proof. Let (xα, x
∗
α), α ∈ A be a net in Gr(T ), converging to (x, x∗) in the s × w∗

topology. Since dom(T ) is closed, x ∈ dom(T ). We have to show that x∗ ∈ T (x).
If x∗ = 0 this is trivial, so we suppose that x∗ 6= 0 and x∗ /∈ T (x). Let B(x) be a
w∗-compact base of T (x). Then B(x) ∩ R+x

∗ = ∅.
By Lemma 3.3 of [14], there exists b ∈ X such that 〈x∗, b〉 > 0 > 〈y∗, b〉

for all y∗ ∈ B(x), so 〈x∗, b〉 > 0 > 〈y∗, b〉 for all y∗ ∈ T (x)\{0}. The set
V := {y∗ ∈ X∗ : 〈y∗, b〉 < 0} is an open cone and T (x) ⊆ V ∪ {0}. By cone upper
semicontinuity, there exists α0 ∈ A such that T (xα) ⊆ V ∪ {0} for α < α0. Thus,

〈x∗α, b〉 ≤ 0 for α < α0. This contradicts 〈x∗, b〉 > 0 and x∗α
w∗

→ x∗. �

Remark 2.4. In the Euclidean setting, a conic-valued map with closed graph is always
cone usc. Indeed, one can consider the operator T ′(x) = T (x)∩S(0, 1); T ′ has compact
range and closed graph, and therefore it is upper semicontinuous. This is equivalent
to say that T is cone usc (see for instance [1], [8]). This is no longer true in infinite
dimensional settings, as the following example shows. Let X = X∗ = `2, {xn}n ⊂ `2

be a sequence of points different from 0 and strongly convergent to 0, and consider
the set-valued map T : `2 ⇒ `2 with domain {xn}n ∪ {0} and defined as follows:

T (0) = {0}, T (xn) = R+en,
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where en denotes the sequence {ein}i such that ein = 1 if i = n, and ein = 0, otherwise.
This operator is not cone usc at x = 0; indeed, taking V = ∅, T (0) ⊂ V ∪ {0}, but
T (xn) /∈ V ∪ {0}, for any n. Let us show that Gr(T ) is in fact s×w∗ closed. Suppose

that (xn, x
∗
n) ∈ Gr(T ), and x∗n

w∗

−−→ x∗. From the definition of T, x∗n = tnen, for some
tn ≥ 0. In addition, the sequence {tnen} is bounded. This implies that, for every
x ∈ `2, 〈tnen, x〉 → 〈x∗, x〉 if and only if x∗ = 0, thereby showing the closedness of
Gr(T ).

In order to define the notion of the operator we are interested in, i.e., the adjusted
normal cone operator, we need first to recall some necessary preliminary definitions.

Let f : X → R ∪ {+∞} be a function and dom f = {x ∈ X : f(x) < +∞} its
domain, which is always assumed nonempty.

For every λ ∈ R define the sublevel set Sf,λ = {x ∈ X : f(x) ≤ λ} and the
strict sublevel set S<f,λ = {x ∈ X : f(x) < λ}. In particular, in order to simplify the
notation, for every x ∈ dom f , we set

Sf (x) = Sf,f(x), S<f (x) = S<f,f(x).

The function f is said to be lower semicontinuous (lsc) if Sf,λ is a closed set for
every λ ∈ R, and solid if intSf,λ 6= ∅ for every λ > infXf .

Moreover, let ρfx = dist(x, S<f (x)) and for any x ∈ dom f define the adjusted

sublevel set Saf (x) by

Saf (x) =

{
Sf (x) ∩B(S<f (x), ρfx) x ∈ dom f \ argminf

Sf (x) x ∈ argminf.

In particular, Saf (x) = Sf (x) for every x ∈ dom f whenever every minimum of f is
global.

In general, S<f (x) ⊂ Saf (x) ⊆ Sf (x) for any x ∈ dom f .

The function f is said to be quasiconvex if for every x, y ∈ dom f and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ max{f(x), f(y)}

It is well known that the convexity of the sublevel sets Sf (x), of the strict sublevel
sets S<f (x) as well as of the adjusted sublevel sets Saf (x) for every x ∈ X, characterizes

the quasiconvexity of the function f (see [7]).

Let us recall that a map T : X ⇒ X is said to be lower semicontinuous at x if

for every xn
s−→ x with x ∈ dom(T ), and for every y ∈ T (x), there exists yn ∈ T (xn)

such that yn
s−→ y (see for instance [3], p. 39-40).

The following result, whose proof is very similar to the proof in the finite dimen-
sional case in [1, Th. 3.1], holds:

Theorem 2.5. Let f : X −→ R ∪ {+∞} be quasiconvex. If Sf (x) is closed for all
x ∈ domf , then the map x⇒ Saf (x) is lower semicontinuous on domf .



36 Monica Bianchi, Nicolas Hadjisavvas and Rita Pini

For any function f let us define the normal cone operator Nf : X ⇒ X∗ and the
adjusted normal cone operator Na

f : X ⇒ X∗ as follows: if x ∈ dom f,

Nf (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Sf (x)}
Na
f (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Saf (x)};

if x /∈ dom f, we set Nf (x) = Na
f (x) = ∅. Obviously, Nf (x) ⊆ Na

f (x).
These operators are always quasimonotone, indeed they satisfy a stronger prop-

erty known as cyclic quasimonotonicity (see [7] and the references therein).

3. A new notion of maximal quasimonotone map

The study of a suitable definition of maximal quasimonotone set-valued map
was recently addressed by Aussel and Eberhard [6] and also by Bueno and Cotrina
[11]. The new notion of maximal quasimonotonicity we introduce in this section is
enjoyed, in particular, by the Clarke subdifferential operator of a locally Lipschitz
and quasiconvex function, and by the adjusted normal cone operator of a quasiconvex
function.

Definition 3.1. Let T : X ⇒ X∗ be a quasimonotone operator with int edom(T ) 6= ∅.
T is maximal quasimonotone if for every x∗ ∈ T ν(x) with x ∈ int edom(T ), we have
x∗ ∈ R+T (x), i.e. T ν(x) = R+T (x) for every x ∈ int edom(T ).

As a consequence of [11, Th. 4.7(4)], our notion of maximal quasimonotone
operator is weaker than the notion introduced in [6].

The following trivial example exhibits a maximal quasimonotone map according
to Definition 3.1 which is not maximal quasimonotone neither according to [6] or [11].

Example 3.2. Define T : R⇒ R by

T (x) =

 0, if x < 0
[0,+∞) if x = 0

x if x > 0

Then edom(T ) = [0,+∞). It is straightforward to verify that T is maximal quasi-
monotone according to Definition 3.1. Indeed, for x ∈ (0,+∞), (x, x∗) ↑ (y, y∗) for
every y∗ ∈ T (y) if and only if x∗ ∈ R+T (x).

On the other hand, a quasimonotone extension of T on [0,+∞) can be provided
by setting T (0) = (−∞,+∞). Thus T is not maximal quasimonotone either according
to Definition 1 in [6] or according to the definition in [11] given in terms of inclusion.
In addition, note that T is not even pre-maximal quasimonotone as defined in [11]
since

T ν(x) =

{
(−∞,+∞) if x ≤ 0

[0,+∞) if x > 0

is not quasimonotone.

The following example shows a quasimonotone operator which is not maximal
quasimonotone according to Definition 3.1.
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Example 3.3. Define T : R2 ⇒ R2 by

T (x, y) =


R+ (1, 1) if x ≥ 0, y ≥ 0, (x, y) 6= (0, 0)
R+ (1,−1) if x > 0, y < 0
R+ (−1, 1) if x < 0, y > 0
R+ (−1,−1) if x ≤ 0, y ≤ 0

It is straighforward to verify that this operator is quasimonotone with edomT =
R2 but it is not maximal quasimonotone; indeed, T ν(0, 0) = R2, but T (0, 0) =
R+ (−1,−1) .

In the next proposition some properties of maximal quasimonotone operators
are summarized. Some of them extend to maximal quasimonotone operators results
similar to those involving maximal monotone ones (see, for instance, [15], Ch. 3).

Proposition 3.4. Let T : X ⇒ X∗ be a maximal quasimonotone operator. Then,

i) R+T : X ⇒ X∗ is maximal quasimonotone.
ii) R+T (x) is convex for all x ∈ int edom(T ).

iii) If x ∈ int edom(T ), xn
s−→ x, x∗n

w∗

−−→ x∗ with x∗n ∈ T (xn), then x∗ ∈ R+T (x).
In particular, R+T (x) is sequentially w∗-closed, for every x ∈ int edom(T ).

iv) If x ∈ int edom(T ), xn
w−→ x, x∗n

s−→ x∗ with x∗n ∈ T (xn), then x∗ ∈ R+T (x).

Proof. Recall that by definition of maximal quasimonotone operators,

T ν(x) = R+T (x) for all x ∈ int dom(T ).

i) Trivial, noting that (R+T )ν(x) = T ν(x) = R+T (x) for all

x ∈ int edom(R+T ) = int edom(T ).

ii) follows from Corollary 3.8 in [11].
iii) and iv) follows from Proposition 2.1 observing that for quasimonotone oper-

ators x∗n ∈ T (xn) ⊆ T ν(xn).
�

Remark 3.5. Note that R+T (x) is not necessarily convex or w∗-closed at the boundary
of edom(T ). For example, take X = R2 and define T by

T (x) =


R+ × {0} if x > 0, y ≥ 0
R− × {0} if x < 0, y ≥ 0
R× R+ if x = 0, y > 0

{(x, y) : −2 |x| < y < − |x|} if x = y = 0
∅ if y < 0

Then T is maximal quasimonotone according to Definition 3.1, but R+T (0, 0) is
neither closed, nor convex.

The next two results try to adapt known properties of maximal monotone oper-
ators to the case of maximal quasimonotone ones.

It is well known that any maximal monotone operator is upper semicontinuous
in the interior of its domain (see Theorem 1.28, Section 3 in [15]). In case of maximal
quasimonotone operators a similar result holds in a finite dimensional setting.
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Proposition 3.6. If T : Rn ⇒ Rn is maximal quasimonotone, then T is cone usc at
every x ∈ int edom(T ).

Proof. Without loss of generality we will suppose that T = R+T. Let x ∈ int edom(T )
be a point where T is not cone usc. Then, there exist an open cone K, and sequences
{xn} and {x∗n} such that: T (x) ⊂ K ∪ {0}, xn → x and x∗n ∈ T (xn) \ (K ∪ {0}).
Without loss of generality, suppose that ‖x∗n‖ = 1 and x∗n → x∗, with ‖x∗‖ = 1. From
Proposition 3.4-iii), x∗ ∈ T (x). On the other hand, x∗n ∈ (K ∪ {0})c ⊂ Kc, which is a
closed set, so x∗ ∈ Kc, x∗ 6= 0, a contradiction. �

The next result provides a sufficient condition for maximal quasimonotonicity,
that can be compared with a similar one for maximal monotone operators (see The-
orem 1.33, Section 3 in [15]; see also Lemma 9.i-ii. in [6]):

Proposition 3.7. Let T : X ⇒ X∗ be upper sign-continuous, with convex, w∗-compact
values. If int edom(T ) 6= ∅ and 0 /∈ T (x) for every x ∈ int edom(T ), then T ν(x) ⊆
R+T (x), for every x ∈ int edom(T ). In particular, if T is quasimonotone, then it is
maximal quasimonotone.

Proof. Let us assume that there exists x ∈ int edom(T ) and x∗0 6= 0, such that x∗0 ∈
T ν(x)\R+T (x). From the assumption 0 /∈ T (x), and thus R+x

∗
0∩T (x) = ∅. Therefore,

we can apply Lemma 3.3. in [14] and find b ∈ X such that

〈x∗0, b〉 > 0 > 〈x∗, b〉, ∀x∗ ∈ T (x). (3.1)

Set xt = x+ tb ∈ int edom(T ) for t > 0 sufficiently small. Since 〈x∗0, xt− x〉 > 0, from
the definition of quasimonotone polar it follows that 〈x∗, b〉 ≥ 0 for all x∗ ∈ T (xt). By
upper sign-continuity, there exists x∗ ∈ T (x)\{0} such that 〈x∗, b〉 ≥ 0, contradicting
(3.1).

In case T is quasimonotone, from the inclusion T ν(x) ⊇ R+T (x) the maximal
quasimonotonicity easily follows. �

The example below shows that the assumption 0 /∈ T (x) cannot be dropped, even
in case we strengthen the continuity of T by imposing its cone upper semicontinuity:

Example 3.8. Define T : R2 ⇒ R2 by

T (x, y) =


R× (−∞, 0] if x = 0, y = 0

[0,+∞)× {0} if x > 0, y ≥ 0
(−∞, 0]× {0} if x < 0, y ≥ 0

R× {0} if x = 0, y > 0
R+(x, y) if x ∈ R, y < 0

It is straighforward to verify that edom(T ) = R2, T is quasimonotone, cone usc with
closed, conic and convex values, but it is not maximal quasimonotone. As a matter
of fact, T ν(0, 0) = R2, while T (0, 0) = R× (−∞, 0].

In the last result of this section we apply Proposition 3.7 to show the maximal
quasimonotonicity of the Clarke subdifferential.

Let f : X → R ∪ {+∞} be a locally Lipschitz function and denote by ∂of :
X ⇒ X∗ its Clarke subdifferential. It is well known that dom(∂of) = dom f , ∂of(x)
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is w∗-compact and convex for all x ∈ dom(∂of), and ∂of is upper semicontinuous
in the s × w∗ topology (see [12], and [18] Prop. 7.3.8). Thus, Proposition 3.7 and
Theorem 4.1 in [5] imply

Corollary 3.9. Let f : X → R ∪ {+∞} be a locally Lipschitz quasiconvex function.
Assume that 0 /∈ ∂of(x) for all x ∈ int edom(∂of). Then, ∂of is maximal quasimono-
tone.

Note that a function satisfying the assumptions of the corollary above is nec-
essarily pseudoconvex (see [4], Theorem 4.1). This means that ∂of is D-maximal
pseudomonotone (see [14], Corollary 3.2). However, this does not automatically imply
maximal quasimonotonicity, as shown by the next example. The example also shows
that the assumption 0 /∈ ∂of(x), ∀x ∈ dom f , cannot be omitted from Corollary 3.9.

Example 3.10. Let f : R2 → R be given by f(x1, x2) = 1
2x

2
1 + |x2|. Then f is convex,

thus quasiconvex. Its subdifferential ∂f = ∂of is given by

∂f (x1, x2) =

 {(x1, 1)} if x2 > 0
{(x1,−1)} if x2 < 0
{x1} × [−1, 1] if x2 = 0

Note that ∂of is usc with compact convex values and edom(∂of) = R2. The oper-
ator ∂of is maximal monotone and D-maximal pseudomonotone. It is not maximal
quasimonotone, because (1, 0) ∈ (∂of)

ν
(0, 0), but (1, 0) /∈ R+∂

of(0, 0).

Finally, note that the function f(x) = |x| does not satisfy the assumptions of
Corollary 3.9, but ∂of is maximal quasimonotone.

4. Maximal quasimonotonicity and continuity properties of the
adjusted normal cone operator

We start by proving the maximal quasimonotonicity of the normal operator Na
f .

To this purpose, it is necessary to describe the interior of the effective domain of this
operator.

Let us first introduce some preliminary useful notions. Given a convex set
K ⊆ X, a point x0 ∈ K is called a support point of K if there exists x∗ ∈ X∗\{0}
such that

〈x∗, x0〉 = sup
x∈K
〈x∗, x〉 ,

or equivalently, if x0 ∈ edom(NK), where NK : K ⇒ X∗ is defined as follows

NK(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ K}.

The set of support points of K is denoted by supp (K); this definition is consistent
with the one in [2], Ch. 7, but is different from the one in [10], that corresponds in
fact to the notion of proper support points given in [2]. The set of nonsupport points
(or quasi-interior points, see [13] Prop. 2.2) is the set

nsupp (K) := K\supp (K).
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Note that, if K is a nonempty, convex and closed set with nonempty interior, then ev-
ery boundary point x of K is a support point for K (see Lemma 7.7 in [2]). Therefore,
nsupp (K) = intK. In infinite dimensional spaces we may have nonsupport points
even if intK is empty (see Example 7.8 in [2]).

If nsupp (K) 6= ∅, then nsupp (K) is dense in K. In fact, we have the easy
property:

Proposition 4.1. Let K ⊆ X be convex. If x1 ∈ K and x2 ∈ nsupp (K), then

]x1, x2] ⊆ nsupp (K).

In particular, nsupp (K) is dense in K.

Proof. Assume that there exists x3 = tx1 + (1− t)x2, t ∈ ]0, 1[, such that

x3 /∈ nsupp (K).

Then there exists x∗ ∈ X∗\{0} such that

〈x∗, tx1 + (1− t)x2〉 = sup
x∈K
〈x∗, x〉 ≥ 〈x∗, x1〉 (4.1)

〈x∗, tx1 + (1− t)x2〉 = sup
x∈K
〈x∗, x〉 > 〈x∗, x2〉 (4.2)

The strict inequality in (4.2) is due to the fact that

〈x∗, tx1 + (1− t)x2〉 = 〈x∗, x2〉
would imply that x2 ∈ supp (K), contrary to our assumption.

Combining (4.1) and (4.2) we get a contradiction. Hence, x3 ∈ nsupp(K). �

Let now f : X → R ∪ {+∞} be a lsc, solid and quasiconvex function and set

C = argmin f.

Under the assumptions on f , C is closed and convex, and int dom f 6= ∅.

Proposition 4.2. Let f : X → R ∪ {+∞} be a quasiconvex, lsc and solid function.
Then

int edom(Na
f ) =

{
int dom f if nsupp (C) = ∅

(int dom f) \ C if nsupp (C) 6= ∅

Proof. By Proposition 3.4 in [7] we have dom f \ C ⊆ edom(Na
f ), so

(int dom f) \ C ⊆ edom(Na
f ).

Since (int dom f) \ C is open, we obtain

(int dom f) \ C ⊆ int edom(Na
f ). (4.3)

We consider two cases:
(i) Let nsupp (C) = ∅. Then C = supp (C) = edom(NC) ⊆ edom(Na

f ). Com-

bining with (int dom f) \ C ⊆ edom(Na
f ) we obtain int dom f ⊆ edom(Na

f ). Hence

int dom f ⊆ int edom(Na
f ). The reverse implication is obvious, since edom(Na

f ) ⊆
dom f, so int edom(Na

f ) = int dom f .

(ii) Let nsupp (C) 6= ∅. Take x0 ∈ int edom(Na
f ). There exists ε > 0 such that

B(x0, ε) ⊆ int edom(Na
f ). Then B(x0, ε) ⊆ int dom f . If we had B(x0, ε)∩C 6= ∅, then
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we would also have B(x0, ε) ∩ nsuppC 6= ∅, due to Proposition 4.1. But then there
would exist a point y ∈ B(x0, ε) ⊆ edom(Na

f ) such that y ∈ nsuppC. This is clearly

impossible. Hence, B(x0, ε) ⊆ (int dom f) \ C, which shows that

int edom(Na
f ) ⊆ (int dom f) \ C.

The reverse implication was already shown in (4.3). �

An immediate consequence of Proposition 4.2 is the following:

Corollary 4.3. Let f : X → R ∪ {+∞} be a quasiconvex, lsc function. Assume that
intC 6= ∅. Then

int edom(Na
f ) = (int dom f) \ C.

Proof. If intC 6= ∅, then f is solid, and nsupp (C) = intC 6= ∅. Proposition 4.2 yields
the result. �

We are now in position to prove maximality of the quasimonotone operator Na
f .

To this aim, it is necessary to provide a description for (Na
f )ν .

Theorem 4.4. Let f : X → R ∪ {+∞} be a quasiconvex, lsc and solid function. Then

(Na
f )ν(x) =

{
Na
f (x), if x ∈ dom f\C
X∗, if x ∈ C

Proof. Let x ∈ C. Take any (y, y∗) ∈ Gr(Na
f ). If y ∈ C, then x ∈ Sf (y) = Saf (y). If

y /∈ C, then x ∈ S<f (y) ⊆ Saf (y). In both cases, x ∈ Saf (y) so 〈y∗, x− y〉 ≤ 0. It follows
that for every x∗ ∈ X∗,

min {〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0.

Thus, (x, x∗) ↑ (y, y∗) so (Na
f )ν(x) = X∗.

Now let x ∈ dom f\C. Since Na
f is quasimonotone, we always have Na

f (x) ⊆ (Na
f )ν(x),

so we have to show that
(Na

f )ν(x) ⊆ Na
f (x). (4.4)

Suppose by contradiction that there exists x∗0 ∈ (Na
f )ν(x) \ Na

f (x). It follows that

〈x∗0, y′ − x〉 > 0 for some y′ ∈ Saf (x).

Since f is solid, intSaf (x) 6= ∅ and Saf (x) = intSaf (x). Thus, there exists some y such
that

〈x∗0, y − x〉 > 0, y ∈ intSaf (x). (4.5)

Set yt = x+ t(y − x), t ∈ (0, 1]. Then (4.5) implies that for all t ∈ (0, 1],

〈x∗0, yt − x〉 > 0, yt ∈ intSaf (x).

Combining with x∗0 ∈ (Na
f )ν(x) and 〈y∗, yt − x〉 = t〈y∗, y − x〉, we deduce

〈y∗, y − x〉 ≥ 0, ∀y∗ ∈ Na
f (yt), t ∈ (0, 1]. (4.6)

By Proposition 3.4 (ii) in [7], for every quasiconvex, lsc and solid function f and x ∈
dom f\C, we have Na

f (x)\{0} 6= ∅. Thus, x ∈ edom(Na
f ). Take any x∗ ∈ Na

f (x)\{0}.
Then

y ∈ intSaf (x) ⊆ int {y ∈ X : 〈x∗, y − x〉 ≤ 0} = {y ∈ X : 〈x∗, y − x〉 < 0} .
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This means that 〈x∗, y − x〉 < 0. Hence,

Na
f (x) ⊂ {z∗ ∈ X∗ : 〈z∗, y − x〉 < 0} ∪ {0}. (4.7)

Set K = {z∗ ∈ X∗ : 〈z∗, y − x〉 < 0}. This is a w∗-open cone, and Na
f (x) ⊆ K ∪ {0}.

Taking into account the cone upper semicontinuity of the map Na
f at x ∈ dom f\C

implied by Proposition 3.5 in [7], we obtain Na
f (yt) ⊆ K ∪ {0} for all t > 0 small

enough. From (4.6), we get Na
f (yt) = {0}. But for t > 0 small enough, we have that

yt /∈ C so yt ∈ edom(Na
f ), a contradiction. �

Theorem 4.5. Let f : X → R ∪ {+∞} be a quasiconvex, lsc and solid function. In
addition, if ]C ≥ 2, we assume that intC 6= ∅. If int edom(Na

f ) 6= ∅, then Na
f is

maximal quasimonotone.

Proof. Let x ∈ int edom(Na
f ). In the special case ]C = 1 and C = {x}, we have

Na
f (x) = X∗ = (Na

f )ν(x) by Theorem 4.4. According to Corollary 4.3, in all other the

cases we have x /∈ C. Applying again Theorem 4.4 we obtain Na
f (x) = (Na

f )ν(x), so
Na
f is maximal quasimonotone. �

Remark 4.6. The assumption about the set C in the theorem above cannot be relaxed.
Take, for instance, the function f : R2 → R, f(x1, x2) = |x1|.
The set C = {0} × R has empty interior, (Na

f )ν(0, 0) = R2 from Theorem 4.4, but

(0, 1) /∈ R+N
a
f (0, 0) = Na

f (0, 0).

Note that Na
f can be maximal quasimonotone also in case the function f is not

quasiconvex. Take for instance, f(x) = xe−x. Indeed, it is easy to verify that

Na
f (x) =

{
[0,+∞) if x ≤ 0

0 if x > 0

is maximal quasimonotone, despite f being trivially not quasiconvex.

In this last part we will investigate some continuity properties of the map Na
f .

Let us first state the following result:

Proposition 4.7. Let A : X ⇒ X be a map which is lsc on its domain. Define M :
dom(A)⇒ X∗ by M(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ A(x)}. Then the graph of
M is s× w∗ sequentially closed on dom(A)×X∗.

Proof. Assume that xn
s−→ x ∈ dom(A), x∗n ∈ M(xn) and x∗n

w∗

−−→ x∗. Since A is a lsc

map, for every y ∈ A(x) there exists a subnet xni of xn and yni ∈ A(xni) s.t. yni

s−→ y.
Let β be a bound of the sequence {x∗n}. Then∣∣〈x∗, y − x〉 − 〈x∗ni

, yni
− xni

〉∣∣ ≤ ∣∣〈x∗ − x∗ni
, y − x

〉∣∣
+
∣∣〈x∗ni

, (y − x)− (yni
− xni

)
〉∣∣

≤
∣∣〈x∗ − x∗ni

, y − x
〉∣∣+ β ‖(y − x)− (yni

− xni
)‖ → 0.

We find
〈x∗, y − x〉 = lim

〈
x∗ni

, yni
− xni

〉
≤ 0.

Hence, x∗ ∈M(x). �
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As an immediate consequence of Theorem 2.5 and Proposition 4.7 we find the
following:

Corollary 4.8. Let f : X −→ R ∪ {+∞} be quasiconvex. If Sf (x) is closed for all
x ∈ domf , then the graph of the map x⇒ Na

f (x) is sequentially closed on domf ×X∗
in the s× w∗ topology.

In finite dimensions, the above corollary entails that Na
f is cone usc (see Corol-

laries 3.1 and 3.2 in [1]).
In infinite dimensions, by assuming that f is solid, we can show, via the s×w∗

closedness of the graph, the cone upper semicontinuity of the normal cone operator
Na
f in dom f under a suitable assumption on C. In particular, we recover Proposition

3.5 in [7].

Theorem 4.9. Let f be quasiconvex, lsc and solid. Then Na
f is s × w∗ cone upper

semicontinuous in dom f \C. If in addition #C ≤ 1, or #C ≥ 2 and int C 6= ∅, then
Na
f is s× w∗ cone upper semicontinuous in dom f .

Proof. First of all note that if C is a singleton, then Na
f is s × w∗ cone upper semi-

continuous at that point. In the following we will assume that C is not a singleton.
Let x ∈ dom f .

Suppose by contradiction that there exist a w∗-open cone M and a sequence

xn ∈ dom f , xn
s−→ x, such that Na

f (x) ⊆M ∪ {0}, but

Na
f (xn) "M ∪ {0}. (4.8)

Thus, there exists z∗n 6= 0, with z∗n ∈ Na
f (xn) \ M . We will show that there

exist n0 ∈ N, ε > 0 and y0 ∈ X such that for all n ≥ n0 and v ∈ B(0, 1), we have
y0 + εv ∈ Saf (xn). To see this, we consider two cases:

(i) If x /∈ C, then take λ such that inf f < λ < f(x). Since f is solid, intSf,λ 6= ∅.
By lower semicontinuity of f , there exists n0 ∈ N such that for all n ≥ n0,
f(xn) > λ. Now take y0 ∈ X and ε > 0 such that B(y0, ε) ⊆ Sf,λ. Then for

every v ∈ B(0, 1) and n ≥ n0, we have y0 + εv ∈ Sf,λ ⊆ S<f (xn) ⊆ Saf (xn).

(ii) If x ∈ C, then by assumption intC 6= 0; take y0 ∈ intC and ε > 0 such that
B(y0, ε) ⊆ C. Then we obtain y0+εv ∈ C ⊆ Saf (xn) for all n ∈ N and v ∈ B(0, 1).

In both cases, z∗n ∈ Na
f (xn) implies that for n ≥ n0,

ε〈z∗n, v〉 ≤ 〈z∗n, xn − y0〉 ∀v ∈ B(0, 1),

so

ε‖z∗n‖ ≤ 〈z∗n, xn − y0〉.
Consequently, taking n1 ≥ n0 such that ‖xn − x‖ ≤ ε

2 for n ≥ n1, we find

ε‖z∗n‖ ≤ 〈z∗n, xn − x〉+ 〈z∗n, x− y0〉 ≤
ε

2
‖z∗n‖+ 〈z∗n, x− y0〉, n ≥ n1.

Thus,

0 <
ε

2
‖z∗n‖ ≤ 〈z∗n, x− y0〉, n ≥ n1. (4.9)
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Since 〈z∗n, x − y0〉 > 0, we can choose tn > 0 such that 〈tnz∗n, x − y0〉 = 1. From
(4.9) we deduce ‖tnz∗n‖ ≤ 2

ε , n ≥ n1. Thus there exists z∗ ∈ X∗ and a subsequence

tnk
z∗nk

w∗

−−→ z∗. From the s × w∗ sequential closedness of Gr(Na
f ), it follows that

z∗ ∈ Na
f (x) ⊆M ∪ {0}. But from (4.8) we obtain that tnz

∗
n belongs to the w∗-closed

set X∗\M for all n, so z∗ /∈ M . It follows that z∗ = 0. Therefore 〈tnz∗n, x− y0〉 → 0,
a contradiction. �
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