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On a Fredholm-Volterra integral equation

Alexandru-Darius Filip and Ioan A. Rus

Abstract. In this paper we give conditions in which the integral equation

x(t) =

∫ c

a

K(t, s, x(s))ds +

∫ t

a

H(t, s, x(s))ds + g(t), t ∈ [a, b],

where a < c < b, K ∈ C([a, b] × [a, c] × B,B), H ∈ C([a, b] × [a, b] × B,B),
g ∈ C([a, b],B), with B a (real or complex) Banach space, has a unique solution
in C([a, b],B). An iterative algorithm for this equation is also given.
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1. Introduction

The following type of integral equation was studied by several authors (see [11],
[2], [3], [6], [1], [5], [10], [7], . . . ),

x(t) =

∫ c

a

K(t, s, x(s))ds+

∫ t

a

H(t, s, x(s))ds+ g(t), t ∈ [a, b], (1.1)

where a < c < b,K ∈ C([a, b]×[a, c]×B,B),H ∈ C([a, b]×[a, b]×B,B), g ∈ C([a, b],B),
with (B, |·|) a (real or complex) Banach space.

The aim of this paper is to give some conditions on K and H in which the equa-
tion (1.1) has a unique solution in C([a, b],B). To do this, we shall use the contraction
principle, the fiber contraction principle ([9], [13], [10], [11]) and a variant of Maia
fixed point theorem given in [8] (see also [4]).

2. Preliminaries

Let us recall some notions, notations and fixed point results which will be used
in this paper.
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2.1. Picard operators and weakly Picard operators

Let (X,→) be an L-space ((X, d),
d→; (X, τ),

τ→; (X, ‖·‖), ‖·‖→,⇀; . . .). An opera-
tor A : (X,→) → (X,→) is called weakly Picard operator (WPO) if the sequence
(An(x))n∈N converges for all x ∈ X and the limit (which generally depends on x) is
a fixed point of A.

If an operator A is WPO and the fixed point set of A is a singleton, i.e.,

FA = {x∗},
then, by definition, A is called Picard operator (PO).

For a WPO, A : (X,→)→ (X,→), we define the limit operator A∞ : (X,→)→
(X,→), by A∞(x) := lim

n→∞
An(x). We remark that, A∞(X) = FA, i.e., A∞ is a set

retraction of X on FA.

2.2. Fiber contraction principle

Regarding this principle, some important results were given in [12] and [13].

Fiber Contraction Theorem. Let (X,→) be an L-space, (Y, d) be a metric space,
B : X → X, C : X × Y → Y and A : X × Y → X × Y , A(x, y) := (B(x), C(x, y)).
We suppose that:

(i) (Y, d) is a complete metric space;
(ii) B is a WPO;

(iii) C(x, ·) : Y → Y is an l-contraction, for all x ∈ X;
(iv) C : X × Y → Y is continuous.

Then A is a WPO. Moreover, if B is a PO, then A is a PO.

Generalized Fiber Contraction Theorem. Let (X,→) be an L-space and (Xi, di), i =
1,m, m ≥ 1 be metric spaces. Let Ai : X0 × . . . × Xi → Xi, i = 0,m, be some
operators. We suppose that:

(i) (Xi, di), i = 1,m, are complete metric spaces;
(ii) A0 is a WPO;

(iii) Ai(x0, . . . , xi−1, ·) : Xi → Xi, i = 1,m, are li-contractions;
(iv) Ai, i = 1,m, are continuous.

Then the operator A : X0 × . . .×Xm → X0 × . . .×Xm, defined by

A(x0, . . . , xm) := (A0(x0), A1(x0, x1), . . . , Am(x0, . . . , xm))

is a WPO. Moreover, if A0 is a PO, then A is a PO.

2.3. A variant of Maia fixed point theorem

We recall here the following variant of Maia fixed point theorem, given by I.A.
Rus in [8]:

Theorem 2.1. Let X be a nonempty set, d and ρ be two metrics on X and A : X → X
be an operator. We suppose that:

(1) there exists c > 0 such that d(A(x), A(y)) ≤ cρ(x, y), for all x, y ∈ X;
(2) (X, d) is a complete metric space;
(3) A : (X, d)→ (X, d) is continuous;
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(4) A : (X, ρ)→ (X, ρ) is an l-contraction.

Then:

(i) FA = {x∗};
(ii) A : (X, d)→ (X, d) is PO.

3. Operatorial point of view on equation (1.1)

Let X := C([a, b],B) and T : X → X be defined by

T (x)(t) :=

∫ c

a

K(t, s, x(s))ds+

∫ t

a

H(t, s, x(s))ds+ g(t), t ∈ [a, b].

For x ∈ X, we denote by u := x
∣∣
[a,c]

and v := x
∣∣
[c,b]

. If x is a solution of the equation

(1.1) (i.e. a fixed point of T ), then

u(t) =

∫ c

a

K(t, s, u(s))ds+

∫ t

a

H(t, s, u(s))ds+ g(t), t ∈ [a, c] (3.1)

and

v(t) =

∫ c

a

K(t, s, u(s))ds+

∫ c

a

H(t, s, u(s))ds

+

∫ t

c

H(t, s, v(s))ds+ g(t), t ∈ [c, b]. (3.2)

Let X1 := C([a, c],B), X2 := C([c, b],B) and

T1 : X1 → X1, T1(u)(t) := the second part of (3.1),

T2 : X1 ×X2 → X2, T2(u, v)(t) := the second part of (3.2).

The mappings T1 and T2 allow us to construct the triangular operator

T̃ : X1 ×X2 → X1 ×X2, T̃ (u, v) := (T1(u), T2(u, v)), for all (u, v) ∈ X1 ×X2.

Remark 3.1. If (u∗, v∗) ∈ FT̃ , then u∗(c) = v∗(c). So the function x∗ ∈ X, defined by

x∗(t) :=

{
u∗(t), t ∈ [a, c]

v∗(t), t ∈ [c, b]

is a fixed point of T , i.e., a solution of (1.1).

Remark 3.2. For (u0, v0) ∈ X1 ×X2 we consider the successive approximations cor-

responding to the operator T̃ , (un+1, vn+1) = T̃ (un, vn), n ∈ N. We observe that, for
n ∈ N∗, un(c) = vn(c). So, the function xn, defined by

xn(t) :=

{
un(t), t ∈ [a, c]

vn(t), t ∈ [c, b]

is in X.
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Remark 3.3. Let Y ⊂ X1 ×X2 be defined by

Y := {(u, v) ∈ X1 ×X2 | u(c) = v(c)}.
The operator R : X → Y , defined by R(x) := (x

∣∣
[a,c]

, x
∣∣
[c,b]

) is a bijection. From

the above definitions, it is clear that T (x) = (R−1T̃R)(x) and the nth iterate of T is

Tn = R−1T̃nR.

In conclusion, to study the equation (1.1) (which is equivalent with x = T (x))

it is sufficient to study the fixed point of the operator T̃ . If (u∗, v∗) ∈ FT̃ then
R−1(u∗, v∗) ∈ FT .

4. Existence and uniqueness of solution of equation (1.1)

In what follows, in addition to the continuity of H, K and g, we suppose on K
and H that:

(i) There exists L1 ∈ C([a, b]× [a, c],B) such that:

|K(t, s, ξ)−K(t, s, η)| ≤ L1(t, s)|ξ − η|, for all t ∈ [a, b], s ∈ [a, c], ξ, η ∈ B.

(ii) There exists L2 ∈ C([a, b]× [a, b],B) such that:

|H(t, s, ξ)−H(t, s, η)| ≤ L2(t, s)|ξ − η|, for all t, s ∈ [a, b], ξ, η ∈ B.

(iii)

(∫
[a,c]×[a,c]

(
L1(t, s) + L2(t, s)

)2
dtds

) 1
2

< 1.

The basic result of our paper is the following.

Theorem 4.1. In the above conditions we have that:

(1) The equation (1.1) has in C([a, b],B) a unique solution x∗.

(2) The operator T̃ is a Picard operator with respect to
unif.→ . Let FT̃ = {(u∗, v∗)}.

(3) The operator T is a Picard operator with respect to
unif.→ and FT = {x∗}. More-

over, x∗ = R−1(u∗, v∗).

Proof. From the remarks which were given in §3, it is sufficient to prove that the
operator T̃ is a Picard operator with respect to the uniform convergence on X1×X2.

In order to apply the Fiber contraction principle, we shall prove that:

(j) T1 : (X1,
unif.→ )→ (X1,

unif.→ ) is a Picard operator;
(jj) T2(u, ·) : (X2, ‖·‖τ )→ (X2, ‖·‖τ ) is a contraction.

Let us prove (j).
We consider on X1, the norms ‖·‖∞ and ‖·‖L2 . By using the assumptions (i)

and (ii), we have the following estimations:

|T1(u1)(t)− T1(u2)(t)| ≤
∫ c

a

|K(t, s, u1(s))−K(t, s, u2(s))|ds

+

∫ t

a

|H(t, s, u1(s))−H(t, s, u2(s))|ds
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≤
∫ c

a

L1(t, s)|u1(s)− u2(s)|ds+

∫ c

a

L2(t, s)|u1(s)− u2(s)|ds

Hölder’s
inequality

≤
(∫ c

a

L1(t, s)2ds

) 1
2
(∫ c

a

|u1(s)− u2(s)|2ds
) 1

2

+

(∫ c

a

L2(t, s)2ds

) 1
2
(∫ c

a

|u1(s)− u2(s)|2ds
) 1

2

.

By taking the max
t∈[a,c]

in the above inequalities, there exists a real positive constant

c := max
t∈[a,c]

(∫ c

a

L1(t, s)2ds

) 1
2

+ max
t∈[a,c]

(∫ c

a

L2(t, s)2ds

) 1
2

such that

‖T1(u1)− T1(u2)‖∞ ≤ c‖u1 − u2‖L2 , for all u1, u2 ∈ X1.

On the other hand, we have that

‖T1(u1)− T1(u2)‖L2 =

(∫ c

a

|T1(u1)(t)− T1(u2)(t)|2dt
) 1

2

≤
(∫ c

a

(∫ c

a

(L1(t, s)ds+ L2(t, s))2ds

)
‖u1 − u2‖2L2dt

) 1
2

=

(∫ c

a

∫ c

a

(L1(t, s) + L2(t, s))
2
dsdt

) 1
2

‖u1 − u2‖L2 ,

for all u1, u2 ∈ X1.

By using the assumption (iii), it follows that the operator T1 is a contraction with
respect to ‖·‖L2 on X1.

The conclusion follows from the variant of Maia theorem.

Let us prove (jj).

For t ∈ [c, b] and ML2
:= max

t,s∈[c,b]
L2(t, s), we have that

|T2(u, v1)(t)− T2(u, v2)(t)| ≤
∫ t

c

|H(t, s, v1(s))−H(t, s, v2(s))|ds

≤
∫ t

c

L2(t, s)|v1(s)− v2(s)|ds

≤ML2

∫ t

c

|v1(s)− v2(s)|e−τ(s−c)eτ(s−c)ds

≤ML2
‖v1 − v2‖τ

∫ t

c

eτ(s−c)ds ≤ML2
‖v1 − v2‖τ

eτ(t−c)

τ
.

It follows that

|T2(u, v1)(t)− T2(u, v2)(t)|e−τ(t−c) ≤ ML2

τ
‖v1 − v2‖τ .
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By taking max
t∈[c,b]

and by choosing τ > ML2
, there exists a real positive constant

l :=
ML2

τ
< 1

such that

‖T2(u, v1)− T2(u, v2)‖τ ≤ l‖v1 − v2‖τ , for all v1, v2 ∈ X2. �

Remark 4.2. Let K := R or C, |·| be a norm on B := Km (|·|1, |·|2, |·|∞, . . .),
a < c < b, K = (K1, . . . ,Km) ∈ C([a, b],Km) and H = (H1, . . . ,Hm) ∈ C([a, b],Rm).
In this case, the equation (1.1) takes the following form

x1(t) =

∫ c

a

K1(t, s, x1(s), . . . , xm(s))ds

+

∫ t

a

H1(t, s, x1(s), . . . , xm(s))ds, t ∈ [a, b]

...

xm(t) =

∫ c

a

Km(t, s, x1(s), . . . , xm(s))ds∫ t

a

Hm(t, s, x1(s), . . . , xm(s))ds, t ∈ [a, b].

(4.1)

From Theorem 4.1 we have an existence and uniqueness result for the system (4.1).
In the case when B is a Banach space of infinite sequences with elements in K

(c(K), Cp(K), m(K), lp(K), . . .) we have from Theorem 4.1 an existence and unique-
ness result for an infinite system of Fredholm-Volterra integral equations.
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