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Geometric properties of mixed operator involving
Ruscheweyh derivative and Salagean operator
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Abstract. Operator theory is a magnificent tool for studying the geometric beha-
viors of holomorphic functions in the open unit disk. Recently, a combination bet-
ween two well known differential operators, Ruscheweyh derivative and Salagean
operator are suggested by Lupas in [10]. In this effort, we shall follow the same
principle, to formulate a generalized differential-difference operator. We deliver a
new class of analytic functions containing the generalized operator. Applications
are illustrated in the sequel concerning some differential subordinations of the
operator.
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1. Introduction

Differential operators in a complex domain play a significant role in functions
theory and its information. They have used to describe the geometric interpolation
of analytic functions in a complex domain. Also, they have utilized to generate new
formulas of holomorphic functions. Lately, Lupas [10] presented a amalgamation of
two well-known differential operators prearranged by Ruscheweyh [12] and Séldgean
[13]. Later, these operators are investigated by researchers considering different classes
and formulas of analytic functions [5, 8].

In this note, we consider a special class of functions in the open unit disk
u={¢eCllgf <1}
denoting by ¥ and having the series

&) =6+ pnl", £l
n=2
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Let ¢ € X, then the Ruscheweyh formula is indicated by the structure formula
o0
o (P(g) =&+ Z C:nnJrnfl on&".
n=2
While, the Salagean operator admits the construction
o0
U™ () =6+ Y ™ pnl™
n=2
Lupas operator is formulated by the structure

AP p(€) =€+ [on™ +(1—0)Cpi]on”, €€U,0€[0,1].

n=2

Newly, Ibrahim and Darus [7] considered the next differential operator
0rp() = (&)
K
0.0(6) =€p(&) + 5 (p() —p(—€) —2), rKER

[\)

Ol (&) = 0. (0 p(€))
=g+ 3+ S+ (D)) e
n=2

When k = 0,we have U™ ¢(£) In addition, it is a modified formula of the well-known
Dunkl operator [2], where x is known as the Dunkl order. Proceeding, we define a
generalized formula of A", as follows:

Joup(§) = (1 = 0)@™p(£) + 00, ¢(£)

=&+ 3 11— )y + 0t S+ (—1)"F) " ong™.

n=2

(1.1)

Clearly, the operator JJ", ¢(§) € X.

Remark 1.1.

m=0=JJ 0() = p();
k=0= Jp(&) = AT ¢(§);
o=0= J§. () = 2" p(£);
o=1= J.»() = 0p();
k=0,0=1= Jhp(§) = ™ p(&).

Definition 1.2. Consider the following data € € [0,1),0 € [0,1],x > 0, and m € N.
Then a function ¢ € ¥ belongs to the set T,,(0, &, €) if and only if

R((T70©)) > e €eu.
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Observe that the set T,,(o,k,€) is an extension of the well known class of
bounded turning functions (see [1]-[14]). Next results are requested to prove our re-
sults depending on the subordination concept (see [11]).

Lemma 1.3. Suppose that h is convex function such that h(0) = b, and there is a
complex number with a positive real part p. If b € H[b, n], where

A, ={€H:b(E) =b 40" + b, 1" 4}
(the space of holomorphic functions) and
6+ 8/(E) <hO). Eeu

then
b(§) =< (&) < A(&),

. u
We) = L /0 hr)yr(=Ddar eeL.

- ngl»’«/”

with

Lemma 1.4. Suppose that the convex function b() satisfies the functional

h(§) =b(&) + nu(€b'(£))

for >0 and n is a positive integer. Ifb € H[R(0),n], and b(§)+ u&b’ (&) < A(§), £ € U
then b(&) < h(§), and this outcome is sharp.

Lemma 1.5. (i) If A\ > 0,7 >0, 8 = B(v,\,n) and b € H[1,n| then
, 1+¢]° 1+¢£]”
0+ 366 < [Toe| =0 < | 1]
(i) If e € [0,1), A = A(e,n) and b € H[1,n] then

R(52(6) + 2(6).£7(€)) > € = RO()) > A

2. Results

In this section, we investigate some geometric conducts of the operator (1.1).
Theorem 2.1. The set T,,(0, Kk, €) is convez.
Proof. Suppose that ¢;,7 = 1,2 are two functions belonging to T,,(0, k, €) satisfying

P1() =€+ pnt”

n=2

and

p2(§) =&+ Z Hn&".

n=2
It is sufficient to prove that the function

(21) = p101(§) + p202(8), §eu
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is in T, (0, Kk, €), where p1 > 0, p2 > 0 and p; + @2 = 1. The formula of II(z) yields

H(g) = E + Z(@l‘pn + 92¢n)§n
n=2

Thus, under the operator (1.1), we get

KR

TRTE) =6+ Y (p160n + 9200)[(1 = 0)Chp s + 0 (n+ 51+ (=1)"*h)"er

n=2
By making a differentiation, we obtain
R{(JE 1))}

o

=1+ R {Z nl(1 = )Compny +0 (n+ S(1+ (—1)"+1))m]<pn£”‘l}

n=2
+paR {Z A1 = 0)Cieny + 0 (5 (14 (1)) "o e} —e. O
n=2

Theorem 2.2. Define the following functions: ¢ € T,,(0, k,€), ¢ be convex and

_2+c ¢ .
F¢) = §1+°‘/0 tCo(t)dt, € e L.
Then ) .
(me©) = oe) + S o,
yields
(JenF(©)) < 0(8),
and this outcome is sharp.
Proof. By the assumptions, we have
, (mF©) :
() + (2+) = (Jme()
Consequently, we get
, (mF©) :
(2 ©) + (re) s ) v+ ere),
Assuming
(€)= (J2F©)
e con find (&'(©) (0/(€)
b(§)+27+0 = 9(§) + 25tc

In virtue of Lemma 1.3, we have

(73 F(©) =< 0(0)
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and ¢ is the best dominant. O

Theorem 2.3. Assume the conver function ¢ achieving $(0) =1 and for p € &

(770(©) <60 +e0(©), e

then
Jotee(§)

e = #(8),

and this outcome is sharp.
Proof. Formulate the next functional

(o) o PPlE)

e © H[1,1] (2.1)

Consequently, we get

TEp(€) = €5(6) = (T0(6)) =€) + (&),
Therefore, we obtain the inequality

b(§) + &' (€) < B(&) +£¢/ (&)

According to Lemma 1.4, we attain

) < e,

and ¢ is the best dominant. O

Theorem 2.4. For ¢ € X if the inequality

1+¢

B
o) < (15%) + seu 820

achieves then

for some € € [0,1).

Proof. For the function b(¢) in (2.1), we have

1-¢
According to Lemma 1.5.i, there occurs a constant v > 0 with g = () with
I3 () - <1 4—5)7
£ 1-¢) -
This yields R(J]",.©(£)/€) > ¢, for some € € [0, 1). O

B
(I (€)Y = 6/(€) +h(6) < (”f) |
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Theorem 2.5. Assume that @ € X achieves the inequality

Jowp&)\ _ o
m /7 O,KR e
R((7p@) =5) > 5, €etoel0)
Then J3' ¢(§) € Tm(o, K, €) for some e € [0,1). In addition, it is univalent of bounded
turning in L.

Proof. Assume the function b(§) as in (2.1). A Calculation implies that

R(52(6) +20(6)-£'(9)) = 2%((%’}&(@)’%) > o (2:2)

Lemma 1.5.ii, implies that there occurs a constant A(o) satisfying R(b(£)) > A(o).
Thus, we obtain R(b(§) ) > € for some ¢ € [0,1). It yields from (2.2) that

%(Jg,ﬁigp(ﬁ))’ ) > ¢ and by Noshiro-Warschawski and Kaplan Theorems (see [3]), we
have that J" ¢(§) is univalent and of bounded turning in L. O
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